1
|
Wen L, Chang Q, Zhang X, Li X, Zhong S, Zeng P, Shah SSA, Hu X, Cai W, Li Y. Tailoring the d-Band Center of WS 2 by Metal and Nonmetal Dual-Doping for Enhanced Electrocatalytic Nitrogen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407594. [PMID: 39344557 DOI: 10.1002/smll.202407594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Indexed: 10/01/2024]
Abstract
Tuning the adsorption energy of nitrogen intermediates and lowering the reaction energy barrier is essential to accelerate the kinetics of nitrogen reduction reaction (NRR), yet remains a great challenge. Herein, the electronic structure of WS2 is tailored based on a metal and nonmetal dual-doping strategy (denoted Fe, F-WS2) to lower the d-band center of W in order to optimize the adsorption of nitrogen intermediates. The obtained Fe, F-WS2 nanosheet catalyst presents a high Faradic efficiency (FE) of 22.42% with a NH3 yield rate of 91.46 µg h-1 mgcat. -1. The in situ characterizations and DFT simulations consistently show the enhanced activity is attributed to the downshift of the d-band center, which contributes to the rate-determining step of the second protonation to form N2H2 * key intermediates, thereby boosting the overall nitrogen electrocatalysis reaction kinetics. This work opens a new avenue to enhanced electrocatalysis by modulating the electronic structure and surrounding microenvironment of the catalytic metal centers.
Collapse
Affiliation(s)
- Lulu Wen
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Qingfang Chang
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang, Henan, 453000, P. R. China
| | - Xilin Zhang
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang, Henan, 453000, P. R. China
| | - Xinyang Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Shichuan Zhong
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Pan Zeng
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Xiaoye Hu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Weiping Cai
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Yue Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- School of Physical Science and Technology, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
2
|
Zhao Y, Cui M, Zhang B, Wei S, Shi X, Shan K, Ma J, Zhou G, Pang H. One-step Sintering Synthesis of Ni 3Se 2-Ni Electrode with Robust Interfacial Bonding for Ultra-stable Hydrogen Evolution Reaction. SMALL METHODS 2024; 8:e2301465. [PMID: 38164889 DOI: 10.1002/smtd.202301465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Exploring efficient and robust self-supporting hydrogen evolution reaction (HER) electrodes using simple, accessible, and low-cost synthetic processes is crucial for the commercial application of water electrolysis at high current densities. Ni-based self-supporting electrodes are widely studied owing to their low cost and good catalytic performance. However, to date, the preparation of Ni-based electrodes requires multistep and complex preparation processes. In this study, a novel one-step in situ sintering method to synthesize mechanically stable and highly active Ni3Se2-Ni electrodes with well-controlled morphologies and structures is developed. Their excellent performance and durability can be attributed to the numerous highly active nano-Ni3Se2 catalysts embedded on the surface of the Ni skeleton, the excellent conductivity of the interconnected conductive network, and the strong interfacial bonding between Ni3Se2 and Ni. As a result, the Ni3Se2-Ni600 electrode can operate stably at 85 and 400 mA cm-2 for more than 800 and 300 h, respectively. Moreover, the Ni3Se2-Ni600 electrode displays outstanding stability for over 500 h in a commercial two-electrode system. This study provides a feasible one-step synthesis method for low-cost, high-efficiency metal selenide-metal self-supporting electrodes for water electrolysis.
Collapse
Affiliation(s)
- Yang Zhao
- School of Materials Science and Engineering, Henan University of Science and Technology
| | - Manman Cui
- School of Materials Science and Engineering, Henan University of Science and Technology
| | - Bin Zhang
- School of Materials Science and Engineering, Henan University of Science and Technology
| | - Shizhong Wei
- School of Materials Science and Engineering, Henan University of Science and Technology
| | - Xiaoqian Shi
- School of Materials Science and Engineering, Henan University of Science and Technology
| | - Kangning Shan
- School of Materials Science and Engineering, Henan University of Science and Technology
| | - Jiping Ma
- School of Materials Science and Engineering, Henan University of Science and Technology
| | - Guangmin Zhou
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| |
Collapse
|
3
|
Wang H, Chen DR, Lin YC, Lin PH, Chang JT, Muthu J, Hofmann M, Hsieh YP. Enhancing the Electrochemical Activity of 2D Materials Edges through Oriented Electric Fields. ACS NANO 2024; 18. [PMID: 39012271 PMCID: PMC11295188 DOI: 10.1021/acsnano.4c06341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
The edges of 2D materials have emerged as promising electrochemical catalyst systems, yet their performance still lags behind that of noble metals. Here, we demonstrate the potential of oriented electric fields (OEFs) to enhance the electrochemical activity of 2D materials edges. By atomically engineering the edge of a fluorographene/graphene/MoS2 heterojunction nanoribbon, strong and localized OEFs were realized as confirmed by simulations and spatially resolved spectroscopy. The observed fringing OEF results in an enhancement of the heterogeneous charge transfer rate between the edge and the electrolyte by 2 orders of magnitude according to impedance spectroscopy. Ab initio calculations indicate a field-induced decrease in the reactant adsorption energy as the origin of this improvement. We apply the OEF-enhanced edge reactivity to hydrogen evolution reactions (HER) and observe a significantly enhanced electrochemical performance, as evidenced by a 30% decrease in Tafel slope and a 3-fold enhanced turnover frequency. Our findings demonstrate the potential of OEFs for tailoring the catalytic properties of 2D material edges toward future complex reactions.
