1
|
Lee S, Ho DH, Jekal J, Cho SY, Choi YJ, Oh S, Choi YY, Lee T, Jang KI, Cho JH. Fabric-based lamina emergent MXene-based electrode for electrophysiological monitoring. Nat Commun 2024; 15:5974. [PMID: 39358330 PMCID: PMC11446925 DOI: 10.1038/s41467-024-49939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/20/2024] [Indexed: 10/04/2024] Open
Abstract
Commercial wearable biosignal sensing technologies encounter challenges associated with irritation or discomfort caused by unwanted objects in direct contact with the skin, which can discourage the widespread adoption of wearable devices. To address this issue, we propose a fabric-based lamina emergent MXene-based electrode, a lightweight and flexible shape-morphing wearable bioelectrode. This work offers an innovative approach to biosignal sensing by harnessing the high electrical conductivity and low skin-to-electrode contact impedance of MXene-based dry electrodes. Its design, inspired by Nesler's pneumatic interference actuator, ensures stable skin-to-electrode contact, enabling robust biosignal detection in diverse situations. Extensive research is conducted on key design parameters, such as the width and number of multiple semicircular legs, the radius of the anchoring frame, and pneumatic pressure, to accommodate a wide range of applications. Furthermore, a real-time wireless electrophysiological monitoring system has been developed, with a signal-to-noise ratio and accuracy comparable to those of commercial bioelectrodes. This work excels in recognizing various hand gestures through a convolutional neural network, ultimately introducing a shape-morphing electrode that provides reliable, high-performance biosignal sensing for dynamic users.
Collapse
Affiliation(s)
- Sanghyun Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Dong Hae Ho
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Janghwan Jekal
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Soo Young Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Young Jin Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Saehyuck Oh
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Yoon Young Choi
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Taeyoon Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
- Department of Bio and Brain Engineering, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Kyung-In Jang
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Orasugh JT, Temane LT, Ray SS. Nanocellulose-based conductive composites: A review of systems for electromagnetic interference shielding applications. Int J Biol Macromol 2024; 277:133891. [PMID: 39025190 DOI: 10.1016/j.ijbiomac.2024.133891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/24/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Electronic systems and telecommunications have grown in popularity, leading to increasing electromagnetic (EM) radiation pollution. Environmental protection from EM radiation demands the use of environmentally friendly products. The design of EM interference (EMI) shielding materials using resources like nanocellulose (NC) is gaining traction. Cellulose, owing to its biocompatibility, biodegradability, and excellent mechanical and thermal properties, has attracted significant interest for developing EMI shielding materials. Recent advancements in cellulose-based EMI shielding materials, particularly modified cellulosic composites, are highlighted in this study. By incorporating metallic coatings compounded with conductive fillers and modified with inherently conductive elements, conductivity and effectiveness of EMI shielding can be significantly improved. This review discusses the introduction of EMI shields, cellulose, and NC, assessing environmentally friendly EMI shield options and diverse NC-based composite EMI shields considering their low reflectivity. The study offers new insights into designing advanced NC-based conductive composites for EMI shielding applications.
Collapse
Affiliation(s)
- Jonathan Tersur Orasugh
- Department of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa; Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Lesego Tabea Temane
- Department of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa; Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Suprakas Sinha Ray
- Department of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa; Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa.
| |
Collapse
|
3
|
Li W, Zhou T, Zhang Z, Li L, Lian W, Wang Y, Lu J, Yan J, Wang H, Wei L, Cheng Q. Ultrastrong MXene film induced by sequential bridging with liquid metal. Science 2024; 385:62-68. [PMID: 38963844 DOI: 10.1126/science.ado4257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
Assembling titanium carbide (Ti3C2Tx) MXene nanosheets into macroscopic films presents challenges, including voids, low orientation degree, and weak interfacial interactions, which reduce mechanical performance. We demonstrate an ultrastrong macroscopic MXene film using liquid metal (LM) and bacterial cellulose (BC) to sequentially bridge MXene nanosheets (an LBM film), achieving a tensile strength of 908.4 megapascals. A layer-by-layer approach using repeated cycles of blade coating improves the orientation degree to 0.935 in the LBM film, while a LM with good deformability reduces voids into porosity of 5.4%. The interfacial interactions are enhanced by the hydrogen bonding from BC and the coordination bonding with LM, which improves the stress-transfer efficiency. Sequential bridging provides an avenue for assembling other two-dimensional nanosheets into high-performance materials.
