1
|
Chen J, Tan Y, Chen Z, Yang H, Li X, Long X, Han Y, Yang J. Exosomes derived from primary cartilage stem/progenitor cells promote the repair of osteoarthritic chondrocytes by modulating immune responses. Int Immunopharmacol 2024; 143:113397. [PMID: 39461237 DOI: 10.1016/j.intimp.2024.113397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Exosomes derived from primary chondrogenic stem/progenitor cells (CSPCs-EXOs) show promise in cartilage repair due to their immunomodulatory and regenerative properties. However, their specific therapeutic potential in osteoarthritis (OA), especially in modulating immune responses and enhancing chondrocyte function, requires further exploration. This study aims to clarify CSPCs-EXOs' effects on OA by investigating their role in chondrocyte proliferation, migration, inflammation inhibition, and cartilage regeneration. METHODS A rat model of osteoarthritis was established using monosodium iodoacetate (MIA). CSPCs-EXOs were isolated and characterized before being administered to the OA rats. Comprehensive transcriptomic analysis was conducted to identify differentially expressed genes (DEGs) and signaling pathways influenced by CSPCs-EXOs. Histopathological evaluation of cartilage tissue, immunohistochemistry, and in vitro assays were performed to assess chondrocyte proliferation, migration, inflammation, and intracellular environmental changes. RESULTS CSPCs-EXOs treatment significantly reduced OA-induced cartilage damage, shown by improved histopathological features, increased chondrocyte proliferation, migration, and enhanced cartilage matrix integrity. CSPCs-EXOs uniquely modulated immune pathways and enhanced cellular repair, setting them apart from traditional treatments. Transcriptomic analysis revealed regulation of immune response, inflammation, oxidative stress, and DNA repair pathways. CSPCs-EXOs downregulated inflammatory cytokines (TNF, IL-17) and upregulated pathways for cellular proliferation, migration, and metabolism. They also altered splicing patterns of DNA repair enzymes, indicating a role in boosting repair mechanisms. CONCLUSIONS CSPCs-EXOs promote cartilage repair in osteoarthritis by modulating immune responses, inhibiting inflammation, and improving the intracellular environment. These findings emphasize their innovative therapeutic potential and offer key insights into their regenerative mechanisms, positioning CSPCs-EXOs as a promising strategy for OA treatment and a foundation for future clinical applications in cartilage tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jing Chen
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Ya Tan
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Zhifeng Chen
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Hongwei Yang
- Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong University, Nantong, China
| | - Xiaodi Li
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaodong Long
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.
| | - Yangyun Han
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.
| | - Jian Yang
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.
| |
Collapse
|
2
|
Wu C, Zhai Y, Ji J, Yang X, Ye L, Lu G, Shi X, Zhai G. Advances in tumor stroma-based targeted delivery. Int J Pharm 2024; 664:124580. [PMID: 39142464 DOI: 10.1016/j.ijpharm.2024.124580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The tumor stroma plays a crucial role in tumor progression, and the interactions between the extracellular matrix, tumor cells, and stromal cells collectively influence tumor progression and the efficacy of therapeutic agents. Currently, utilizing components of the tumor stroma for drug delivery is a noteworthy strategy. A number of targeted drug delivery systems designed based on tumor stromal components are entering clinical trials. Therefore, this paper provides a thorough examination of the function of tumor stroma in the advancement of targeted drug delivery systems. One approach is to use tumor stromal components for targeted drug delivery, which includes certain stromal components possessing inherent targeting capabilities like HA, laminin, along with targeting stromal cells homologously. Another method entails directly focusing on tumor stromal components to reshape the tumor stroma and facilitate drug delivery. These drug delivery systems exhibit great potential in more effective cancer therapy strategies, such as precise targeting, enhanced penetration, improved safety profile, and biocompatibility. Ultimately, the deployment of these drug delivery systems can deepen our comprehension of tumor stroma and the advanced development of corresponding drug delivery systems.