Collapse
Affiliation(s)
- Hao Wang
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei 10617, Taiwan
- Department
of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Ding-Rui Chen
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei 10617, Taiwan
- International
Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Molecular
Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan
| | - You-Chen Lin
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei 10617, Taiwan
| | - Po-Han Lin
- Department
of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Jui-Teng Chang
- Department
of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Jeyavelan Muthu
- Department
of Physics, National Taiwan University, Taipei 10617, Taiwan
- Department
of Low Dimensional Systems, J. Heyrovský
Institute of Physical Chemistry, Prague 18200, Czech Republic
| | - Mario Hofmann
- Department
of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Ya-Ping Hsieh
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Guo S, Ma M, Wang Y, Wang J, Jiang Y, Duan R, Lei Z, Wang S, He Y, Liu Z. Spatially Confined Microcells: A Path toward TMD Catalyst Design. Chem Rev 2024; 124:6952-7006. [PMID: 38748433 DOI: 10.1021/acs.chemrev.3c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
With the ability to maximize the exposure of nearly all active sites to reactions, two-dimensional transition metal dichalcogenide (TMD) has become a fascinating new class of materials for electrocatalysis. Recently, electrochemical microcells have been developed, and their unique spatial-confined capability enables understanding of catalytic behaviors at a single material level, significantly promoting this field. This Review provides an overview of the recent progress in microcell-based TMD electrocatalyst studies. We first introduced the structural characteristics of TMD materials and discussed their site engineering strategies for electrocatalysis. Later, we comprehensively described two distinct types of microcells: the window-confined on-chip electrochemical microcell (OCEM) and the droplet-confined scanning electrochemical cell microscopy (SECCM). Their setups, working principles, and instrumentation were elucidated in detail, respectively. Furthermore, we summarized recent advances of OCEM and SECCM obtained in TMD catalysts, such as active site identification and imaging, site monitoring, modulation of charge injection and transport, and electrostatic field gating. Finally, we discussed the current challenges and provided personal perspectives on electrochemical microcell research.
Collapse
Affiliation(s)
- Shasha Guo
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Mingyu Ma
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637616, Singapore
| | - Yuqing Wang
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Jinbo Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yubin Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ruihuan Duan
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 639798, Singapore
| | - Zhendong Lei
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yongmin He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 639798, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
| |
Collapse
|
5
|
Zhang W, Yao Y, Chen Z, Zhao S, Guo F, Zhang L. Fluorine Modification Promoted Water Dissociation into Atomic Hydrogen on a Copper Electrode for Efficient Neutral Nitrate Reduction and Ammonia Recovery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7208-7216. [PMID: 38615328 DOI: 10.1021/acs.est.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Electrocatalytic nitrate reduction to ammonia (NITRR) offers an attractive solution for alleviating environmental concerns, yet in neutral media, it is challenging as a result of the reliance on the atomic hydrogen (H*) supply by breaking the stubborn HO-H bond (∼492 kJ/mol) of H2O. Herein, we demonstrate that fluorine modification on a Cu electrode (F-NFs/CF) favors the formation of an O-H···F hydrogen bond at the Cu-H2O interface, remarkably stretching the O-H bond of H2O from 0.98 to 1.01 Å and lowering the energy barrier of water dissociation into H* from 0.64 to 0.35 eV at neutral pH. As a benefit from these advantages, F-NFs/CF could rapidly reduce NO3- to NH3 with a rate constant of 0.055 min-1 and a NH3 selectivity of ∼100%, far higher than those (0.004 min-1 and 9.2%) of the Cu counterpart. More importantly, we constructed a flow-through coupled device consisting of a NITRR electrolyzer and a NH3 recovery unit, realizing 98.1% of total nitrogen removal with 99.3% of NH3 recovery and reducing the denitrification cost to $5.1/kg of N. This study offers an effective strategy to manipulate the generation of H* from water dissociation for efficient NO3--to-NH3 conversion and sheds light on the importance of surface modification on a Cu electrode toward electrochemical reactions.
Collapse
Affiliation(s)
- Weixing Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Yancai Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ziyue Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Shengxi Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Furong Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
6
|
Rai AK, Shah AA, Kumar J, Chattaraj S, Dar AB, Patbhaje U, Shrivastava M. MoS 2 Field-Effect Transistor Performance Enhancement by Contact Doping and Defect Passivation via Fluorine Ions and Its Cyclic Field-Assisted Activation. ACS NANO 2024; 18:6215-6228. [PMID: 38345911 DOI: 10.1021/acsnano.3c09428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
MoS2-based field-effect transistors (FETs) and, in general, transition metal dichalcogenide channels are fundamentally limited by high contact resistance (RC) and intrinsic defects, which results in low drive current and lower carrier mobilities, respectively. This work addresses these issues using a technique based on CF4 plasma treatment in the contacts and further cyclic field-assisted drift and activation of the fluorine ions (F-), which get introduced into the contact region during the CF4 plasma treatment. The F- ions are activated using cyclic pulses applied across the source-drain (S/D) contacts, which leads to their migration to the contact edges via the channel. Further, using ab initio molecular dynamics and density functional theory simulations, these F- ions are found to bond at sulfur (S) vacancies, resulting in their passivation and n-type doping in the channel and near the S/D contacts. An increase in doping results in the narrowing of the Schottky barrier width and a reduction in RC by ∼90%. Additionally, the passivation of S vacancies in the channel enhances the mobility of the FET by ∼150%. The CF4 plasma treatment in contacts and further cyclic field-assisted activation of F- ions resulted in an ON-current (ION) improvement by ∼90% and ∼480% for exfoliated and CVD-grown MoS2, respectively. Moreover, this improvement in ION has been achieved without any deterioration in the ION/IOFF, which was found to be >7-8 orders.
Collapse
Affiliation(s)
- Anand Kumar Rai
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Asif A Shah
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jeevesh Kumar
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sumana Chattaraj
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Aadil Bashir Dar
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Utpreksh Patbhaje
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mayank Shrivastava
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
7
|
Hu M, Qian Y, Yu S, Yang Q, Wang Z, Huang Y, Li L. Amorphous MoS 2 Decorated Ni 3 S 2 with a Core-shell Structure of Urchin-Like on Nickel-Foam Efficient Hydrogen Evolution in Acidic and Alkaline Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305948. [PMID: 37759414 DOI: 10.1002/smll.202305948] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/04/2023] [Indexed: 09/29/2023]
Abstract
The large-scale commercialization of the hydrogen evolution reaction (HER) necessitates the development of cost-effective and highly efficient electrocatalysts. Although transition metal sulfides, such as MoS2 and Ni3 S2 , hold great potential in the field of HER, their catalytic performance has been unsatisfactory due to incomplete exposure of active sites and poor electrical conductivity. In this work, via a simple hydrothermal strategy, amorphous MoS2 nanoshells in the form of urchin-like MoS2 -Ni3 S2 core-shell heterogeneous structure is realized and in situ loaded on nickel foam (A-MoS2 -Ni3 S2 -NF). In particular, XPS analysis results show that the coupling of amorphous MoS2 and Ni3 S2 makes the electrode surface exhibit electron-abundant property, which will have a positive impact on HER catalytic activity. In addition, the fully exposed active site of amorphous MoS2 is another crucial factor contributing to its high catalytic performance of A-MoS2 -Ni3 S2 -NF electrode. In particular, at a current density of 10 mA cm⁻2 , the overpotential of electrode is 95 mV (1.0 m KOH) and 145 mV (0.5 m H2 SO4 ). This work highlights the importance of amorphous MoS2 and MoS2 -Ni3 S2 of sea-urchin core-shell structure in optimizing HER performance, which provides an important reference for HER research.
