1
|
Eliasson H, Lothian A, Surin I, Mitchell S, Pérez-Ramírez J, Erni R. Precise Size Determination of Supported Catalyst Nanoparticles via Generative AI and Scanning Transmission Electron Microscopy. SMALL METHODS 2024:e2401108. [PMID: 39359026 DOI: 10.1002/smtd.202401108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Transmission electron microscopy (TEM) plays a crucial role in heterogeneous catalysis for assessing the size distribution of supported metal nanoparticles. Typically, nanoparticle size is quantified by measuring the diameter under the assumption of spherical geometry, a simplification that limits the precision needed for advancing synthesis-structure-performance relationships. Currently, there is a lack of techniques that can reliably extract more meaningful information from atomically resolved TEM images, like nuclearity or geometry. Here, cycle-consistent generative adversarial networks (CycleGANs) are explored to bridge experimental and simulated images, directly linking experimental observations with information from their underlying atomic structure. Using the versatile Pt/CeO2 (Pt particles centered ≈2 nm) catalyst synthesized by impregnation, large datasets of experimental scanning transmission electron micrographs and physical image simulations are created to train a CycleGAN. A subsequent size-estimation network is developed to determine the nuclearity of imaged nanoparticles, providing plausible estimates for ≈70% of experimentally observed particles. This automatic approach enables precise size determination of supported nanoparticle-based catalysts overcoming crystal orientation limitations of conventional techniques, promising high accuracy with sufficient training data. Tools like this are envisioned to be of great use in designing and characterizing catalytic materials with improved atomic precision.
Collapse
Affiliation(s)
- Henrik Eliasson
- Electron Microscopy Center, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, 8600, Switzerland
| | - Angus Lothian
- Computer Vision Laboratory, Department of Electrical Engineering, Linköping University, Linköping, 581 83, Sweden
| | - Ivan Surin
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Sharon Mitchell
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Javier Pérez-Ramírez
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Rolf Erni
- Electron Microscopy Center, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, 8600, Switzerland
| |
Collapse
|
2
|
Cioni M, Delle Piane M, Polino D, Rapetti D, Crippa M, Irmak EA, Van Aert S, Bals S, Pavan GM. Sampling Real-Time Atomic Dynamics in Metal Nanoparticles by Combining Experiments, Simulations, and Machine Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307261. [PMID: 38654692 PMCID: PMC11220678 DOI: 10.1002/advs.202307261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/23/2024] [Indexed: 04/26/2024]
Abstract
Even at low temperatures, metal nanoparticles (NPs) possess atomic dynamics that are key for their properties but challenging to elucidate. Recent experimental advances allow obtaining atomic-resolution snapshots of the NPs in realistic regimes, but data acquisition limitations hinder the experimental reconstruction of the atomic dynamics present within them. Molecular simulations have the advantage that these allow directly tracking the motion of atoms over time. However, these typically start from ideal/perfect NP structures and, suffering from sampling limits, provide results that are often dependent on the initial/putative structure and remain purely indicative. Here, by combining state-of-the-art experimental and computational approaches, how it is possible to tackle the limitations of both approaches and resolve the atomistic dynamics present in metal NPs in realistic conditions is demonstrated. Annular dark-field scanning transmission electron microscopy enables the acquisition of ten high-resolution images of an Au NP at intervals of 0.6 s. These are used to reconstruct atomistic 3D models of the real NP used to run ten independent molecular dynamics simulations. Machine learning analyses of the simulation trajectories allow resolving the real-time atomic dynamics present within the NP. This provides a robust combined experimental/computational approach to characterize the structural dynamics of metal NPs in realistic conditions.