Collapse
Affiliation(s)
- Chunyan Wu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84124, United States
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Guoliang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Xiaoqun Shi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
3
|
Saruchi, Kumar V, Mittal H, Ansar S. Synthesis and characterization of Gellan gum-based hydrogels for the delivery of anticancer drug etoposide. Int J Biol Macromol 2024; 278:135007. [PMID: 39181355 DOI: 10.1016/j.ijbiomac.2024.135007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/26/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Present research work reports the synthesis of Gellan gum (Gg) and methacrylic acid (MA) based grafted hydrogels (Gg-cl-poly(MA)) crosslinked using N, N'- methylene-bis-acrylamide (MBA) and the evaluation of their efficiency to be used as a sustained drug delivery carrier for anticancer drug i.e., etoposide. Various characterization techniques like Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) confirmed the grafting of Gg with MA and the formation of crosslinked Gg-cl-poly(MA) hydrogel polymer. The synthesized hydrogel showed pH-dependent swelling properties and exhibited a maximum swelling capacity of 867 % under optimized environmental conditions. The Gg-cl-poly(MA) was biocompatible and non-cytotoxic, which was confirmed by the hemolytic and cytotoxic tests. The release dynamics of etoposide from the Gg-cl-poly(MA) polymer matrix was checked under specific physiological conditions. Drug release was found to be significantly higher in the acidic medium, followed by the neutral and alkaline medium. This clearly indicated that etoposide drug release through synthesized hydrogel was stomach-specific and it is effective for the treatment of stomach cancer. The release mechanism of the etoposide drug was a Fickian-type diffusion mechanism in the acidic medium and a non-Fickian-type diffusion mechanism in the neutral and alkaline medium. The release profile of the etoposide was best fitted to the first-order rate model. The results showed that the synthesized hydrogel (i.e., Gg-cl-poly(MA)) was biocompatible, non-toxic, and could be used for the treatment of stomach cancer.
Collapse
Affiliation(s)
- Saruchi
- Department of Paramedical Sciences, St. Soldier Institute of Pharmacy, Jalandhar, Punjab, India.
| | - Vaneet Kumar
- Department of Applied Sciences, CT Institute of Engineering, Management and Technology, Shahpur Campus Jalandhar, Punjab, India.
| | - Hemant Mittal
- DEWA R&D Center, Dubai Electricity & Water Authority (DEWA), P.O. Box 564, Dubai, United Arab Emirates
| | - Sabah Ansar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| |
Collapse
|
4
|
Zhang J, Deng M, Xu C, Li D, Yan X, Gu Y, Zhong M, Gao H, Liu Y, Zhang J, Qu X, Zhang J. Dual-Prodrug-Based Hyaluronic Acid Nanoplatform Provides Cascade-Boosted Drug Delivery for Oxidative Stress-Enhanced Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50459-50473. [PMID: 39258403 DOI: 10.1021/acsami.4c11662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Insufficient drug accumulation in tumors severely limits the antitumor efficiency of hyaluronic acid (HA) nanomedicine in solid tumors due to superficial penetration depth, low cell uptake, and nonspecific drug release. Hence, we constructed a dual NO prodrug (alkynyl-JSK) and doxorubicin prodrug (cis-DOX)-conjugated HA nanoparticle (HA-DOX-JSK NPs), which achieved cascade-boosted drug delivery efficiency based on a relay strategy of NO-mediated deep tumor penetration─HA target CD44 tumor cell uptake─tumor microenvironment (TME)-responsive drug release. The nanoparticle demonstrated sustained and locoregionally GSH/GST-triggered NO release and GSH/pH-responsive DOX release in the tumor. The released NO first mediated collagen degradation, causing deep tumor penetration of nanoparticles in the dense extracellular matrix. Immediately, HA was relayed to enhance CD44-targeted tumor cell uptake, and then, the nanoparticles were finally triggered by specific TME to release DOX and NO in the deep tumor. Relying on the relayed delivery strategy, a significant improvement of DOX accumulation in tumors was realized. Moreover, NO depleted GSH-induced intracellular reactive oxygen species, enhancing DOX chemotherapy. Based on this strategy, the tumor inhibition rate in breast cancer was up to 87.8% in vivo. The relay drug-delivery HA system would greatly cascade-boost drug accumulation in deep tumors for efficient solid tumor therapy.