Collapse
Affiliation(s)
- Mengliang Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, P. R. China
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Yuanpeng Qian
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, P. R. China
| | - Shuhui Yu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, P. R. China
| | - Qingyao Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, P. R. China
| | - Zhinan Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, P. R. China
| | - Yishuai Huang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, P. R. China
| | - Liping Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, P. R. China
| |
Collapse
|
8
|
Sovizi S, Angizi S, Ahmad Alem SA, Goodarzi R, Taji Boyuk MRR, Ghanbari H, Szoszkiewicz R, Simchi A, Kruse P. Plasma Processing and Treatment of 2D Transition Metal Dichalcogenides: Tuning Properties and Defect Engineering. Chem Rev 2023; 123:13869-13951. [PMID: 38048483 PMCID: PMC10756211 DOI: 10.1021/acs.chemrev.3c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/31/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023]
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) offer fascinating opportunities for fundamental nanoscale science and various technological applications. They are a promising platform for next generation optoelectronics and energy harvesting devices due to their exceptional characteristics at the nanoscale, such as tunable bandgap and strong light-matter interactions. The performance of TMD-based devices is mainly governed by the structure, composition, size, defects, and the state of their interfaces. Many properties of TMDs are influenced by the method of synthesis so numerous studies have focused on processing high-quality TMDs with controlled physicochemical properties. Plasma-based methods are cost-effective, well controllable, and scalable techniques that have recently attracted researchers' interest in the synthesis and modification of 2D TMDs. TMDs' reactivity toward plasma offers numerous opportunities to modify the surface of TMDs, including functionalization, defect engineering, doping, oxidation, phase engineering, etching, healing, morphological changes, and altering the surface energy. Here we comprehensively review all roles of plasma in the realm of TMDs. The fundamental science behind plasma processing and modification of TMDs and their applications in different fields are presented and discussed. Future perspectives and challenges are highlighted to demonstrate the prominence of TMDs and the importance of surface engineering in next-generation optoelectronic applications.
Collapse
Affiliation(s)
- Saeed Sovizi
- Faculty of
Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Shayan Angizi
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
| | - Sayed Ali Ahmad Alem
- Chair in
Chemistry of Polymeric Materials, Montanuniversität
Leoben, Leoben 8700, Austria
| | - Reyhaneh Goodarzi
- School of
Metallurgy and Materials Engineering, Iran
University of Science and Technology (IUST), Narmak, 16846-13114, Tehran, Iran
| | | | - Hajar Ghanbari
- School of
Metallurgy and Materials Engineering, Iran
University of Science and Technology (IUST), Narmak, 16846-13114, Tehran, Iran
| | - Robert Szoszkiewicz
- Faculty of
Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Abdolreza Simchi
- Department
of Materials Science and Engineering and Institute for Nanoscience
and Nanotechnology, Sharif University of
Technology, 14588-89694 Tehran, Iran
- Center for
Nanoscience and Nanotechnology, Institute for Convergence Science
& Technology, Sharif University of Technology, 14588-89694 Tehran, Iran
| | - Peter Kruse
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
9
|
Xiong J, Gong Q, Feng T, Wang M, Zhang X, Liu G, Qiao G, Xu Z. Enhance Hydrogen Evolution Reaction Performance via Double-Stacked Edges of Black Phosphorene. Inorg Chem 2023; 62:21115-21127. [PMID: 38063020 DOI: 10.1021/acs.inorgchem.3c03005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Based on the density functional theory (DFT) calculations, we explored the structures and HER catalytic properties of reconstructed and double-stacked black phosphorene (BP) edges. Ten bilayer BP edges were constructed by the double stacking of three typical monolayer edges, i.e., zigzag (ZZ) edge, armchair (AC) edge, skewed diagonal (SD) edge, and their reconstructed derivatives with their layer's configurations, edge deformations and thermodynamic stabilities were discussed. Based on these edges, five chemical sites on four bilayer BP edges were selected to be promising candidates for a HER catalyst, which present higher HER activities than that of Pt(111). Besides, among these four edges, two edges have even lower energetic barriers for the Tafel reaction. Compared with the monolayer edges, these selected bilayer BP edges confirm the remarkable enhancement of the HER catalytic properties, which can be attributed to their unique edge structures and the enhanced electronic densities after the hydrogen adsorptions. Finally, the thermostability of these edges at room temperature has also been proved by the DFT-MD simulations. This theoretic study deepens our fundamental understanding of the double-stacked edge structures of the BP and provides a new way for the rational design of highly efficient and noble-metal-free HER catalysts.
