1
|
Meng F, Liu Y, Ding Z, Xu L, Wang H, Xu X, Liu X, Lu T, Pan L. Hydrogen-Bonded Organic Framework Derived 2D N, O Co-Doped Carbon Nanobelt with Tunable Pseudocapacitive Contribution for Efficient Capacitive Deionization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309353. [PMID: 38098371 DOI: 10.1002/smll.202309353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/24/2023] [Indexed: 05/25/2024]
Abstract
Defect engineering is recognized as an attractive method for modulating the electronic structure and physicochemical characteristics of carbon materials. Exploiting heteroatom-doped porous carbon with copious active sites has attracted great attention for capacitive deionization (CDI). However, traditional methods often rely on the utilization of additional heteroatom sources and strong corrosive activators, suffering from low doping efficiency, insufficient doping level, and potential biotoxicity. Herein, hydrogen-bonded organic frameworks (HOFs) are employed as precursors to synthesize N, O co-doped porous carbon via a simple and green reverse defect engineering strategy, achieving controllable heavy doping of heteroatoms. The N, O co-doping triggers significant pseudocapacitive contribution and the surface pore structure supports the formation of the electric double layer. Therefore, when HOF-derived N, O co-doped carbon is used as CDI electrodes, a superior salt adsorption capacity of 32.29 ± 1.42 mg g-1 and an outstanding maximum salt adsorption rate of 10.58 ± 0.46 mg g-1 min-1 at 1.6 V in 500 mg L-1 NaCl solution are achieved, which are comparable to those of state-of-the-art carbonaceous electrodes. This work exemplifies the effectiveness of the reverse nitrogen-heavy doping strategy on improving the carbon structure, shedding light on the further development of rational designed electrode materials for CDI.
Collapse
Affiliation(s)
- Fanyue Meng
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Yong Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China
| | - Zibiao Ding
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Liming Xu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Hao Wang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Xinjuan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ting Lu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
2
|
Zhu Z, He C, Sha J, Xiao K, Zhu L. Cation-exchange fibers and silver nanoparticles-modified carbon electrodes for selective removal of hardness ions and simultaneous deactivation of microorganisms in capacitive deionization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171318. [PMID: 38423341 DOI: 10.1016/j.scitotenv.2024.171318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
The hardness and microorganism contamination are common problems of water quality around the world. Capacitive deionization (CDI) is a much-discussed solution to help solve the water crisis by providing efficient water softening while killing microorganism. Carboxylic (Na) cation-exchange fiber (CCEF) is an adsorbent material with good affinity for hardness ions. Silver nanoparticles (AgNPs) is a broad-spectrum microbicide. In this paper, the CCEF modified activated carbon (CCEF-AC) was used as cathode and showed excellent hardness ion adsorption selectivity at the optimum CCEF doping level (αCa2+/Na of 15.0, αMg2+/Na of 13.5). Its electrosorption capacity of Ca2+ reached 311 μmol/g, much higher than that of the AC cathode (188 μmol/g). It also showed good regenerable performance, retaining over 85 % of Ca2+ electrosorption capacity after 50 cycles stability test. The activated carbon modified with AgNPs (AC-Ag) was used as anode. When enhanced by an electric field, it could kill bacteria and microalgae with over 99 % and 90 % inhibition rates, respectively. This work has opened up a new way to simultaneously remove multiple pollutants (organic or inorganic) from water.