Collapse
Affiliation(s)
- Wei Li
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Tianzhu Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Zejun Zhang
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Lei Li
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Wangwei Lian
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Yanlei Wang
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Junfeng Lu
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Jia Yan
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Huagao Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Qunfeng Cheng
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
4
|
Ye H, Wu Y, Jin X, Wu J, Gan L, Li J, Cai L, Liu C, Xia C. Creation of Wood-Based Hierarchical Superstructures via In Situ Growth of ZIF-8 for Enhancing Mechanical Strength and Electromagnetic Shielding Performance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400074. [PMID: 38381058 PMCID: PMC11077680 DOI: 10.1002/advs.202400074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/31/2024] [Indexed: 02/22/2024]
Abstract
Given the escalating prevalence of electromagnetic pollution, there is an urgent need for the development of high-performance electromagnetic interference (EMI) shielding materials. Herein, wood-based electromagnetic shielding materials have gained significant popularity due to their exceptional performance as building materials. In this study, a novel wood-based composite with electromagnetic shielding properties is developed. Through the in situ growth of zeolitic imidazolate framework-8 (ZIF-8) crystals on wood fibers, coupled with uniform integration of carbon nanotubes (CNTs), a multifunctional composite named ZIF-8/Poplar-CNT composite is synthesized via a one-step thermoforming process. The incorporation of CNTs endows the composites with excellent EMI shielding effectiveness (EMI SE). Among these elements, despite ZIF-8 crystals not possessing intrinsic electromagnetic shielding functionality, their distinctive dodecahedral structure proves adept at scattering and reflecting electromagnetic waves within the composites, further improving the electromagnetic shielding effect. Hence, the ZIF-8/Poplar-CNT composite (56.95 dB) has ≈10 dB higher EMI SE compared to that of the composites without ZIF-8 crystals. Meanwhile, ZIF-8 crystals endow the materials with excellent tensile strength (54.84 MPa, enhanced by 4 times). Moreover, the introduction of Zn2+ provides superior antibacterial properties. The potential applications of ZIF-8/Poplar-CNT composites extend to diverse areas such as building decoration, electronic products, and medical equipment.
Collapse
Affiliation(s)
- Haoran Ye
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Materials Science and EngineeringNanjing Forestry UniversityNanjingJiangsu210037China
| | - Ying Wu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Materials Science and EngineeringNanjing Forestry UniversityNanjingJiangsu210037China
| | - Xin Jin
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Materials Science and EngineeringNanjing Forestry UniversityNanjingJiangsu210037China
| | - Jiamin Wu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Materials Science and EngineeringNanjing Forestry UniversityNanjingJiangsu210037China
| | - Lu Gan
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Materials Science and EngineeringNanjing Forestry UniversityNanjingJiangsu210037China
| | - Jianzhang Li
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Materials Science and EngineeringNanjing Forestry UniversityNanjingJiangsu210037China
| | - Liping Cai
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Materials Science and EngineeringNanjing Forestry UniversityNanjingJiangsu210037China
| | - Chuangwei Liu
- Key Lab for Anisotropy and Texture of MaterialsSchool of Materials Science and EngineeringNortheastern UniversityShenyang110819China
| | - Changlei Xia
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Materials Science and EngineeringNanjing Forestry UniversityNanjingJiangsu210037China
| |
Collapse
|
5
|
Fan L, Jiang Y, Deng R, Zhu H, Dai X, Liang H, Li N, Qian Z. Mechanical Robustness Enhanced Flexible Antennas Using Ti 3C 2 MXene and Nanocellulose Composites for Noninvasive Glucose Sensing. ACS Sens 2024; 9:1866-1876. [PMID: 38499997 DOI: 10.1021/acssensors.3c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Electromagnetic sensors with flexible antennas as sensing elements have attracted increasing attention in noninvasive continuous glucose monitoring for diabetic patients. The significant radiation performance loss of flexible antennas during mechanical deformation impairs the reliability of glucose monitoring. Here, we present flexible ultrawideband monopole antennas composed of Ti3C2 MXene and cellulose nanofibril (CNF) composite films for continuous glucose monitoring. The flexible MXene/CNF antenna with 20% CNF content can obtain a gain of up to 3.33 dBi and a radiation efficiency of up to 65.40% at a frequency range from 2.3 to 6.0 GHz. Compared with the pure MXene antenna, this antenna offers a comparable radiation performance and a lower performance loss in mechanical bending deformation. Moreover, the MXene/CNF antenna shows a stable response to fetal bovine serum/glucose, with a correlation of >0.9 at the reference glucose levels, and responds sensitively to the variations in blood glucose levels during human trials. The proposed strategy enhancing the mechanical robustness of MXene-based flexible antennas makes metallic two-dimensional nanomaterials more promising in wearable electromagnetic sensors.