Collapse
Affiliation(s)
- Matteo Cioni
- Department of Applied Science and TechnologyPolitecnico di TorinoCorso Duca degli Abruzzi 24Torino10129Italy
| | - Massimo Delle Piane
- Department of Applied Science and TechnologyPolitecnico di TorinoCorso Duca degli Abruzzi 24Torino10129Italy
| | - Daniela Polino
- Department of Innovative TechnologiesUniversity of Applied Sciences and Arts of Southern SwitzerlandPolo Universitario LuganoCampus Est, Via la Santa 1Lugano‐Viganello6962Switzerland
| | - Daniele Rapetti
- Department of Applied Science and TechnologyPolitecnico di TorinoCorso Duca degli Abruzzi 24Torino10129Italy
| | - Martina Crippa
- Department of Applied Science and TechnologyPolitecnico di TorinoCorso Duca degli Abruzzi 24Torino10129Italy
| | - Ece Arslan Irmak
- EMAT and NANOlab Center of ExcellenceUniversity of AntwerpGroenenborgerlaan 171Antwerp2020Belgium
| | - Sandra Van Aert
- EMAT and NANOlab Center of ExcellenceUniversity of AntwerpGroenenborgerlaan 171Antwerp2020Belgium
| | - Sara Bals
- EMAT and NANOlab Center of ExcellenceUniversity of AntwerpGroenenborgerlaan 171Antwerp2020Belgium
| | - Giovanni M. Pavan
- Department of Applied Science and TechnologyPolitecnico di TorinoCorso Duca degli Abruzzi 24Torino10129Italy
- Department of Innovative TechnologiesUniversity of Applied Sciences and Arts of Southern SwitzerlandPolo Universitario LuganoCampus Est, Via la Santa 1Lugano‐Viganello6962Switzerland
| |
Collapse
|
3
|
Bals S, Albrecht W, Arslan EI, Jenkinson K, Mychinko M, Esteban DA, Altantzis T, Van Aert S. Nanomaterial Transformations Captured by Atomic Resolution 3D Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:595. [PMID: 37613190 DOI: 10.1093/micmic/ozad067.287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- S Bals
- EMAT and NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Wiebke Albrecht
- EMAT and NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Sustainable Energy Materials, AMOLF, Amsterdam, The Netherlands
| | - Ece Imrak Arslan
- EMAT and NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Kellie Jenkinson
- EMAT and NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Mikhail Mychinko
- EMAT and NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | | | | | - Sandra Van Aert
- EMAT and NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Ribet SM, Ophus C, Dos Reis R, Dravid VP. Defect Contrast with 4D-STEM: Understanding Crystalline Order with Virtual Detectors and Beam Modification. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1087-1095. [PMID: 37749690 DOI: 10.1093/micmic/ozad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/15/2023] [Accepted: 03/27/2023] [Indexed: 09/27/2023]
Abstract
Material properties strongly depend on the nature and concentration of defects. Characterizing these features may require nano- to atomic-scale resolution to establish structure-property relationships. 4D-STEM, a technique where diffraction patterns are acquired at a grid of points on the sample, provides a versatile method for highlighting defects. Computational analysis of the diffraction patterns with virtual detectors produces images that can map material properties. Here, using multislice simulations, we explore different virtual detectors that can be applied to the diffraction patterns that go beyond the binary response functions that are possible using ordinary STEM detectors. Using graphene and lead titanate as model systems, we investigate the application of virtual detectors to study local order and in particular defects. We find that using a small convergence angle with a rotationally varying detector most efficiently highlights defect signals. With experimental graphene data, we demonstrate the effectiveness of these detectors in characterizing atomic features, including vacancies, as suggested in simulations. Phase and amplitude modification of the electron beam provides another process handle to change image contrast in a 4D-STEM experiment. We demonstrate how tailored electron beams can enhance signals from short-range order and how a vortex beam can be used to characterize local symmetry.
Collapse
Affiliation(s)
- Stephanie M Ribet
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- International Institute of Nanotechnology, Northwestern University, Evanston, IL, USA
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Colin Ophus
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Roberto Dos Reis
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- International Institute of Nanotechnology, Northwestern University, Evanston, IL, USA
- The NUANCE Center, Northwestern University, Evanston, IL, USA
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- International Institute of Nanotechnology, Northwestern University, Evanston, IL, USA
- The NUANCE Center, Northwestern University, Evanston, IL, USA
| |
Collapse
|
5
|
Pedrazo-Tardajos A, Arslan Irmak E, Kumar V, Sánchez-Iglesias A, Chen Q, Wirix M, Freitag B, Albrecht W, Van Aert S, Liz-Marzán LM, Bals S. Thermal Activation of Gold Atom Diffusion in Au@Pt Nanorods. ACS NANO 2022; 16:9608-9619. [PMID: 35687880 DOI: 10.1021/acsnano.2c02889] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the thermal stability of bimetallic nanoparticles is of vital importance to preserve their functionalities during their use in a variety of applications. In contrast to well-studied bimetallic systems such as Au@Ag, heat-induced morphological and compositional changes in Au@Pt nanoparticles are insufficiently understood, even though Au@Pt is an important material for catalysis. To investigate the thermal instability of Au@Pt nanorods at temperatures below their bulk melting point, we combined in situ heating with two- and three-dimensional electron microscopy techniques, including three-dimensional energy-dispersive X-ray spectroscopy. The experimental results were used as input for molecular dynamics simulations, to unravel the mechanisms behind the morphological transformation of Au@Pt core-shell nanorods. We conclude that thermal stability is influenced not only by the degree of coverage of Pt on Au but also by structural details of the Pt shell.