Collapse
Affiliation(s)
- Zhonghao Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Can He
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jia Sha
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kaijun Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Liang Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Cao S, Lu Y, Tang Y, Sun Y, Zhou H, Zhang G, Lin X, Pang H. Constructing ion-transport blockchain by polypyrrole to link CoTi-ZIF-9 derived carbon materials for high-performance seawater desalination. J Colloid Interface Sci 2024; 654:466-475. [PMID: 37862798 DOI: 10.1016/j.jcis.2023.10.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
The instability and poor electronic conductivity of carbon materials derived from bimetallic zeolite imidazolate frameworks (ZIFs) pose significant challenges for utilizing these carbon materials as direct electrodes for achieving rapid electron transfer and high-performance capacitive deionization (CDI). However, modifying ZIFs through conductive polymers is a wise tool to enhance the target characteristics of ZIFs. Herein, a strategy is proposed to use polypyrrole (PPy) to interlink the carbon units derived from CoTi-ZIF-9 to construct a blockchain network system with high capacity and fast electrochemical kinetics for high performance CDI. In this system, PPy serves as a branched link connecting each carbon unit, so that the ions in the electrolyte can achieve low barrier and fast transmission in the three-dimensional network structure between the unit structures. As expected, with the improved charge transfer efficiency between electrode materials and electrolyte, the CDI cell exhibits excellent desalination capacity (77.3 mg g-1). In addition, density functional theory calculations also indicate that the introduction of PPy results in a higher electron density near the fermi surface of carbon material, which is conducive to electron transport and reaction kinetics. This work may provide important concepts for the design of CDI electrodes with high-conductivity and high-performance.
Collapse
Affiliation(s)
- Shuai Cao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yibo Lu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yijian Tang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yangyang Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Huijie Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xinyi Lin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
4
|
Xue T, Peng L, Syzgantseva OA, Syzgantseva MA, Guo P, Lai H, Li R, Chen J, Li S, Yan X, Yang S, Li J, Han B, Queen WL. Rapid, Selective Extraction of Silver from Complex Water Matrices with a Metal-Organic Framework/Oligomer Composite Constructed via Supercritical CO 2. Angew Chem Int Ed Engl 2023; 62:e202309737. [PMID: 37665693 DOI: 10.1002/anie.202309737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Every year vast quantities of silver are lost in various waste streams; this, combined with its limited, diminishing supply and rising demand, makes silver recovery of increasing importance. Thus, herein, we report a controllable, green process to produce a host of highly porous metal-organic framework (MOF)/oligomer composites using supercritical carbon dioxide (ScCO2 ) as a medium. One resulting composite, referred to as MIL-127/Poly-o-phenylenediamine (PoPD), has an excellent Ag+ adsorption capacity, removal efficiency (>99 %) and provides rapid Ag+ extraction in as little as 5 min from complex liquid matrices. Notably, the composite can also reduce sliver concentrations below the levels (<0.1 ppm) established by the United States Environmental Protection Agency. Using theoretical simulations, we find that there are spatially ordered polymeric units inside the MOF that promote the complexation of Ag+ over other common competing ions. Moreover, the oligomer is able to reduce silver to its metallic state, also providing antibacterial properties.
Collapse
Affiliation(s)
- Tianwei Xue
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Li Peng
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Olga A Syzgantseva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Maria A Syzgantseva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Peiwen Guo
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Huiyan Lai
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ruiqing Li
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jiawen Chen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Shumu Li
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaomei Yan
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Shuliang Yang
- College of Energy, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jun Li
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wendy L Queen
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, 1951, Sion, Switzerland
| |
Collapse
|
5
|
Khan MS, Leong ZY, Li DS, Qiu J, Xu X, Yang HY. A mini review on metal-organic framework-based electrode materials for capacitive deionization. NANOSCALE 2023; 15:15929-15949. [PMID: 37772477 DOI: 10.1039/d3nr03993e] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Capacitive deionization (CDI) is an electrochemical method of extracting ions from solution at potentials below electrolysis. It has various applications ranging from water remediation and desalination to heavy metal removal and selective resource recovery. A CDI device applies an electrical charge across two porous electrodes to attract and remove ions without producing waste products. It is generally considered environmentally friendly and promising for sustainability, yet ion removal efficiency still falls short of more established filtration methods. Commercially available activated carbon is typically used for CDI, and its ion adsorption capacity is low at approximately 20-30 mg g-1. Recently, much interest has been in the highly porous and well-structured family of materials known as metal-organic frameworks (MOFs). Most MOFs are poor conductors of electricity and cannot be directly used to make electrodes. A common workaround is to pyrolyze the MOF to convert its organic components to carbon while maintaining its underlying microstructure. However, most MOF-derived materials only retain partial microstructure after pyrolysis and cannot inherit the robust porosity of the parent MOFs. This review provides a systematic breakdown of structure-performance relationships between a MOF-derived material and its CDI performance based on recent works. This review also serves as a starting point for researchers interested in developing MOF-derived materials for CDI applications.