Collapse
Affiliation(s)
- Junxian Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Meigui Deng
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Chang Xu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Danting Li
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xiaozhe Yan
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yuxuan Gu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Meihui Zhong
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hui Gao
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yingchun Liu
- Jinghua Plastics Industry Company Limited, Langfang 065800, P. R. China
| | - Jiqing Zhang
- Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250000, China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jimin Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
5
|
Tian L, Xiao J, Yu T. A robust statistical approach for finding informative spatially associated pathways. Brief Bioinform 2024; 25:bbae543. [PMID: 39451157 PMCID: PMC11503753 DOI: 10.1093/bib/bbae543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/27/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
Spatial transcriptomics offers deep insights into cellular functional localization and communication by mapping gene expression to spatial locations. Traditional approaches that focus on selecting spatially variable genes often overlook the complexity of biological pathways and the interactions among genes. Here, we introduce a novel framework that shifts the focus towards directly identifying functional pathways associated with spatial variability by adapting the Brownian distance covariance test in an innovative manner to explore the heterogeneity of biological functions over space. Unlike most other methods, this statistical testing approach is free of gene selection and parameter selection and allows nonlinear and complex dependencies. It allows for a deeper understanding of how cells coordinate their activities across different spatial domains through biological pathways. By analyzing real human and mouse datasets, the method found significant pathways that were associated with spatial variation, as well as different pathway patterns among inner- and edge-cancer regions. This innovative framework offers a new perspective on analyzing spatial transcriptomic data, contributing to our understanding of tissue architecture and disease pathology. The implementation is publicly available at https://github.com/tianlq-prog/STpathway.
Collapse
Affiliation(s)
- Leqi Tian
- School of Data Science, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, P.R. China
- Shenzhen Research Institute of Big Data, Shenzhen, Guangdong 518172, P.R. China
| | - Jiashun Xiao
- Shenzhen Research Institute of Big Data, Shenzhen, Guangdong 518172, P.R. China
| | - Tianwei Yu
- School of Data Science, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, P.R. China
- Shenzhen Research Institute of Big Data, Shenzhen, Guangdong 518172, P.R. China
| |
Collapse
|
6
|
Newaj SM, Kashem TB, Ferdous J, Jahan I, Rawshan H, Prionty NJ, Rakib R, Sadman MA, Faruk FB, Reza HM, Sharker SM. Skin Cancer Treatment with Subcutaneous Delivery of Doxorubicin-Loaded Gelatin Nanoparticles and NIR Activation. ACS APPLIED BIO MATERIALS 2024; 7:6313-6324. [PMID: 39172138 DOI: 10.1021/acsabm.4c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Subcutaneous (SC) administration of chemotherapeutics combined with near-infrared (NIR) light activation can effectively target skin tumors by triggering localized drug release and enhancing cytotoxic effects. In this study, we developed NIR-responsive indocyanine green (ICG) and the chemotherapeutic agent doxorubicin (Dox) loaded into gelatin nanoparticles (NPs) for SC delivery in a skin tumor-bearing mouse model. Histological examination (hematoxylin and eosin staining) confirmed the successful delivery and swelling behavior of the Dox/ICG-loaded gelatin NPs at the SC site. In vitro and in vivo experiments demonstrated that NIR activation of the Dox/ICG-loaded gelatin NPs generated significant photothermal heat (48 and 46 °C), leading to targeted drug release and a substantial reduction in skin tumor size (from 15 to 3 mm3). Our findings suggest that this dual-modality approach of SC chemotherapeutic administration and NIR-triggered photothermal therapy can concentrate cytotoxic drugs at the tumor site, offering a promising strategy for improving skin cancer treatment.