Collapse
Affiliation(s)
- Lin Fan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yue Jiang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ruihua Deng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hua Zhu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiangyu Dai
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hao Liang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ning Li
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (Shenzhen), Shenzhen University, Shenzhen 518132, China
| | - Zhengfang Qian
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
Wei J, Dai L, Xi X, Chen Z, Zhu M, Dong C, Ding S, Lei T. Robust, ultrathin and flexible electromagnetic interference shielding paper designed with all-polysaccharide hydrogel and MXene. Carbohydr Polym 2024; 323:121447. [PMID: 37940309 DOI: 10.1016/j.carbpol.2023.121447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023]
Abstract
An effective strategy was demonstrated to design an electromagnetic interference (EMI) shielding paper via a facile surface treatment on paper. TEMPO-oxidized cellulose nanofibers (TOCN) were first integrated with Ti3C2Tx MXene, and subsequently cast onto a filter paper with cationic guar gum (CGG) in a sequential way. TOCN and CGG generated a self-assembling hydrogel and formed a MXene-containing hydrogel film on top of the filter paper. The hydrogel film enhanced the tensile strength (9.49 MPa) of composite paper, and resulted in a 17 % increase as compared to the control. The composite paper containing 80 mg MXene (namely, 2.07 mg·cm-2) showed a conductivity of 3843 S·m-1 and EMI shielding effectiveness (EMI SE) of 49.37 dB. Furthermore, the 2-layer assembled TC-M 80 hydrogel composite paper achieved an EMI SE of 73.99 dB. Importantly, this composite paper showed higher EMI SE and lower thickness than a lot of reported materials. The presence of TOCN and CGG also protected MXene against several solvents and the incorporation of polydimethylsiloxane (PDMS) further improved the durability of the composite paper. This work provides a novel and simple strategy to design robust, ultrathin and flexible EMI shielding materials, and it might also inspire other work in paper-based functional materials.
Collapse
Affiliation(s)
- Jiasheng Wei
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lei Dai
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xiangju Xi
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhuo Chen
- School of Management and Economics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Meng Zhu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Cuihua Dong
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shujiang Ding
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Tingzhou Lei
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
7
|
Shen R, Wang D, Sun L, Diao M, Zheng Q, Gong X, Liu L, Yao J. Strong and flexible lignocellulosic film fabricated via a feasible molecular remodeling strategy. Int J Biol Macromol 2023; 253:126521. [PMID: 37633560 DOI: 10.1016/j.ijbiomac.2023.126521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Biomass-derived sustainable film is a promising alternative to synthetic plastic, but hampered by strength, toughness and flexibility trade-off predicament. Here, a feasible and scalable strategy was proposed to fabricate strong and flexible lignocellulosic film through molecular reconstruction of cellulose and lignin. In this strategy, polyphenol lignin was absorbed and wrapped on the surface of cellulose fiber, forming strong interfacial adhesion and cohesion via intramolecular and intermolecular hydrogen bonding. Further, covalent ether bond was generated between the hydroxyl groups of lignocellulose to form chemical cross-linking network induced by epichlorohydrin (ECH). The synergistic effect of hydrogen bonding and stable chemical cross-linking enabled the resultant lignocellulosic film (ELCF) with outstanding mechanical strength of 132.48 MPa, the elongation at break of 9.77 %, and toughness of 9.77 MJ·m-3. Notably, the integration of polyphenol lignin synergistically improved the thermal stability, water resistance, UV-blocking performances of ELCF. Importantly, after immersion for 30 d, ELCF still possessed high wet strength of 70.38 MPa, and elongation at break of 7.70 %, suggesting excellent and durable mechanical performances. Moreover, ELCF could be biodegraded in the natural soil. Therefore, this study provides a new and versatile approach to reconstruct highly-performance lignocellulosic films coupling strength, toughness with flexibility for promising plastic replacement.
Collapse
Affiliation(s)
- Rongsheng Shen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Dengfeng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Longfei Sun
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Mengyuan Diao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qiannan Zheng
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiujin Gong
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lin Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China.
| | - Juming Yao
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China; School of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
| |
Collapse
|
8
|
Yang J, Hong W, Zhang J, Liu M, Fu Z, Zhang Y, Guo Q, Li Y, Cai R, Qian K. Wearable, Biodegradable, and Antibacterial Multifunctional Ti 3C 2T x MXene/Cellulose Paper for Electromagnetic Interference Shielding and Passive and Active Dual-Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23653-23661. [PMID: 37155934 DOI: 10.1021/acsami.3c02569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
An energy-saving scheme that can simultaneously realize electromagnetic interference (EMI) shielding, passive solar radiative heating, and active Joule heating in a single wearable device is still a huge challenge. Here, by combining the unique properties of Ti3C2Tx MXene and biocompatible cellulose nanofibers (CNFs), a flexible, degradable, and antibacterial multifunctional Ti3C2Tx/CNF paper (∼0.6 Ω/sq) is constructed through a facile vacuum filtration strategy. The resultant device not only exhibits an admirable EMI shielding effectiveness of ∼48.5 dB at the X-band and a superior heating property including dual-driven electrothermal and photothermal conversion without energy but also possesses wide temperature range regulation and long-time stability. More impressively, both high antibacterial efficiency (toward both gram-positive and gram-negative bacteria) and good degradability with low-concentration hydrogen peroxide solution can also be achieved in Ti3C2Tx/CNF papers. This study provides a promising platform for practical applications of multifunctional Ti3C2Tx/CNFs in EMI shielding, thermotherapy, heat preservation, and antibacterial protection in harsh environments, satisfying the demands for energy-saving, environmentally friendly, and sustainable development.