Collapse
Affiliation(s)
- M Shahnawaz Khan
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| | - Zhi Yi Leong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Jianbei Qiu
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Xuhui Xu
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| |
Collapse
|
6
|
Zhou H, Zhu G, Dong S, Liu P, Lu Y, Zhou Z, Cao S, Zhang Y, Pang H. Ethanol-Induced Ni 2+ -Intercalated Cobalt Organic Frameworks on Vanadium Pentoxide for Synergistically Enhancing the Performance of 3D-Printed Micro-Supercapacitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211523. [PMID: 36807415 DOI: 10.1002/adma.202211523] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/12/2023] [Indexed: 05/12/2023]
Abstract
The synthesis of metal-organic framework (MOF) nanocomposites with high energy density and excellent mechanical strength is limited by the degree of lattice matching and crystal surface structure. In this study, dodecahedral ZIF-67 is synthesized uniformly on vanadium pentoxide nanowires. The influence of the coordination mode on the surface of ZIF-67 in ethanol is also investigated. Benefitting from the different coordination abilities of Ni2+ , Co2+ , and N atoms, spatially separated surface-active sites are created through metal-ion exchange. Furthermore, the incompatibility between the d8 electronic configuration of Ni2+ and the three-dimensional (3D) structure of ZIF-67 afforded the synthesis of hollow structures by controlling the amount of Ni doping. The formation of NiCo-MOF@CoOOH@V2 O5 nanocomposites is confirmed using X-ray absorption fine structure analysis. The high performance of the obtained composite is illustrated by fabricating a 3D-printed micro-supercapacitor, exhibiting a high area specific capacitance of 585 mF cm-2 and energy density of 159.23 µWh cm-2 (at power density = 0.34 mW cm-2 ). The solvent/coordination tuning strategy demonstrated in this study provides a new direction for the synthesis of high-performance nanomaterials for electrochemical energy storage applications.
Collapse
Affiliation(s)
- Huijie Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Guoyin Zhu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Shengyang Dong
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Pin Liu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Yiyao Lu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Zhen Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shuai Cao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yizhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| |
Collapse
|
7
|
Valadez-Renteria E, Perez-Gonzalez R, Gomez-Solis C, Diaz-Torres LA, Encinas A, Oliva J, Rodriguez-Gonzalez V. A novel and stretchable carbon-nanotube/Ni@TiO 2:W photocatalytic composite for the complete removal of diclofenac drug from the drinking water. J Environ Sci (China) 2023; 126:575-589. [PMID: 36503783 DOI: 10.1016/j.jes.2022.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 06/17/2023]
Abstract
We present the structural, morphological and photocatalytic properties of stretchable composites made with carbon nanotubes (CNTs), silicon rubber and Ni@TiO2:W nanoparticles (TiWNi NPs) with average size of 37 ± 2 nm. Microscopy images showed that the TiWNi NPs decorated the surface of the CNT fibers, which are oriented in a preferential direction. TiWNi NPs presented a mixture of anatase/rutile phases with cubic structure. The performance of the TiWNi powders and stretchable composites was evaluated for the photocatalytic degradation of diclofenac (DCF) anti-inflammatory drug under ultraviolet-visible light. The results revealed that the maximum DCF degradation percentages were 34.6%, 91.9%, 97.1%, 98.5% and 100% for the CNT composite (stretched at 0%), TiWNi powders, CNT + TiWNi (stretched at 0%), CNT + TiWNi (stretched at 50%) and CNT + TiWNi (stretched at 100%), respectively. Thus, stretching the CNT + TiWNi composites was a good strategy to enhance the DCF degradation percentage from 97.1% to 100%, since stretching created additional defects (oxygen vacancies) that acted as electron sink, delaying the electron-hole recombination, and favors the DCF degradation. Raman/absorbance measurements confirmed the presence of such defects. Moreover, the reactive oxygen species (ROS) were determined by the scavenger's experiments and found that the main ROS were the ·OH and O2- radicals, which attacked the DCF molecules, causing their degradation. The results of this investigation confirmed that the stretchable CNT/TiWNi-based composites are a viable alternative to remove pharmaceutical contaminants from water and can be manually separated from the decontaminated water, which is unviable using photocatalytic powders.