Collapse
Affiliation(s)
- Shekh Md Newaj
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Tabassum Binte Kashem
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Jannatul Ferdous
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Israt Jahan
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Habiba Rawshan
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Nusrat Jahan Prionty
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Rashedujjaman Rakib
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Md Annur Sadman
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Forhad Bin Faruk
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Shazid Md Sharker
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| |
Collapse
|
7
|
Bae JH, Kim HS. A pH-Responsive Protein Assembly through Clustering of a Charge-Tunable Single Amino Acid Repeat. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47100-47109. [PMID: 39216082 DOI: 10.1021/acsami.4c07269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Specific targeting of tumor cells is a key to achieving high therapeutic efficacy while minimizing off-target side effects. As a general approach to targeting diverse tumor cells, considerable attention has been paid to the tumor microenvironment, particularly its slightly acidic pH (6.5-6.8). However, existing pH-sensitive nanomaterials, based on organic polymers and proteins, often lack sufficient pH sensitivity and specificity. Here, we demonstrate a strategy to construct a pH-responsive protein assembly through clustering of a single amino acid repeat as a charge-tunable moiety. As a proof of concept, a histidine peptide with varying lengths was displayed on the surface of a ferritin assembly composed of 24 subunits by genetic fusion to a subunit. The resulting self-assembled ferritin particles, termed "pHerricle (pH-responsive ferritin particle)", were shown to exhibit a specific binding to tumor cells in response to pH changes through cooperative effects of histidine peptides. Increasing the histidine peptide length from 0 to 12 residues increased the pHerricle's cell-binding capacity by 21-fold and allowed modulation of the targetable pH range. General applicability as a tumor cell-targeting platform was shown by specific delivery of a cytotoxic cargo by the pHerricle into tumor cells of various origins in a pH-dependent manner.
Collapse
Affiliation(s)
- Jin-Ho Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| |
Collapse
|
8
|
Jing X, Zhu Z, Wang S, Xin J, Zhou H, Wang L, Tong H, Cui C, Zhang Y, Sun F, Yang L, Gao Y, Lu H. Nonionic Water-Soluble Oligo(ethylene glycol)-Modified Polypeptides with a β-Sheet Conformation. Biomacromolecules 2024; 25:5343-5351. [PMID: 39001815 DOI: 10.1021/acs.biomac.4c00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
The secondary structures of polypeptides, such as an α-helix and a β-sheet, often impart specific properties and functions, making the regulation of their secondary structures of great significance. Particularly, water-soluble polypeptides bearing a β-sheet conformation are rare and challenging to achieve. Here, a series of oligo(ethylene glycol)-modified lysine N-carboxylic anhydrides (EGmK-NCA, where m = 1-3) and the corresponding polymers EGmKn are synthesized, with urethane bonds as the linker between the side-chain EG and lysine. The secondary structure of EGmKn is delicately regulated by both m and n, the length (number of repeating units) of EG and the degree of polymerization (DP), respectively. Among them, EG2Kn adopts a β-sheet conformation with good water solubility at an appropriate DP and forms physically cross-linked hydrogels at a concentration as low as 1 wt %. The secondary structures of EG1Kn can be tuned by DP, exhibiting either a β-sheet or an α-helix, whereas EG3Kn appears to a adopt pure and stable α-helix with no dependence on DP. Compared to previous works reporting EG-modified lysine-derived polypeptides bearing exclusively an α-helix conformation, this work highlights the important and unexpected role of the urethane connecting unit and provides useful case studies for understanding the secondary structure of polypeptides.