Collapse
Affiliation(s)
- Jiaxin Yang
- School of Microelectronics, Shandong University, Jinan 250100, China
| | - Wang Hong
- School of Microelectronics, Shandong University, Jinan 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
- Suzhou Research Institute of Shandong University, Suzhou 215123, China
- Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, China
| | - Jizheng Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Ming Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Zhiwei Fu
- School of Microelectronics, Shandong University, Jinan 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
- Suzhou Research Institute of Shandong University, Suzhou 215123, China
- Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, China
| | - Yifei Zhang
- School of Microelectronics, Shandong University, Jinan 250100, China
| | - Qinglei Guo
- School of Microelectronics, Shandong University, Jinan 250100, China
| | - Yan Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Rong Cai
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Kai Qian
- School of Microelectronics, Shandong University, Jinan 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
- Suzhou Research Institute of Shandong University, Suzhou 215123, China
- Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, China
| |
Collapse
|
9
|
Zhang H, Lin S. Research Progress with Membrane Shielding Materials for Electromagnetic/Radiation Contamination. MEMBRANES 2023; 13:315. [PMID: 36984702 PMCID: PMC10054763 DOI: 10.3390/membranes13030315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
As technology develops at a rapid pace, electromagnetic and radiation pollution have become significant issues. These forms of pollution can cause many important environmental issues. If they are not properly managed and addressed, they will be everywhere in the global biosphere, and they will have devastating impacts on human health. In addition to minimizing sources of electromagnetic radiation, the development of lightweight composite shielding materials to address interference from radiation has become an important area of research. A suitable shielding material can effectively reduce the harm caused by electromagnetic interference/radiation. However, membrane shielding materials with general functions cannot effectively exert their shielding performance in all fields, and membrane shielding materials used in different fields must have specific functions under their use conditions. The aim of this review was to provide a comprehensive review of these issues. Firstly, the causes of electromagnetic/radiation pollution were briefly introduced and comprehensively identified and analyzed. Secondly, the strategic solutions offered by membrane shielding materials to address electromagnetic/radiation problems were discussed. Then, the design concept, technical innovation, and related mechanisms of the existing membrane shielding materials were expounded, the treatment methods adopted by scholars to study the environment and performance change laws were introduced, and the main difficulties encountered in this area of research were summarized. Finally, on the basis of a comprehensive analysis of the protection provided by membrane shielding materials against electromagnetic/radiation pollution, the action mechanism of membrane shielding materials was expounded in detail, and the research progress, structural design and performance characterization techniques for these materials were summarized. In addition, the future challenges were prospected. This review will help universities, research institutes, as well as scientific and technological enterprises engaged in related fields to fully understand the design concept and research progress of electromagnetic/radiation-contaminated membrane shielding materials. In addition, it is hoped that this review will facilitate efforts to accelerate the research and development of membrane shielding materials and offer potential applications in areas such as electronics, nuclear medicine, agriculture, and other areas of industry.
Collapse
Affiliation(s)
- Hengtong Zhang
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shudong Lin
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Idumah CI. MXene polymeric nanoarchitectures mechanical, deformation, and failure mechanism: A review. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- C. I. Idumah
- Faculty of Engineering, Department of Polymer Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
11
|
Kim S, Vu CM, Kim S, In I, Lee J. Improved Mechanical Strength of Dicatechol Crosslinked MXene Films for Electromagnetic Interference Shielding Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:787. [PMID: 36903666 PMCID: PMC10005341 DOI: 10.3390/nano13050787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Pristine MXene films express outstanding excellent electromagnetic interference (EMI) shielding properties. Nevertheless, the poor mechanical properties (weak and brittle nature) and easy oxidation of MXene films hinder their practical applications. This study demonstrates a facile strategy for simultaneously improving the mechanical flexibility and the EMI shielding of MXene films. In this study, dicatechol-6 (DC), a mussel-inspired molecule, was successfully synthesized in which DC as mortars was crosslinked with MXene nanosheets (MX) as bricks to create the brick-mortar structure of the MX@DC film. The resulting MX@DC-2 film has a toughness of 40.02 kJ·m-3 and Young's modulus of 6.2 GPa, which are improvements of 513% and 849%, respectively, compared to those of the bare MXene films. The coating of electrically insulating DC significantly reduced the in-plane electrical conductivity from 6491 S·cm-1 for the bare MXene film to 2820 S·cm-1 for the MX@DC-5 film. However, the EMI shielding effectiveness (SE) of the MX@DC-5 film reached 66.2 dB, which is noticeably greater than that of the bare MX film (61.5 dB). The enhancement in EMI SE resulted from the highly ordered alignment of the MXene nanosheets. The synergistic concurrent enhancement in the strength and EMI SE of the DC-coated MXene film can facilitate the utilization of the MXene film in reliable, practical applications.