Collapse
Affiliation(s)
- Ernesto Valadez-Renteria
- Consejo Nacional de Ciencia y Tecnología-División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí 78216, México
| | - Rafael Perez-Gonzalez
- Consejo Nacional de Ciencia y Tecnología-División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí 78216, México
| | | | - Luis Armando Diaz-Torres
- Grupo de Espectroscopia de Materiales Avanzados y Nanoestructurados (GEMANA), Centro de Investigaciones en Óptica, A.C., Lomas Del Campestre, León 37150, México
| | - Armando Encinas
- Consejo Nacional de Ciencia y Tecnología-División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí 78216, México
| | - Jorge Oliva
- Consejo Nacional de Ciencia y Tecnología-División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí 78216, México.
| | - Vicente Rodriguez-Gonzalez
- Consejo Nacional de Ciencia y Tecnología-División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí 78216, México.
| |
Collapse
|
8
|
Tang Y, Ding J, Zhou W, Cao S, Yang F, Sun Y, Zhang S, Xue H, Pang H. Design of Uniform Hollow Carbon Nanoarchitectures: Different Capacitive Deionization between the Hollow Shell Thickness and Cavity Size. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206960. [PMID: 36658723 PMCID: PMC10037972 DOI: 10.1002/advs.202206960] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Carbon-based materials with high capacitance ability and fast electrosorption rate are ideal electrode materials in capacitive deionization (CDI). However, traditional carbon materials have structural limitations in electrochemical and desalination performance due to the low capacitance and poor transmission channel of the prepared electrodes. Therefore, reasonable design of electrode material structure is of great importance for achieving excellent CDI properties. Here, uniform hollow carbon materials with different morphologies (hollow carbon nanospheres, hollow carbon nanorods, hollow carbon nano-pseudoboxes, hollow carbon nano-ellipsoids, hollow carbon nano-capsules, and hollow carbon nano-peanuts) are reasonably designed through multi-step template method and calcination of polymer precursors. Hollow carbon nanospheres and hollow carbon nano-pseudoboxes exhibit better capacitance and higher salt adsorption capacity (SAC) due to their stable carbonaceous structure during calcination. Moreover, the effects of the thickness of the shell and the size of the cavity on the CDI performance are also studied. HCNSs-0.8 with thicker shell (≈20 nm) and larger cavity (≈320 nm) shows the best SAC value of 23.01 mg g-1 due to its large specific surface area (1083.20 m2 g-1 ) and rich pore size distribution. These uniform hollow carbon nanoarchitectures with functional properties have potential applications in electrochemistry related fields.
Collapse
Affiliation(s)
- Yijian Tang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jiani Ding
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Wenxuan Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Shuai Cao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Feiyu Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Yangyang Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Songtao Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| |
Collapse
|
9
|
Turning waste into valuables: In situ deposition of polypyrrole on the obsolete mask for Cr(VI) removal and desalination. Sep Purif Technol 2023; 306:122643. [PMID: 36406342 PMCID: PMC9661547 DOI: 10.1016/j.seppur.2022.122643] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
The global mask consumption has been exacerbated because of the coronavirus disease 2019 (COVID-19) pandemic. Simultaneously, the traditional mask disposal methods (incineration and landfill) have caused serious environmental pollution and waste of resources. Herein, a simple and green mass-production method has been proposed to recycle carbon protective mask (CPM) into the carbon protective mask/polydopamine/polypyrrole (CPM/PDA/PPy) composite by in situ polymerization of PPy. The CPM/PDA/PPy composite was used for the removal of Cr(VI) and salt ions to produce clean water. The synergistic effect of PPy and the CPM improved the removal capability of Cr(VI). The CPM/PDA/PPy composite provided high adsorption capacity (358.68 mg g-1) and economic value (811.42 mg $-1). Consequently, the CPM/PDA/PPy (cathode) was combined with MnO2 (anode) for desalination in CDI cells, demonstrated excellent desalination capacity (26.65 mg g-1) and ultrafast salt adsorption rate (6.96 mg g-1 min-1), which was higher than conventional CDI cells. Our work proposes a new low-carbon strategy to recycle discarded masks and demonstrates their utilization in Cr(VI) removal and seawater desalination.