Collapse
Affiliation(s)
- Jianling Xiong
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Qiang Gong
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Tianliang Feng
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Mingsong Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Xiuyun Zhang
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
| | - Guiwu Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Guanjun Qiao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Ziwei Xu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| |
Collapse
|
10
|
Liu Z, Xia X, Ye CJ, Xu H, Wang QY, Zheng ZY, Li SS, Liu Z, Guo Z. Sensitive sensing of Hg(II) based on lattice B and surface F co-doped CeO 2: Synergies of catalysis and adsorption brought by doping site engineering. Anal Chim Acta 2023; 1282:341937. [PMID: 37923410 DOI: 10.1016/j.aca.2023.341937] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Transition metal oxides are widely used in the detection of heavy metal ions (HMIs), and the co-doping strategy that introducing a variety of different dopant atoms to modify them can obtain a better detection performance. However, there is very little research on the co-doped transition metal oxides by non-metallic elements for electrochemical detection. Herein, boron (B) and fluorine (F) co-doped CeO2 nanomaterial (BFC) is constructed to serve as the electrochemically sensitive interface for the detection of Hg(II). B and F affect the sensitivity of CeO2 to HMIs when they were introduced at different doping sites. Through a variety of characterization, it is proved that B is successfully doped into the lattice and F is doped on the surface of the material. Through the improvement of the catalytic properties and adsorption capacity of CeO2 by different doping sites, this B and F co-doped CeO2 exhibits excellent square wave anodic stripping voltammetry (SWASV) current responses to Hg(II). Both the high sensitivity of 906.99 μA μM-1 cm-2 and the low limit of detection (LOD) of 0.006 μM are satisfactory. Besides, this BFC glassy carbon electrode (GCE) also has good anti-interference property, which has been successfully used in the detection of Hg(II) in actual water. This discovery provides a useful strategy for designing a variety of non-metallic co-doped transition metal oxides to construct trace heavy metal ion-sensitive interfaces.
Collapse
Affiliation(s)
- Zheng Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, PR China
| | - Xu Xia
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, PR China
| | - Chun-Jie Ye
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, PR China
| | - Huan Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, PR China
| | - Qiu-Yu Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, PR China
| | - Zi-Yi Zheng
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, PR China
| | - Shan-Shan Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, PR China.
| | - Zhonggang Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230000, PR China.
| | - Zheng Guo
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230000, PR China.
| |
Collapse
|
11
|
Fu W, Li N, Shi M, Wu M, Sun G, Shen W, Li Q, Ma J. RuSe 2-CoTe Heterogeneous Surfaces Coated with NC Layer for Excellent HER Performance under Alkaline Condition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13189-13196. [PMID: 37674321 DOI: 10.1021/acs.langmuir.3c01613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Electrocatalytic hydrogen production has been a promising high-purity hydrogen production technology, attracting a large number of researchers' research interest. Ru has a hydrogen binding capacity similar to Pt, but its price is far lower than Pt, making it a promising alternative to Pt. However, a single Se electronic structure modulation is not sufficient to enable RuSe2 to be used for practical applications on a large scale due to the lack of electrons. Therefore, choosing a suitable way to electronically modulate the Ru atoms in RuSe2 can effectively improve the activity of the catalyst. Cobalt telluride (CoTe) can significantly enhance electrocatalytic performance due to tellurium's low electronegativity and excellent metal properties. In this work, the NC layer possesses excellent electrical conductivity and CoTe acts as an electron donor to optimize the electronic structure locally and trigger electron transfer efficiently. The RuSe2-CoTe/NC electrode requires an overpotential of only 25.4 mV (10 mA cm-2), which is superior to that of RuSe2/NF (65 mV) and CoTe/NC (115 mV). Meanwhile, the Tafel slope of RuSe2-CoTe/NC (67.8 mV dec-1) was better than that of RuSe2/NF (113.6 mV dec-1) and CoTe/NC (209.5 mV dec-1), showing that the build-up of the superior heterojunction makes the RuSe2-CoTe/NC with better hydrogen evolution reaction (HER) reaction kinetics. In addition, after 30 h of long-term stability testing, no significant decrease in catalytic activity was observed, proving the good stability of the RuSe2-CoTe/NC catalyst.
Collapse
Affiliation(s)
- Wenhua Fu
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Nan Li
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Minghao Shi
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Mianmian Wu
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Guifang Sun
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Wenjing Shen
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Qingfei Li
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jiangquan Ma
- Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
12
|
Chuang CH, Kang PH, Lai YY, Hou CH, Tseng WC, Huang YJ, Fang MH, Shyue JJ, Kaun CC, Cheng YJ. Highly Active NiO-Ni(OH) 2 -Cr 2 O 3 /Ni Hydrogen Evolution Electrocatalyst through Synergistic Reaction Kinetics. CHEMSUSCHEM 2023; 16:e202300820. [PMID: 37421638 DOI: 10.1002/cssc.202300820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/10/2023]
Abstract
High activity catalysts for hydrogen evolution reaction (HER) play a key role in converting renewable electricity to storable hydrogen fuel. Great effort has been devoted to the search for noble metal free catalysts to make electrolysis viable for practical applications. Here, a non-precious metal oxide/metal catalyst with high intrinsic activity comparable to Pt/C was reported. The electrocatalyst consisting of NiO, Ni(OH)2 , Cr2 O3 , and Ni metal exhibits a low overpotential of 27, 103, and 153 mV at current densities of 10, 100, and 200 mA cm-2 , respectively, in a 1.0 m NaOH electrolyte. The activity is much higher than that of NiOx /Ni or Cr2 O3 alone, showing the synergistic effect of NiOx /Ni and Cr2 O3 on catalyzing HER. Density functional theory calculations shows that NiO and Cr2 O3 on Ni surface lower the disassociation energy barrier for breaking H-OH bond, while Ni(OH)2 and Cr2 O3 create preferred sites on Ni surface with near-zero H* adsorption free energy to promote H* to gaseous H2 evolution. These synergistic effects of multiple-oxides/metal composition enhance the disassociation of H-OH and the evolution of H* to gaseous H2 , thus achieving high activity and demonstrating a promising composition design for noble metal free catalyst.