Collapse
Affiliation(s)
- Adrián Pedrazo-Tardajos
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Ece Arslan Irmak
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Vished Kumar
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
| | - Ana Sánchez-Iglesias
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER- BBN), 20014 Donostia-San Sebastián, Spain
| | - Qiongyang Chen
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Maarten Wirix
- Thermo Fisher Scientific, Strijp-T, Zwaanstraat 31G, 5651 Eindhoven, The Netherlands
| | - Bert Freitag
- Thermo Fisher Scientific, Strijp-T, Zwaanstraat 31G, 5651 Eindhoven, The Netherlands
| | - Wiebke Albrecht
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Sandra Van Aert
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER- BBN), 20014 Donostia-San Sebastián, Spain
| | - Sara Bals
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| |
Collapse
|
6
|
Ye H, Yang F, Sun Y, Wang R. Atom-Resolved Investigation on Dynamic Nucleation and Growth of Platinum Nanocrystals. SMALL METHODS 2022; 6:e2200171. [PMID: 35324080 DOI: 10.1002/smtd.202200171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Understanding the mechanism of nucleation and growth of nanocrystals is crucial for designing and regulating the structure and properties of nanocrystals. However, the process from molecules to nanocrystals remains unclear because of the rapid and complicated dynamics of evolution under reaction conditions. Here, the complete evolution process of solid-phase chloroplatinic acid during the electron beam irradiation triggered reduction and nucleation of platinum nanocrystals is recorded. Aberration-corrected environmental transmission electron microscopy is used for direct visualization of the dynamic evolution from H2 PtCl6 to Pt nanocrystals at the atomic scale, including the formation and growth of amorphous clusters, crystallization, and growth of clusters, and the ripening of Pt nanocrystals. At the first two stages, there exists a critical size of ≈2.0 nm, which represents the start of crystallization. Crystallization from the center and density fluctuation are observed in the second stage of the crystallization of a few clusters with a size obviously larger than the critical size. The work provides valuable information to understand the kinetics of the early stage of nanocrystal nucleation and crystallization at atomic scale.
Collapse
Affiliation(s)
- Huanyu Ye
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Feng Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yinghui Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
7
|
Hayashida M, Malac M. High-Energy Electron Scattering in Thick Samples Evaluated by Bright-Field Transmission Electron Microscopy, Energy-Filtering Transmission Electron Microscopy, and Electron Tomography. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-13. [PMID: 35343421 DOI: 10.1017/s1431927622000472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Energy-filtering transmission electron microscopy (TEM) and bright-field TEM can be used to extract local sample thickness $t$ and to generate two-dimensional sample thickness maps. Electron tomography can be used to accurately verify the local $t$. The relations of log-ratio of zero-loss filtered energy-filtering TEM beam intensity ($I_{{\rm ZLP}}$) and unfiltered beam intensity ($I_{\rm u}$) versus sample thickness $t$ were measured for five values of collection angle in a microscope equipped with an energy filter. Furthermore, log-ratio of the incident (primary) beam intensity ($I_{\rm p}$) and the transmitted beam $I_{{\rm tr}}$ versus $t$ in bright-field TEM was measured utilizing a camera before the energy filter. The measurements were performed on a multilayer sample containing eight materials and thickness $t$ up to 800 nm. Local thickness $t$ was verified by electron tomography. The following results are reported:• The maximum thickness $t_{{\rm max}}$ yielding a linear relation of log-ratio, $\ln ( {I_{\rm u}}/{I_{{\rm ZLP}}})$ and $\ln ( {I_{\rm p}}/{I_{{\rm tr}}} )$, versus $t$.• Inelastic mean free path ($\lambda _{{\rm in}}$) for five values of collection angle.• Total mean free path ($\lambda _{{\rm total}}$) of electrons excluded by an angle-limiting aperture.• $\lambda _{{\rm in}}$ and $\lambda _{{\rm total}}$ are evaluated for the eight materials with atomic number from $\approx$10 to 79.The results can be utilized as a guide for upper limit of $t$ evaluation in energy-filtering TEM and bright-field TEM and for optimizing electron tomography experiments.
Collapse
Affiliation(s)
- Misa Hayashida
- Nanotechnology Research Centre, National Research Council, Edmonton, ABT6G 2M9, Canada
| | - Marek Malac
- Nanotechnology Research Centre, National Research Council, Edmonton, ABT6G 2M9, Canada
- Department of Physics, University of Alberta, Edmonton, ABT6G 2E1, Canada
| |
Collapse
|
8
|
Wang Z, Ke X, Sui M. Recent Progress on Revealing 3D Structure of Electrocatalysts Using Advanced 3D Electron Tomography: A Mini Review. Front Chem 2022; 10:872117. [PMID: 35355785 PMCID: PMC8959462 DOI: 10.3389/fchem.2022.872117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Electrocatalysis plays a key role in clean energy innovation. In order to design more efficient, durable and selective electrocatalysts, a thorough understanding of the unique link between 3D structures and properties is essential yet challenging. Advanced 3D electron tomography offers an effective approach to reveal 3D structures by transmission electron microscopy. This mini-review summarizes recent progress on revealing 3D structures of electrocatalysts using 3D electron tomography. 3D electron tomography at nanoscale and atomic scale are discussed, respectively, where morphology, composition, porous structure, surface crystallography and atomic distribution can be revealed and correlated to the performance of electrocatalysts. (Quasi) in-situ 3D electron tomography is further discussed with particular focus on its impact on electrocatalysts' durability investigation and post-treatment. Finally, perspectives on future developments of 3D electron tomography for eletrocatalysis is discussed.
Collapse
Affiliation(s)
| | - Xiaoxing Ke
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| | - Manling Sui
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| |
Collapse
|