Collapse
|
10
|
Zhang Q, Yang H, Zhou T, Chen X, Li W, Pang H. Metal-Organic Frameworks and Their Composites for Environmental Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204141. [PMID: 36106360 PMCID: PMC9661848 DOI: 10.1002/advs.202204141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Indexed: 06/04/2023]
Abstract
From the point of view of the ecological environment, contaminants such as heavy metal ions or toxic gases have caused harmful impacts on the environment and human health, and overcoming these adverse effects remains a serious and important task. Very recent, highly crystalline porous metal-organic frameworks (MOFs), with tailorable chemistry and excellent chemical stability, have shown promising properties in the field of removing various hazardous pollutants. This review concentrates on the recent progress of MOFs and MOF-based materials and their exploit in environmental applications, mainly including water treatment and gas storage and separation. Finally, challenges and trends of MOFs and MOF-based materials for future developments are discussed and explored.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Hui Yang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Ting Zhou
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Xudong Chen
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Wenting Li
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| |
Collapse
|
11
|
Influence of structural and chemical environmental factors on electrochemical hydrogen storage in carbon materials. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Gao F, Li X, Shi W, Wang Z. Highly Selective Recovery of Phosphorus from Wastewater via Capacitive Deionization Enabled by Ferrocene-polyaniline-Functionalized Carbon Nanotube Electrodes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31962-31972. [PMID: 35802538 DOI: 10.1021/acsami.2c06248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
While capacitive deionization (CDI) is a promising technology for the recovery of nutrients from wastewater, a selective recovery of phosphate from the wastewater containing high concentrations of competing ions is still a huge challenge. Herein, we reported a ferrocene-polyaniline-functionalized carbon nanotube (Fc-PANI/CNT) electrode prepared through amidation reaction and chemical oxidation polymerization, aiming for a highly selective recovery of phosphorus from wastewater. The Fc-PANI/CNT electrode with a unique structure and high conductivity could efficiently adsorb phosphate ions from complex synthetic wastewater with a nearly 100% selectivity, mainly because the integration of ferrocene and an amide bond in Fc-PANI resulted in an enhanced charge transfer (Faradaic reactions) and a strong hydrogen bonding interaction with phosphate ions in its oxidized state. Density functional theory calculations showed that the binding energies of the oxidized Fc-PANI with HPO42- and H2PO4- were much greater than those of the oxidized Fc-PANI with other competing anions. The affinity of Fc-PANI/CNTs with phosphate can be controlled electrochemically based on the synergetic effects of Faradaic reactions and hydrogen bonding, enabling a selective recovery of phosphate through charging/discharging cycles. The phosphate adsorption capacity reached up to 35 mg PO43- g-1 in a NaCl/Na2SO4/NaNO3/NaH2PO4 complex mixture at 1.2 V, outperforming most of the other reported CDI systems. The Fc-PANI/CNT electrode also exhibited a decent regeneration ability and durability during repeated CDI tests, demonstrating a great potential for the application of selective recovery and enrichment of phosphate from wastewater.
Collapse
Affiliation(s)
- Fei Gao
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuesong Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
13
|
Tang Y, Zheng S, Cao S, Yang F, Guo X, Zhang S, Xue H, Pang H. Hollow mesoporous carbon nanospheres space-confining ultrathin nanosheets superstructures for efficient capacitive deionization. J Colloid Interface Sci 2022; 626:1062-1069. [PMID: 35839675 DOI: 10.1016/j.jcis.2022.07.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/13/2022] [Accepted: 07/05/2022] [Indexed: 12/18/2022]
Abstract
In this work, we propose a novel strategy to fabricate nickel silicate nanoflakes inside hollow mesoporous carbon spheres (Ni3Si2O5(OH)4/C). Hollow mesoporous carbon spheres (HMCSs) can well regulate and limit the growth of Ni3Si2O5(OH)4 nanosheets, which obviously enhance the structural stability and conductivity of the composites. The core-shell Ni3Si2O5(OH)4/C superstructure has been proven to possess an extremely excellent electrosorption capacity of 28.7 mg g-1 at 1.2 V under a NaCl concentration of 584 mg L-1 for capacitive deionization (CDI). This outstanding property can be attributed to the core-shell superstructure with ultrathin Ni3Si2O5(OH)4 nanosheets as the stable core and mesoporous carbon as the conductive shell. This work will provide a direction for the application of core-shell superstructure carbon-based nanomaterials as high-performance electrode materials for CDI.