Collapse
Affiliation(s)
- Soyeon Kim
- Department of IT Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Canh Minh Vu
- Advanced Institue of Science and Technology, The University of Da Nang, Da Nang 550000, Vietnam
| | - Suehyeun Kim
- Department of IT Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Insik In
- Department of IT Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jihoon Lee
- Department of IT Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| |
Collapse
|
12
|
Idumah CI. Recent advancements in electromagnetic interference shielding of polymer and mxene nanocomposites. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2089581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Faculty of Engineering, Department of Polymer Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
13
|
Wu N, Yang Y, Wang C, Wu Q, Pan F, Zhang R, Liu J, Zeng Z. Ultrathin Cellulose Nanofiber Assisted Ambient-Pressure-Dried, Ultralight, Mechanically Robust, Multifunctional MXene Aerogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207969. [PMID: 36281792 DOI: 10.1002/adma.202207969] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Ambient-pressure-dried (APD) preparation of transition metal carbide/nitrides (MXene) aerogels is highly desirable yet remains highly challenging. Here, ultrathin, high-strength-to-weight-ratio, renewable cellulose nanofibers (CNFs) are efficiently utilized to assist in the APD preparation of ultralight yet robust, highly conductive, large-area MXene-based aerogels via a facile, energy-efficient, eco-friendly, and scalable freezing-exchanging-drying approach. The strong interactions of large-aspect-ratio CNF and MXene as well as the biomimetic nacre-like microstructure induce high mechanical strength and stability to avoid the structure collapse of aerogels in the APD process. Abundant functional groups of CNFs facilitate the chemical crosslinking of MXene-based aerogels, significantly improving the hydrophobicity, water resistance, and even oxidation stability. The ultrathin, 1D nature of the CNF renders the minimal MXenes' interlayered gaps and numerous heterogeneous interfaces, yielding the excellent conductivity and electromagnetic interference (EMI) shielding performance of aerogels. The synergies of the MXene, CNF, and abundant pores efficiently improve the EMI shielding performance, photothermal conversion, and absorption of viscous crude oil. This work shows great promises of the APD, multifunctional MXene-based aerogels in electromagnetic protection or compatibility, thermal therapy, and oil-water separation applications.
Collapse
Affiliation(s)
- Na Wu
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, CH-8093, Switzerland
| | - Yunfei Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, 250061, P.R. China
| | - Changxian Wang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qilei Wu
- Science and Technology on Electromagnetic Compatibility Laboratory, China Ship Development and Design Centre, Wuhan, 430064, P.R. China
| | - Fei Pan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel, BPR 1096, Switzerland
| | - Runa Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, 250061, P.R. China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, 250061, P.R. China
| | - Zhihui Zeng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, 250061, P.R. China
| |
Collapse
|
14
|
Ultrastrong MXene films via the synergy of intercalating small flakes and interfacial bridging. Nat Commun 2022; 13:7340. [PMID: 36446803 PMCID: PMC9708659 DOI: 10.1038/s41467-022-35226-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Titanium carbide MXene combines high mechanical and electrical properties and low infrared emissivity, making it of interest for flexible electromagnetic interference (EMI) shielding and thermal camouflage film materials. Conventional wisdom holds that large MXene is the preferable building block to assemble high-performance films. However, the voids in the films comprising large MXene degrade their properties. Although traditional crosslinking strategies can diminish the voids, the electron transport between MXene flakes is usually disrupted by the insulating polymer bonding agents, reducing the electrical conductivity. Here we demonstrate a sequential densification strategy to synergistically remove the voids between MXene flakes while strengthening the interlayer electron transport. Small MXene flakes were first intercalated to fill the voids between multilayer large flakes, followed by interfacial bridging of calcium ions and borate ions to eliminate the remaining voids, including those between monolayer flakes. The obtained MXene films are compact and exhibit high tensile strength (739 MPa), Young's modulus (72.4 GPa), electrical conductivity (10,336 S cm-1), and EMI shielding capacity (71,801 dB cm2 g-1), as well as excellent oxidation resistance and thermal camouflage performance. The presented strategy provides an avenue for the high-performance assembly of other two-dimensional flakes.