Collapse
Affiliation(s)
- Chi-Huang Chuang
- Research Center for Applied Sciences, Academia Sinica, 128 Sec. 2, Academia Rd, Nankang, Taipei, 115, Taiwan
| | - Pei-Hao Kang
- Research Center for Applied Sciences, Academia Sinica, 128 Sec. 2, Academia Rd, Nankang, Taipei, 115, Taiwan
| | - Yung-Yu Lai
- Research Center for Applied Sciences, Academia Sinica, 128 Sec. 2, Academia Rd, Nankang, Taipei, 115, Taiwan
| | - Cheng-Hung Hou
- Research Center for Applied Sciences, Academia Sinica, 128 Sec. 2, Academia Rd, Nankang, Taipei, 115, Taiwan
| | - Wei-Che Tseng
- Department of Materials Science and Engineering, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan
| | - Yan-Jia Huang
- Department of Materials Science and Engineering, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan
| | - Mu-Huai Fang
- Research Center for Applied Sciences, Academia Sinica, 128 Sec. 2, Academia Rd, Nankang, Taipei, 115, Taiwan
| | - Jing-Jong Shyue
- Research Center for Applied Sciences, Academia Sinica, 128 Sec. 2, Academia Rd, Nankang, Taipei, 115, Taiwan
| | - Chao-Cheng Kaun
- Research Center for Applied Sciences, Academia Sinica, 128 Sec. 2, Academia Rd, Nankang, Taipei, 115, Taiwan
| | - Yuh-Jen Cheng
- Research Center for Applied Sciences, Academia Sinica, 128 Sec. 2, Academia Rd, Nankang, Taipei, 115, Taiwan
| |
Collapse
|
13
|
Phan LP, Tran TTN, Truong TK, Yu J, Nguyen HVT, Phan TB, Thi Tran NH, Tran NQ. Highly Efficient and Stable Hydrogen Evolution from Natural Seawater by Boron-Doped Three-Dimensional Ni 2P-MoO 2 Heterostructure Microrod Arrays. J Phys Chem Lett 2023; 14:7264-7273. [PMID: 37555944 DOI: 10.1021/acs.jpclett.3c01697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The rational design of highly active and stable electrocatalysts toward the hydrogen evolution reaction (HER) is highly desirable but challenging in seawater electrolysis. Herein we propose a strategy of boron-doped three-dimensional Ni2P-MoO2 heterostructure microrod arrays that exhibit excellent catalytic activity for hydrogen evolution in both alkaline freshwater and seawater electrolytes. The incorporation of boron into Ni2P-MoO2 heterostructure microrod arrays could modulate the electronic properties, thereby accelerating the HER. Consequently, the B-Ni2P-MoO2 heterostructure microrod array electrocatalyst exhibits a superior catalyst activity for HER with low overpotentials of 155, 155, and 157 mV at a current density of 500 mA cm-2 in 1 M KOH, 1 M KOH + NaCl, and 1 M KOH + seawater, respectively. It also exhibits exceptional performance for HER in natural seawater with a low overpotential of 248 mV at 10 mA cm-2 and a long-lasting lifetime of over 100 h.
Collapse
Affiliation(s)
- Le Phuc Phan
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Vietnam
| | - Thuy Tien Nguyen Tran
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Vietnam
| | - Thuy-Kieu Truong
- Institute of Physics, National Institute of Applied Mechanics and Information, Vietnam Academy of Science and Technology, Ho Chi Minh 710116, Vietnam
| | - Jianmin Yu
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Hanh-Vy Tran Nguyen
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thang Bach Phan
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nhu Hoa Thi Tran
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Vietnam
| | - Ngoc Quang Tran
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
14
|
Eidsvåg H, Vajeeston P, Velauthapillai D. Doped MoS 2 Polymorph for an Improved Hydrogen Evolution Reaction. ACS OMEGA 2023; 8:26263-26275. [PMID: 37521613 PMCID: PMC10373197 DOI: 10.1021/acsomega.3c02623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Green hydrogen produced from solar energy could be one of the solutions to the growing energy shortage as non-renewable energy sources are phased out. However, the current catalyst materials used for photocatalytic water splitting (PWS) cannot compete with other renewable technologies when it comes to efficiency and production cost. Transition-metal dichalcogenides, such as molybdenum disulfides (MoS2), have previously proven to have electronic and optical properties that could tackle these challenges. In this work, optical properties, the d-band center, and Gibbs free energy are calculated for seven MoS2 polymorphs using first-principles calculations and density functional theory (DFT) to show that they could be suitable as photocatalysts for PWS. Out of the seven, the two polymorphs 3Ha and 2R1 were shown to have d-band center values closest to the optimal value, while the Gibbs free energy for all seven polymorphs was within 5% of each other. In a previous study, we found that 3Hb had the highest electron mobility among all seven polymorphs and an optimal bandgap for photocatalytic reactions. The 3Hb polymorphs were therefore selected for further study. An in-depth analysis of the enhancement of the electronic properties and the Gibbs free energy through substitutional doping with Al, Co, N, and Ni was carried out. For the very first time, substitutional doping of MoS2 was attempted. We found that replacing one Mo atom with Al, Co, I, N, and Ni lowered the Gibbs free energy by a factor of 10, which would increase the hydrogen evolution reaction of the catalyst. Our study further shows that 3Hb with one S atom replaced with Al, Co, I, N, or Ni is dynamically and mechanically stable, while for 3Hb, replacing one Mo atom with Al and Ni makes the structure stable. Based on the low Gibbs free energy, stability, and electronic bandgap 3Hb, MoS2 doped with Al for one Mo atom emerges as a promising candidate for photocatalytic water splitting.
Collapse
Affiliation(s)
- Håkon Eidsvåg
- Department
of Computing, Mathematics and Physics, Western
Norway University of Applied Sciences, Inndalsveien 28, Box, 5063 Bergen, Norway
| | - Ponniah Vajeeston
- Department
of Chemistry, Center for Materials Science and Nanotechnology, University of Oslo, Box 1033 Blindern, N-0315 Oslo, Norway
| | - Dhayalan Velauthapillai
- Department
of Computing, Mathematics and Physics, Western
Norway University of Applied Sciences, Inndalsveien 28, Box, 5063 Bergen, Norway
| |
Collapse
|
15
|
Huo J, Zhang Y, Kang W, Shen Y, Li X, Yan Z, Pan Y, Sun W. Synthesis of F-doped materials and applications in catalysis and rechargeable batteries. NANOSCALE ADVANCES 2023; 5:2846-2864. [PMID: 37260486 PMCID: PMC10228368 DOI: 10.1039/d3na00126a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/27/2023] [Indexed: 06/02/2023]
Abstract
Elemental doping is one of the most essential techniques for material modification. It is well known that fluorine is considered to be a highly efficient and inexpensive dopant in the field of materials. Fluorine is one of the most reactive elements with the highest electronegativity (χ = 3.98). Compared to cationic doping, anionic doping is another valuable method for improving the properties of materials. Many materials have physicochemical limitations that affect their practical application in the field of catalysis and rechargeable ion batteries. Many researchers have demonstrated that F-doping can significantly improve the performance of materials for practical applications. This paper reviews the applications of various F-doped materials in photocatalysis, electrocatalysis, lithium-ion batteries, and sodium-ion batteries, as well as briefly introducing their preparation methods and mechanisms to provide researchers with more ideas and options for material modification.