Collapse
Affiliation(s)
- Yijian Tang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Shasha Zheng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Shuai Cao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Feiyu Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xiaotian Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Songtao Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
14
|
Shu H, Lai T, Ren J, Cui X, Tian X, Yang Z, Xiao X, Wang Y. Trimetallic metal-organic frameworks (Fe, Co, Ni-MOF) derived as efficient electrochemical determination for ultra-micro imidacloprid in vegetables. NANOTECHNOLOGY 2022; 33:135502. [PMID: 34911048 DOI: 10.1088/1361-6528/ac4350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The excessive use of imidacloprid in agricultural production leads to a large number of residues that seriously threaten human health. Therefore, the detection of imidacloprid has become very important. But how to quantitatively detect imidacloprid at ultra-low levels is the main challenges. In this work, trimetallic metal-organic frameworks Fe, Co, Ni-MOF (FCN-MOF) isin situprepared on nickel foam (NF) and then used to make an electrochemical sensor in the detection of imidacloprid. FCN-MOF exhibits the characteristics of ultra-micro concentration detection for imidacloprid with high specific surface area and rich active metal centers. The high conductivity and 3D skeleton structure of the NF electrode enhance the contact site with imidacloprid and promote the transmission of electrons efficiently. All results show that the prepared electrochemical sensor has the advantages of ultra-low detection limits (0.1 pM), wide linear detection ranges (1-5 × 107pM) and good sensitivity (132.91μA pM‒1cm‒2), as well as good reproducibility, excellent anti-interference ability, and fantastic stability. Meanwhile, the electrochemical sensor is used to determine imidacloprid in lettuce, tomato, and cucumber samples with excellent recovery (90%-102.7%). The novel electrochemical sensor is successfully applied to the ultra-micro detection of imidacloprid in vegetables, which provides a new way for the efficient monitoring of imidacloprid in agriculture.
Collapse
Affiliation(s)
- Hui Shu
- School of Materials and Energy, Yunnan University, Kunming 6500504, People's Republic of China
| | - Tingrun Lai
- School of Materials and Energy, Yunnan University, Kunming 6500504, People's Republic of China
| | - Jie Ren
- School of Materials and Energy, Yunnan University, Kunming 6500504, People's Republic of China
| | - Xiuxiu Cui
- School of Materials and Energy, Yunnan University, Kunming 6500504, People's Republic of China
| | - Xu Tian
- School of Materials and Energy, Yunnan University, Kunming 6500504, People's Republic of China
| | - Zhichao Yang
- School of Materials and Energy, Yunnan University, Kunming 6500504, People's Republic of China
| | - Xuechun Xiao
- National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming 6500504, People's Republic of China
| | - Yude Wang
- School of Materials and Energy, Yunnan University, Kunming 6500504, People's Republic of China
- Key Lab of Quantum Information of Yunnan Province, Yunnan University, Kunming 6500504, People's Republic of China
| |
Collapse
|
15
|
Niknezhad M, Lakouraj MM, Chaichi MJ, Nemati A. A facile chemiluminescence strategy for copper( ii) ion detection utilizing azothiacalix[4]arene-functionalized carboxymethylcellulose polymeric ligand. NEW J CHEM 2022. [DOI: 10.1039/d2nj00451h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design and characterization of azothiacalix[4]arene-functionalized carboxymethylcellulose, used for the detection of nanomolar levels of Cu2+via a chemiluminescence method.
Collapse
Affiliation(s)
- Mahvash Niknezhad
- Department of Organic-polymer chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416–95447, Iran
| | - Moslem Mansour Lakouraj
- Department of Organic-polymer chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416–95447, Iran
| | - Mohammad Javad Chaichi
- Department of analytical chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416–95447, Iran
| | - Afsaneh Nemati
- Department of analytical chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416–95447, Iran
| |
Collapse
|