Collapse
|
15
|
Li B, Yang Y, Wu N, Zhao S, Jin H, Wang G, Li X, Liu W, Liu J, Zeng Z. Bicontinuous, High-Strength, and Multifunctional Chemical-Cross-Linked MXene/Superaligned Carbon Nanotube Film. ACS NANO 2022; 16:19293-19304. [PMID: 36260760 DOI: 10.1021/acsnano.2c08678] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lightweight, thin, large-area, and ultraflexible chemical-cross-linked MXene/superaligned carbon nanotube composite films with a bicontinuous structure are manufactured. The films exhibit high mechanical strength, good electrical conductivity, hydrophobicity, and oxidation stability, as well as wearable multifunctionalities involving electromagnetic interference (EMI) shielding, electrothermal conversion, and photothermal antibacterial performance. An X-band EMI shielding effectiveness (SE) of 24 to 70 dB at the thickness of 8 to 28 μm and an SE of more than 60 dB in ultrabroadband frequency range of 8.2-40 GHz are accomplished. A surface specific SE of 122 368 dB·cm2·g-1 is achieved, significantly outperforming other typical shields reported. The good electro-/photothermal performance of the films leads to high-efficiency deicing and antibacterial performance. Combined with the efficient and scalable manufacturing approach, the multifunctional wearable bicontinuous films show great potential for applications in wearable devices, defense, antibacterials, and the Internet of Things.
Collapse
Affiliation(s)
- Bin Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong250061, China
| | - Yunfei Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong250061, China
| | - Na Wu
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093Zurich, Switzerland
| | - Shanyu Zhao
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, 8600Dübendorf, Switzerland
| | - Hao Jin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing100190, China
| | - Guilong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong250061, China
| | - Xinyang Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong250061, China
| | - Wei Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Shandong250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen518052, China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong250061, China
| | - Zhihui Zeng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong250061, China
| |
Collapse
|
16
|
Gholamirad F, Ge J, Sadati M, Wang G, Taheri-Qazvini N. Tuning the Self-Assembled Morphology of Ti 3C 2T x MXene-Based Hybrids for High-Performance Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49158-49170. [PMID: 36269799 DOI: 10.1021/acsami.2c14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hybrid materials based on transition metal carbide and nitride (MXene) nanosheets have great potential for electromagnetic interference (EMI) shielding due to their excellent electrical conductivity. However, the performance of final products depends not only on the properties of constituent components but also on the morphology of the assembly. Here, via the controlled diffusion of positively charged poly(allylamine hydrochloride) (PAH) chains into the negatively charged Ti3C2Tx MXene suspension, MXene/PAH hybrids in the forms of thin films, porous structures, and fibers with distinguished internal morphologies are obtained. Our results confirm that PAH chains could effectively enhance the oxidation stability and integrity of wet and dry MXene structures. The flexibility to tune the structures allows for a thorough discussion of the relations between the morphology, electrical conductivity, and EMI shielding mechanism of the hybrids in a wide range of electrical conductivity (2.5 to 3347 S·cm-1) and thickness (7.7 to 1900 μm) values. The analysis of thin films shows the direct impact of the polymer content on the alignment and compactness of MXene nanosheets regulating the films' electrical conductivity/EMI shielding effectiveness. The colloidal behavior of the initial MXene suspension determines the interconnection of MXene nanosheets in MXene/PAH porous assemblies and the final electrical properties. In addition to the internal morphology, examining the laminated MXene/PAH fibers with geometrically different arrangements demonstrates the role of conductive network configuration on EMI shielding performance. These findings provide insights into tuning the EMI shielding effectiveness via the charge-driven bottom-up assembly of electrically conductive MXene/polyelectrolyte hybrids.