Collapse
Affiliation(s)
- Xiaodong Jing
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhen Zhu
- Changping Laboratory, Beijing 102200, China
| | - Shuo Wang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiaqi Xin
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Haisen Zhou
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Letian Wang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huimin Tong
- Department of Instrument Analysis Center of Xi'an Jiaotong University, Xi'an 710049, China
| | - Chenhui Cui
- Department of Instrument Analysis Center of Xi'an Jiaotong University, Xi'an 710049, China
| | - Yanfeng Zhang
- Department of Applied Chemistry, School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter (Xi'an Jiaotong University), Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Fei Sun
- Department of Chemical and Biological Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Lijiang Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yiqin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102200, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Shen Y, Feng Y, Liang S, Liang C, Li B, Wang D, Sun J. In Situ Gelation Strategy for Efficient Drug Delivery in a Gastrointestinal System. ACS Biomater Sci Eng 2024; 10:5252-5264. [PMID: 39038263 DOI: 10.1021/acsbiomaterials.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Developing a microenvironment-responsive drug delivery system (DDS) for the gastrointestinal system is of great interest to enhance drug efficiency and minimize side effects. Unfortunately, the rapid-flowing digestive juice in the gastrointestinal tract and the continuous contraction and peristalsis of the gastrointestinal tract muscle accelerate the elimination of drug carriers. In this study, a boric hydroxyl-modified mesoporous Mg(OH)2 drug carrier is prepared to prolong the drug retention time. Results show that the newly designed DDS presents high biocompatibility and can immediately turn the free polyhydric alcohol molecules into a gelation form. The in situ-formed gelation network presents high viscosity and can prevent the drug carriers from being washed away by the digestive juice in the gastrointestinal tract.
Collapse
Affiliation(s)
- Yucui Shen
- Endoscopy Center, Shanghai Fourth People's Hospital, Tongji University, School of Medicine, Shanghai 200434, China
| | - Ye Feng
- Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Shengjie Liang
- Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450003, China
| | - Chunyong Liang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Baoe Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Donghui Wang
- Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Jianwei Sun
- Guangzhou Special Service Recuperation Center of PLA Rocket Force, Guangzhou 510515, China
| |
Collapse
|
10
|
Sun X, Kou B. Biocompatibility and potential anticancer activity of gadolinium oxide (Gd 2O 3) nanoparticles against nasal squamous cell carcinoma. BMC Biotechnol 2024; 24:53. [PMID: 39107760 PMCID: PMC11304937 DOI: 10.1186/s12896-024-00877-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Chemotherapy as a cornerstone of cancer treatment is slowly being edged aside owing to its severe side effects and systemic toxicity. In this case, nanomedicine has emerged as an effective tool to address these drawbacks. Herein, a biocompatible carrier based on bovine serum albumin (BSA) coated gadolinium oxide nanoparticles (Gd2O3@BSA) was fabricated for curcumin (CUR) delivery and its physicochemical features along with its potential anticancer activity against nasal squamous cell carcinoma were also investigated. It was found that the fabricated Gd2O3@BSA containing CUR (Gd2O3@BSA-CUR) had spherical morphology with hydrodynamic size of nearly 26 nm, zeta-potential of -36 mV and high drug (CUR) loading capacity. Drug release profile disclosed that the release of CUR from the prepared Gd2O3@BSA-CUR nanoparticles occurred in a sustained- and pH-dependent manner. Also, in vitro cytotoxicity analysis revealed that the fabricated Gd2O3@BSA nanoparticles possessed excellent biosafety toward HFF2 normal cells, while Gd2O3@BSA-CUR appeared to display the greatest anticancer potential against RPMI 2650 and CNE-1 cancer cell lines. The results also show that the Gd2O3@BSA nanoparticles were compatible with the blood cells with minor hemolytic effect (< 3%). The manufactured NPs were found to be completely safe for biological applications in an in vivo subacute toxicity study. Taken together, these finding substantiate the potential anticancer activity of Gd2O3@BSA-CUR nanoparticles against nasal squamous cell carcinoma, but the results obtained demand further studies to assess their full potential.