Collapse
Affiliation(s)
- Jiale Huo
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University Tianjin 300387 PR China
- School of Physical Science and Technology, Tiangong University Tianjin 300387 PR China
| | - Yaofang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University Tianjin 300387 PR China
- School of Physical Science and Technology, Tiangong University Tianjin 300387 PR China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University Tianjin 300387 PR China
- School of Textile Science and Engineering, Tiangong University Tianjin 300387 China
| | - Yan Shen
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University Tianjin 300387 PR China
- School of Physical Science and Technology, Tiangong University Tianjin 300387 PR China
| | - Xiang Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University Tianjin 300387 PR China
- School of Physical Science and Technology, Tiangong University Tianjin 300387 PR China
| | - Zirui Yan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University Tianjin 300387 PR China
- School of Physical Science and Technology, Tiangong University Tianjin 300387 PR China
| | - Yingwen Pan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University Tianjin 300387 PR China
- School of Physical Science and Technology, Tiangong University Tianjin 300387 PR China
| | - Wei Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University Tianjin 300387 PR China
- School of Physical Science and Technology, Tiangong University Tianjin 300387 PR China
| |
Collapse
|
16
|
Zhang H, Xiao X, Xu H, Wang L, Li Y, Ouyang C, Zhong S. Two-dimensional metal-phase layered molybdenum disulfide for electrocatalytic hydrogen evolution reaction. NANOSCALE 2023; 15:4429-4437. [PMID: 36751735 DOI: 10.1039/d2nr06184h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The two-dimensional (2D) basal plane of metal-phase molybdenum disulphide (1T-MoS2) provides a large area of active sites to significantly reduce the overpotential of the hydrogen evolution reaction (HER), but the long preparation period limits its industrial application. Here, 1T-MoS2 catalysts derived from molybdenum blue solution (MBS) were prepared in one step using a rapid high-pressure microwave (MW-MoS2) strategy. This method eliminated the thermodynamic process with a long time required for Mo-O trioxide bond breakage and reduction (MoVI → MoIV) of the conventional hydrothermal method. Additionally, the introduction of heteroatomic oxygen atoms effectively reduced the build-up of MW-MoS2 and improved the monolayer/few-layer state and stability. Impressively, MW-MoS2 has outstanding electrocatalytic performance, with a low overpotential (62 mV) at 10 mA cm-2 and a small Tafel slope (42 mV dec-1). This provides a simple strategy for the rapid preparation of a 2D sulphide HER catalyst with performance close to that of commercial Pt/C.
Collapse
Affiliation(s)
- Hang Zhang
- Research Center for Ultrafine Powder Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P.R. China.
| | - Xuejian Xiao
- Research Center for Ultrafine Powder Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P.R. China.
| | - Hualan Xu
- Analytical and Testing Center, Jiangxi Normal University, Nanchang, 330022, P.R. China
| | - Lei Wang
- Research Center for Ultrafine Powder Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P.R. China.
| | - Yuan Li
- Research Center for Ultrafine Powder Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P.R. China.
| | - Chuying Ouyang
- Department of Physics, Laboratory of Computational Materials Physics, Jiangxi Normal University, Nanchang, 330022, P.R. China.
| | - Shengliang Zhong
- Research Center for Ultrafine Powder Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P.R. China.
| |
Collapse
|
17
|
Gu C, Sun T, Wang Z, Jiang S, Wang Z. High Resolution Electrochemical Imaging for Sulfur Vacancies on 2D Molybdenum Disulfide. SMALL METHODS 2023; 7:e2201529. [PMID: 36683170 DOI: 10.1002/smtd.202201529] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Molybdenum disulfide (MoS2 ) is considered as one of the most promising non-noble-metal catalysts for hydrogen evolution reaction (HER). To achieve practical application, introducing sulfur (S) vacancies on the inert basal plane of MoS2 is a widely accepted strategy to improve its HER activity. However, probing active sites at the nanoscale and quantitatively analyzing the related electrocatalytic activity in electrolyte aqueous solution are still great challenges. In this work, utilizing high-resolution scanning electrochemical microscopy, optimized electrodes and newly designed thermal drift calibration software, the HER activity of the S vacancies on an MoS2 inert surface is in situ imaged with less than 20-nm-radius sensitivity and the HER kinetic data for S vacancies, including Tafel plot and onset potential, are quantitatively measured. Additionally, the stability of S vacancies over the wide range of pH 0-13 is investigated. This study provides a viable strategy for obtaining the catalytic kinetics of nanoscale active sites on structurally complex electrocatalysts and evaluating the stability of defects in different environments for 2D material-based catalysts.
Collapse
Affiliation(s)
- Chaoqun Gu
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
| | - Tong Sun
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
| | - Zhenyu Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
| | - Sisi Jiang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
18
|
Wang B, Zhao J, Chen C, Jiang Y, Ni P, Zhang C, Liu X, Lu Y. Rational design and fabrication of MoSx nanoclusters decorated Mn0.3Cd0.7S nanorods with promoted interfacial charge transfer toward robust photocatalytic H2 generation. J Colloid Interface Sci 2023; 630:37-46. [DOI: 10.1016/j.jcis.2022.10.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/05/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
|
19
|
Dong F, Zhang M, Xu X, Pan J, Zhu L, Hu J. Orbital Modulation with P Doping Improves Acid and Alkaline Hydrogen Evolution Reaction of MoS 2. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4273. [PMID: 36500899 PMCID: PMC9740413 DOI: 10.3390/nano12234273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
There has been great interest in developing and designing economical, stable and highly active electrocatalysts for the hydrogen evolution reaction (HER) via water splitting in an aqueous solution at different pH values. Transition-metal dichalcogenides (TMDCs), e.g., MoS2, are identified to be promising catalysts for the HER due to the limited active sites at their edges, while the large basal plane of MoS2 is inert and shows poor performance in electrocatalytic hydrogen production. We theoretically propose orbital modulation to improve the HER performance of the basal plane of MoS2 through non-metal P doping. The substitutional doping of P provides empty 3pz orbitals, perpendicular to the basal plane, can enhance the hydrogen adsorption for acid HER and can promote water dissociation for alkaline HER, which creates significant active sites and enhances the electronic conductivity as well. In addition, 3P-doped MoS2 exhibits excellent HER catalytic activity with ideal free energy at acid media and low reaction-barrier energy in alkaline media. Thus, the doping of P could significantly boost the HER activity of MoS2 in such conditions. Our study suggests an effective strategy to tune HER catalytic activity of MoS2 through orbital engineering, which should also be feasible for other TMDC-based electrocatalysts.