Collapse
Affiliation(s)
- Farivash Gholamirad
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Jinqun Ge
- Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Monirosadat Sadati
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Guoan Wang
- Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Nader Taheri-Qazvini
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina29208, United States
| |
Collapse
|
17
|
Liu Y, Wu N, Zheng S, Yang Y, Li B, Liu W, Liu J, Zeng Z. From MXene Trash to Ultraflexible Composites for Multifunctional Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50120-50128. [PMID: 36300842 DOI: 10.1021/acsami.2c13849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of flexible composites based on the transition metal carbides/nitrides (MXenes) is gaining popularity because of MXenes' high application potentials for electromagnetic interference (EMI) shields. Here, we prepare a new type of ultraflexible composite films composed of "trashed" MXene sediment (MS) and waterborne polyurethane using a simple, facile solution casting approach. In addition to the outstanding mechanical strength and electrical conductivity, an extremely wide-range of MS contents can be achieved for the composites, resulting in EMI shielding effectiveness (SE) that may be controlled over a wide range. The X-band EMI SE of the flexible, low-density composites containing 70 wt % MS reaches 45.3 dB at a thickness of merely 0.51 mm. Moreover, the SE values of more than 34.5 dB in the ultrabroadband gigahertz frequency range including X-band, P-band, K-band, and R-band, are accomplished for the thin composites. Furthermore, the MS/WPU composite films show excellent electrothermal and photothermal performance, demonstrating the multifunctionalities of the MS-based EMI shields. Combined with the cost-efficient, sustainable, and scalable preparation approach, the ultraflexible, multifunctional composites from "trashed MXene" show great potentials for next-generation electronics. This work also opens a new avenue for the creation of innovative, high-performance, multifunctional flexible composites.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan250061, P.R. China
| | - Na Wu
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093Zurich, Switzerland
| | - Sinan Zheng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan250061, P.R. China
| | - Yunfei Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan250061, P.R. China
| | - Bin Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan250061, P.R. China
| | - Wei Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen518057, China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan250061, P.R. China
| | - Zhihui Zeng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan250061, P.R. China
| |
Collapse
|
18
|
Yang Y, Wu N, Li B, Liu W, Pan F, Zeng Z, Liu J. Biomimetic Porous MXene Sediment-Based Hydrogel for High-Performance and Multifunctional Electromagnetic Interference Shielding. ACS NANO 2022; 16:15042-15052. [PMID: 35984219 DOI: 10.1021/acsnano.2c06164] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing high-performance and functional hydrogels that mimic biological materials in nature is promising yet remains highly challenging. Through a facile, scalable unidirectional freezing followed by a salting-out approach, a type of hydrogels composed of "trashed" MXene sediment (MS) and biomimetic pores is manufactured. By integrating the honeycomb-like ordered porous structure, highly conductive MS, and water, the electromagnetic interference (EMI) shielding effectiveness is up to 90 dB in the X band and can reach more than 40 dB in the ultrabroadband gigahertz band (8.2-40 GHz) for the highly flexible hydrogel, outperforming previously reported porous EMI shields. Moreover, thanks to the stable framework of the MS-based hydrogel, the influences of water on shielding performance are quantitatively identified. Furthermore, the extremely low content of silver nanowire is embedded into the biomimetic hydrogels, leading to the significantly improved multiple reflection-induced microwave loss and thus EMI shielding performance. Last, the MS-based hydrogels allow sensitive and reliable detection of human motions and smart coding. This work thus not only achieves the control of EMI shielding performance via the interior porous structure of hydrogels, but also demonstrates a waste-free, low-cost, and scalable strategy to prepare multifunctional, high-performance MS-based biomimetic hydrogels.
Collapse
Affiliation(s)
- Yunfei Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Na Wu
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Bin Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Wei Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Shandong 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518052, China
| | - Fei Pan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, CH-4058 Basel, Switzerland
| | - Zhihui Zeng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| |
Collapse
|
19
|
Feng S, Yi Y, Chen B, Deng P, Zhou Z, Lu C. Rheology-Guided Assembly of a Highly Aligned MXene/Cellulose Nanofiber Composite Film for High-Performance Electromagnetic Interference Shielding and Infrared Stealth. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36060-36070. [PMID: 35912584 DOI: 10.1021/acsami.2c11292] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Delicately aligned structures of two-dimensional (2D) MXene nanosheets have demonstrated positive effects on applications, especially in electromagnetic interference (EMI) shielding and infrared (IR) stealth. However, precise regulation of structural assembly by theory-guided solution processing is still a great challenge. Herein, one-dimensional (1D) cellulose nanofibers (CNFs) with a high aspect ratio are applied as a reinforcing agent and a rheological modifier for MXene/CNF colloids to fabricate aligned MXene-based materials for EMI shielding and IR stealth. Notably, a systematical rheological study of the MXene/CNF colloids is proposed to determine the optimal solution-processing conditions for finely oriented component arrangement requirements and provides in-depth information on the interactions between the components. The delicately regulated orientation structure assembled by shear inducement is convincingly demonstrated through micro-CT and wide-angle X-ray diffraction/small-angle X-ray scattering (WAXD/SAXS), which endows the MXene/CNF film with a significantly enhanced electrical conductivity of 46 685 S m-1, a tensile strength of 281.7 MPa, and Young's modulus of 14.8 GPa. Furthermore, the highly aligned structure of the ultrathin film possesses a great enhancement in EMI shielding effectiveness (50.2 dB) and IR stealth (0.562 emissivity). These findings provide a fruitful understanding of the optimized fabrication in solution processing of high-performance MXene-based functional composite films and open up a great opportunity for the development of multifunctional stealth materials.