Collapse
Affiliation(s)
- Xiaopeng Sun
- Department of Otorhinolaryngology head and neck surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Department of Otorhinolaryngology head and neck surgery, The Second Affiliated Hospital of Xi 'an Medical University, Xi'an, 710000, Shaanxi, China
| | - Bo Kou
- Department of Otorhinolaryngology head and neck surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
11
|
Li D, Ren T, Wang X, Xiao Z, Sun G, Zhang N, Zhao L, Zhong R. A Tween-80 modified hypoxia/esterase dual stimulus-activated nanomicelle as a delivery platform for carmustine - Design, synthesis, and biological evaluation. Int J Biol Macromol 2024; 274:133404. [PMID: 38925197 DOI: 10.1016/j.ijbiomac.2024.133404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
As a clinical anti-glioma agent, the therapeutic effect of carmustine (BCNU) was largely decreased because of the drug resistance mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and the blood-brain barrier (BBB). To overcome these obstacles, we synthesized a BCNU-loaded hypoxia/esterase dual stimulus-activated nanomicelle, abbreviated as T80-HACB/BCNU NPs. In this nano-system, Tween 80 acts as the functional coating on the surface of the micelle to facilitate transport across the BBB. Hyaluronic acid (HA) with active tumor-targeting capability was linked with the hypoxia-sensitive AGT inhibitors (O6-azobenzyloxycarbonyl group) via an esterase-activated ester bond. The obtained T80-HACB/BCNU NPs had an average particle size of 232.10 ± 10.66 nm, the zeta potential of -18.13 ± 0.91 mV, and it showed high drug loading capacity, eximious biocompatibility and dual activation of hypoxia/esterase drug release behavior. The obtained T80-HACB/BCNU NPs showed enhanced cytotoxicity against hypoxic T98G and SF763 cells with IC50 at 132.2 μM and 133.1 μM, respectively. T80 modification improved the transportation of the micelle across an in vitro BBB model. The transport rate of the T80-HACB/Cou6 NPs group was 12.37 %, which was 7.6-fold (p<0.001) higher than the micelle without T80 modification. T80-HACB/BCNU NPs will contribute to the development of novel CENUs chemotherapies with high efficacy.
Collapse
Affiliation(s)
- Duo Li
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Zhixuan Xiao
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
12
|
Fu D, Zhong L, Xu J, Mo A, Yang M. Hydrazone-functionalized nanoscale covalent organic frameworks as a nanocarrier for pH-responsive drug delivery enhanced anticancer activity. RSC Adv 2024; 14:20799-20808. [PMID: 38952941 PMCID: PMC11215751 DOI: 10.1039/d4ra01955e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/15/2024] [Indexed: 07/03/2024] Open
Abstract
Nanoscale covalent organic frameworks (NCOFs) as emerging drug-delivery nanocarriers have received much attention in biomedicine in recent years. However, there are few reports on the application of pH-responsive NCOFs for drug delivery nanosystems. In this work, hydrazone-decorated NCOFs as pH-triggered molecular switches are designed for efficient cancer therapy. These functionalized NCOFs with hydrazone groups on the channel walls (named NCOFs-NHNH2) are obtained via a post-synthetic modification strategy. Subsequently, the anticancer drug doxorubicin (DOX) as the model molecule is loaded through covalent linkage to yield NCOFs-NN-DOX. Finally, soybean phospholipid (SP) is coated on the surface of HNTs-NN-DOX, named NCOFs-NN-DOX@SP, to further enhance the dispersibility, stability and biocompatibility of HNTs in physiological solution. NCOFs-NN-DOX@SP showed an excellent and intelligent sustained-release effect with an almost sixfold increase at pH = 5.2 than at pH = 7.4. In vitro cell toxicity and imaging assays of NCOFs-NN-DOX@SP exhibited an enhanced therapeutic effect on Lewis lung carcinoma (LLC) cells, demonstrating that the fabricated NCOFs have a great potential in cancer therapy. Thus, this work provides a new way toward designing stimulus-responsive functionalized NCOFs and promotes their potential application as an on-demand drug delivery system in the field of cancer treatment.