Collapse
Affiliation(s)
- Fuyu Dong
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
| | - Minghao Zhang
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
| | - Xiaoyong Xu
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
| | - Jing Pan
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
| | - Liyan Zhu
- School of Physics and Electronic & Electrical Engineering, Huaiyin Normal University, Huai’an 223300, China
| | - Jingguo Hu
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
20
|
Xiao Z, Luo S, Duan W, Zhang X, Han S, Liu Y, Yang L, Lin S. Doughty-electronegative heteroatom-induced defective MoS 2 for the hydrogen evolution reaction. Front Chem 2022; 10:1064752. [PMID: 36505745 PMCID: PMC9727101 DOI: 10.3389/fchem.2022.1064752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
Producing hydrogen through water electrolysis is one of the most promising green energy storage and conversion technologies for the long-term development of energy-related hydrogen technologies. MoS2 is a very promising electrocatalyst which may replace precious metal catalysts for the hydrogen evolution reaction (HER). In this work, doughty-electronegative heteroatom defects (halogen atoms such as chlorine, fluorine, and nitrogen) were successfully introduced in MoS2 by using a large-scale, green, and simple ball milling strategy to alter its electronic structure. The physicochemical properties (morphology, crystallization, chemical composition, and electronic structure) of the doughty-electronegative heteroatom-induced defective MoS2 (N/Cl-MoS2) were identified using SEM, TEM, Raman, XRD, and XPS. Furthermore, compared with bulk pristine MoS2, the HER activity of N/Cl-MoS2 significantly increased from 442 mV to 280 mV at a current of 10 mA cm-2. Ball milling not only effectively reduced the size of the catalyst material, but also exposed more active sites. More importantly, the introduced doughty-electronegative heteroatom optimized the electronic structure of the catalyst. Therefore, the doughty-electronegative heteroatom induced by mechanical ball milling provides a useful reference for the large-scale production of green, efficient, and low-cost catalyst materials.
Collapse
Affiliation(s)
- Zhaohui Xiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, China,State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China,*Correspondence: Zhaohui Xiao, , ; Shiwei Lin,
| | - Shengdao Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, China
| | - Wei Duan
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, China
| | - Xu Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, China
| | - Shixing Han
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, China
| | - Yipu Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, China
| | - Liang Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, China
| | - Shiwei Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, China,*Correspondence: Zhaohui Xiao, , ; Shiwei Lin,
| |
Collapse
|
21
|
Shchegolkov AV, Shchegolkov AV, Zemtsova NV, Stanishevskiy YM, Vetcher AA. Recent Advantages on Waste Management in Hydrogen Industry. Polymers (Basel) 2022; 14:polym14224992. [PMID: 36433119 PMCID: PMC9696881 DOI: 10.3390/polym14224992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The turn to hydrogen as an energy source is a fundamentally important task facing the global energetics, aviation and automotive industries. This step would reduce the negative man-made impact on the environment on the one hand, and provide previously inaccessible power modes and increased resources for technical systems, predetermining the development of an absolutely new life cycle for important areas of technology, on the other. The most important aspect in this case is the development of next-generation technologies for hydrogen industry waste management that will definitely reduce the negative impact of technology on the environment. We consider the approaches and methods related to new technologies in the area of hydrogen storage (HS), which requires the use of specialized equipment equipped with efficient and controlled temperature control systems, as well as the involvement of innovative materials that allow HS in solid form. Technologies for controlling hydrogen production and storage systems are of great importance, and can be implemented using neural networks, making it possible to significantly improve all technological stages according to the criteria of energy efficiency reliability, safety, and eco-friendliness. The recent advantages in these directions are also reviewed.
Collapse
Affiliation(s)
- Alexander V. Shchegolkov
- Institute of Technology of the Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 392000 Tambov, Russia
| | - Aleksei V. Shchegolkov
- Department of Chemical Technology, Platov South-Russian State Polytechnic University (NPI), 132 Enlightenment Str., 346428 Novocherkassk, Rostov Region, Russia
| | - Natalia V. Zemtsova
- Department “Technique and Technology for Obtaining Nanoproducts”, Tambov State Technical University, 106 Sovetskaya Str., 392000 Tambov, Russia
| | - Yaroslav M. Stanishevskiy
- Institute of Biochemical Technology and Nanotechnology (IBTN), Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology (IBTN), Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5 Yasnogorskaya Str., 117588 Moscow, Russia
- Correspondence:
| |
Collapse
|
22
|
Tang H, Gu H, Li Z, Chai J, Qin F, Lu C, Yu J, Zhai H, Zhang L, Li X, Chen W. Engineering the Coordination Interface of Isolated Co Atomic Sites Anchored on N-Doped Carbon for Effective Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46401-46409. [PMID: 36183270 DOI: 10.1021/acsami.2c09107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The regulation of the coordination environment of the central metal atom is considered as an alternative way to enhance the performance of single-atom catalysts (SACs). Herein, we design an electrocatalyst with active sites of isolated Co atoms coordinated with four sulfur atoms supported on N-doped carbon frameworks (Co1-S4/NC), confirmed by high-angle annular dark-field scanning transmission electron microscope (HADDF-STEM) and synchrotron-radiation-based X-ray absorption fine structure (XAFS) spectroscopy. The Co1-S4/NC possesses higher hydrogen evolution reaction (HER) catalytic activity than other Co species and exceptional stability, which exhibits a small Tafel slope of 60 mV dec-1 and a low overpotential of 114 mV at 10 mA cm-2 during the HER in 0.5 M H2SO4 solution. Furthermore, through in situ X-ray absorption spectrum tests and density functional theory (DFT) calculations, we reveal the catalytic mechanism of Co1-S4 moieties and find that the increasing number of sulfur atoms in the Co coordination environment leads to a substantial reduction of the theoretical HER overpotential. This work may point a new direction for the synthesis, performance regulation, and practical application of single-metal-atom catalysts.