Collapse
Affiliation(s)
- Shiyi Feng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, P. R. China
| | - Ya Yi
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, P. R. China
| | - Binxia Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, P. R. China
| | - Pengcheng Deng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, P. R. China
| | - Zehang Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, P. R. China
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, P. R. China
- Advanced Polymer Materials Research Center of Sichuan University, Shishi 362700, P. R. China
| |
Collapse
|
20
|
Idumah CI. Emerging advancements in MXene polysaccharide bionanoarchitectures and biomedical applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2098297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University Awka, Awka, Anambra State, Nigeria
| |
Collapse
|
21
|
Cao S, Liu P, Miao M, Fang J, Feng X. TEMPO-oxidized nanofibrillated cellulose assisted exfoliation of MoS2/graphene composites for flexible paper-anodes. Chem Asian J 2022; 17:e202200257. [PMID: 35510935 DOI: 10.1002/asia.202200257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/01/2022] [Indexed: 11/11/2022]
Abstract
TEMPO-oxidized nanofibrillated cellulose (ONFC) with charged carboxyl groups is introduced for the efficient exfoliation of two-dimensional (2D) MoS2/graphene composites. As an effective dispersant agent, ONFC can be easily absorbed between the adjacent layers, so as to prevent the accumulation of the exfoliated nanosheets. With the assistance of charged ONFC, the exfoliated MoS2/graphene is gradually increased in the aqueous dispersions with the elongated sonication time. After dewatering, self-standing MoS2/Graphene/ONFC/CNTs composite films are rationally constructed using ONFC as flexible fibrous skeleton, and CNTs/graphene as 1D/2D interpenetrating electrical networks. Ultrathin MoS2 nanosheets anchored on the 1D/2D heterogeneous networks is directly acted as an ideal paper-anode for lithium-ion batteries (LIBs) without using traditional metallic current collector. The self-standing flexible electrode materials based on natural cellulose will promote the future green electronics with high flexibility, miniaturization, and increased portability.
Collapse
Affiliation(s)
- Shaomei Cao
- Shanghai University, College of Science, CHINA
| | - Panpan Liu
- Shanghai University, College of Science, CHINA
| | - Miao Miao
- Shanghai University, College of Science, CHINA
| | | | - Xin Feng
- Shanghai University, Nano Science and Technology Research Center, 99 Shangda Rd., Shanghai, CHINA
| |
Collapse
|
22
|
Zeng ZH, Wu N, Wei JJ, Yang YF, Wu TT, Li B, Hauser SB, Yang WD, Liu JR, Zhao SY. Porous and Ultra-Flexible Crosslinked MXene/Polyimide Composites for Multifunctional Electromagnetic Interference Shielding. NANO-MICRO LETTERS 2022; 14:59. [PMID: 35138506 PMCID: PMC8828842 DOI: 10.1007/s40820-022-00800-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/06/2022] [Indexed: 05/14/2023]
Abstract
Lightweight, ultra-flexible, and robust crosslinked transition metal carbide (Ti3C2 MXene) coated polyimide (PI) (C-MXene@PI) porous composites are manufactured via a scalable dip-coating followed by chemical crosslinking approach. In addition to the hydrophobicity, anti-oxidation and extreme-temperature stability, efficient utilization of the intrinsic conductivity of MXene, the interfacial polarization between MXene and PI, and the micrometer-sized pores of the composite foams are achieved. Consequently, the composites show a satisfactory X-band electromagnetic interference (EMI) shielding effectiveness of 22.5 to 62.5 dB at a density of 28.7 to 48.7 mg cm-3, leading to an excellent surface-specific SE of 21,317 dB cm2 g-1. Moreover, the composite foams exhibit excellent electrothermal performance as flexible heaters in terms of a prominent, rapid reproducible, and stable electrothermal effect at low voltages and superior heat performance and more uniform heat distribution compared with the commercial heaters composed of alloy plates. Furthermore, the composite foams are well attached on a human body to check their electromechanical sensing performance, demonstrating the sensitive and reliable detection of human motions as wearable sensors. The excellent EMI shielding performance and multifunctionalities, along with the facile and easy-to-scalable manufacturing techniques, imply promising perspectives of the porous C-MXene@PI composites in next-generation flexible electronics, aerospace, and smart devices.
Collapse
Affiliation(s)
- Zhi-Hui Zeng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, 250061, People's Republic of China.
| | - Na Wu
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Jing-Jiang Wei
- Laboratory for Cellulose and Wood Materials, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600, Dübendorf, Switzerland
| | - Yun-Fei Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, 250061, People's Republic of China
| | - Ting-Ting Wu
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600, Dübendorf, Switzerland
| | - Bin Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, 250061, People's Republic of China
| | - Stefanie Beatrice Hauser
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600, Dübendorf, Switzerland
| | - Wei-Dong Yang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092, People's Republic of China
| | - Jiu-Rong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, 250061, People's Republic of China.
| | - Shan-Yu Zhao
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600, Dübendorf, Switzerland.
| |
Collapse
|