Collapse
Affiliation(s)
- Hao Tang
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Hongfei Gu
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Zheyu Li
- School of Vehicle and Mobility, Tsinghua University, Beijing100084, China
| | - Jing Chai
- School of Vehicle and Mobility, Tsinghua University, Beijing100084, China
| | - Fengjuan Qin
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Chenqi Lu
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Jiayu Yu
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Huazhang Zhai
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Liang Zhang
- School of Vehicle and Mobility, Tsinghua University, Beijing100084, China
- Center for Combustion Energy, Tsinghua University, Beijing100084, China
| | - Xinyuan Li
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, China
| |
Collapse
|
23
|
Sun H, Sun J, Song Y, Zhang Y, Qiu Y, Sun M, Tian X, Li C, Lv Z, Zhang L. Nickel-Cobalt Hydrogen Phosphate on Nickel Nitride Supported on Nickel Foam for Alkaline Seawater Electrolysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22061-22070. [PMID: 35535851 DOI: 10.1021/acsami.2c01643] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing high-performance non-noble bifunctional catalysts is pivotal for large-scale seawater electrolysis but remains a challenge. Here we report a sandwichlike NiCo(HPO4)2@Ni3N/NF (denoted by NiCoHPi@Ni3N/NF) catalyst. Vertical Ni3N nanosheet arrays are first grown and supported on nickel foam, and then a bimetallic NiCoHPi coating is decorated on Ni3N nanosheets by one-step electrodeposition. The hierarchical sandwich like structure offers a large surface area and plenty of catalytic active sites, and the coupling of interconnected Ni3N and NiCoHPi accelerates the electron transfer. Moreover, the surficial hydrogen phosphate ions contribute to a proper OH- absorption capacity due to the Lewis acid-base reaction. As a result, the NiCoHPi@Ni3N/NF catalyst exhibits good OER and HER activity, requiring overpotentials of 365 mV (for OER) and 174 mV (for HER) to deliver 100 mA cm-2 in the alkaline simulated seawater electrolyte. When assembled the NiCoHPi@Ni3N/NF catalyst as both the anode and cathode, it only needs 1.86 V to reach 100 mA cm-2 in alkaline simulated seawater electrolyte. This work may inspire the design and exploration of self-supported hierarchical composite electrocatalysts for hydrogen production from the electrolysis of seawater.
Collapse
Affiliation(s)
- Heng Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Jiankun Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Yanyan Song
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Yifei Zhang
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Yu Qiu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Mengxiao Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Xiangyun Tian
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Caiyun Li
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Zhou Lv
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Lixue Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| |
Collapse
|
24
|
Qiu Y, Sun M, Cheng J, Sun J, Sun D, Zhang L. Bifunctional Ni-Fe/NiMoNx nanosheets on Ni foam for high-efficiency and durable overall water splitting. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
25
|
Liu Y, Vijayakumar P, Liu Q, Sakthivel T, Chen F, Dai Z. Shining Light on Anion-Mixed Nanocatalysts for Efficient Water Electrolysis: Fundamentals, Progress, and Perspectives. NANO-MICRO LETTERS 2022; 14:43. [PMID: 34981288 PMCID: PMC8724338 DOI: 10.1007/s40820-021-00785-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/03/2021] [Indexed: 05/12/2023]
Abstract
This review introduces recent advances of various anion-mixed transition metal compounds (e.g., nitrides, halides, phosphides, chalcogenides, (oxy)hydroxides, and borides) for efficient water electrolysis applications in detail. The challenges and future perspectives are proposed and analyzed for the anion-mixed water dissociation catalysts, including polyanion-mixed and metal-free catalyst, progressive synthesis strategies, advanced in situ characterizations, and atomic level structure-activity relationship. Hydrogen with high energy density and zero carbon emission is widely acknowledged as the most promising candidate toward world's carbon neutrality and future sustainable eco-society. Water-splitting is a constructive technology for unpolluted and high-purity H2 production, and a series of non-precious electrocatalysts have been developed over the past decade. To further improve the catalytic activities, metal doping is always adopted to modulate the 3d-electronic configuration and electron-donating/accepting (e-DA) properties, while for anion doping, the electronegativity variations among different non-metal elements would also bring some potential in the modulations of e-DA and metal valence for tuning the performances. In this review, we summarize the recent developments of the many different anion-mixed transition metal compounds (e.g., nitrides, halides, phosphides, chalcogenides, oxyhydroxides, and borides/borates) for efficient water electrolysis applications. First, we have introduced the general information of water-splitting and the description of anion-mixed electrocatalysts and highlighted their complementary functions of mixed anions. Furthermore, some latest advances of anion-mixed compounds are also categorized for hydrogen and oxygen evolution electrocatalysis. The rationales behind their enhanced electrochemical performances are discussed. Last but not least, the challenges and future perspectives are briefly proposed for the anion-mixed water dissociation catalysts.
Collapse
Affiliation(s)
- Yaoda Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Paranthaman Vijayakumar
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Qianyi Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Thangavel Sakthivel
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Fuyi Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Zhengfei Dai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
26
|
Li R, Liang J, Li T, Yue L, Liu Q, Luo Y, Hamdy MS, Sun Y, Sun X. Recent advances in MoS2-based materials for electrocatalysis. Chem Commun (Camb) 2022; 58:2259-2278. [DOI: 10.1039/d1cc04004a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The increasing energy demand and related environmental issues have drawn great attention of the world, thus necessitating the development of sustainable technologies to preserve the ecosystems for future generations. Electrocatalysts...
Collapse
|