Collapse
Affiliation(s)
- Datian Fu
- Department of Pharmacy, Hainan Women and Children's Medical Center Haikou Hainan 570312 China
| | - LiLi Zhong
- Department of Pharmacy, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University) Haikou Hainan 570311 China
| | - Jin Xu
- Pharmaceutical and Bioengineering School, Hunan Chemical Vocational Technology College Zhuzhou 412006 China
| | - Anwei Mo
- Department of Oncology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University) Haikou Hainan 570311 China
| | - Min Yang
- Department of Oncology, Hainan Cancer Hospital Haikou Hainan 570312 China
| |
Collapse
|
13
|
Huang S, Xu Z, Zhi W, Li Y, Hu Y, Zhao F, Zhu X, Miao M, Jia Y. pH/GSH dual-responsive nanoparticle for auto-amplified tumor therapy of breast cancer. J Nanobiotechnology 2024; 22:324. [PMID: 38858692 PMCID: PMC11163783 DOI: 10.1186/s12951-024-02588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024] Open
Abstract
Breast cancer remains a malignancy that poses a serious threat to human health worldwide. Chemotherapy is one of the most widely effective cancer treatments in clinical practice, but it has some drawbacks such as poor targeting, high toxicity, numerous side effects, and susceptibility to drug resistance. For auto-amplified tumor therapy, a nanoparticle designated GDTF is prepared by wrapping gambogic acid (GA)-loaded dendritic porous silica nanoparticles (DPSNs) with a tannic acid (TA)-Fe(III) coating layer. GDTF possesses the properties of near-infrared (NIR)-enhanced and pH/glutathione (GSH) dual-responsive drug release, photothermal conversion, GSH depletion and hydroxyl radical (·OH) production. When GDTF is exposed to NIR laser irradiation, it can effectively inhibit cell proliferation and tumor growth both in vitro and in vivo with limited toxicity. This may be due to the synergistic effect of enhanced tumor accumulation, and elevated reactive oxygen species (ROS) production, GSH depletion, and TrxR activity reduction. This study highlights the enormous potential of auto-amplified tumor therapy.
Collapse
Affiliation(s)
- Shengnan Huang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China.
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, Henan Province, 450001, P.R. China.
| | - Zhiling Xu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China
| | - Weiwei Zhi
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China
| | - Yijing Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China
| | - Yurong Hu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, Henan Province, 450001, P.R. China
| | - Fengqin Zhao
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, Henan Province, 450001, P.R. China
| | - Xiali Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China.
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China.
| | - Yongyan Jia
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, P. R. China.
| |
Collapse
|
14
|
Wang Q, Li H, Wu T, Yu B, Cong H, Shen Y. Nanodrugs based on co-delivery strategies to combat cisplatin resistance. J Control Release 2024; 370:14-42. [PMID: 38615892 DOI: 10.1016/j.jconrel.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Cisplatin (CDDP), as a broad-spectrum anticancer drug, is able to bind to DNA and inhibit cell division. Despite the widespread use of cisplatin since its discovery, cisplatin resistance developed during prolonged chemotherapy, similar to other small molecule chemotherapeutic agents, severely limits its clinical application. Cisplatin resistance in cancer cells is mainly caused by three reasons: DNA repair, decreased cisplatin uptake/increased efflux, and cisplatin inactivation. In earlier combination therapies, the emergence of multidrug resistance (MDR) in cancer cells prevented the achievement of the desired therapeutic effect even with the accurate combination of two chemotherapeutic drugs. Therefore, combination therapy using nanocarriers for co-delivery of drugs is considered to be ideal for alleviating cisplatin resistance and reducing cisplatin-related toxicity in cancer cells. This article provides an overview of the design of cisplatin nano-drugs used to combat cancer cell resistance, elucidates the mechanisms of action of cisplatin and the pathways through which cancer cells develop resistance, and finally discusses the design of drugs and related carriers that can synergistically reduce cancer resistance when combined with cisplatin.
Collapse
Affiliation(s)
- Qiubo Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hui Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Taixia Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bio-nanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
15
|
Naser IH, Zaid M, Ali E, Jabar HI, Mustafa AN, Alubiady MHS, Ramadan MF, Muzammil K, Khalaf RM, Jalal SS, Alawadi AH, Alsalamy A. Unveiling innovative therapeutic strategies and future trajectories on stimuli-responsive drug delivery systems for targeted treatment of breast carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3747-3770. [PMID: 38095649 DOI: 10.1007/s00210-023-02885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/02/2023] [Indexed: 05/23/2024]
Abstract
This comprehensive review delineates the latest advancements in stimuli-responsive drug delivery systems engineered for the targeted treatment of breast carcinoma. The manuscript commences by introducing mammary carcinoma and the current therapeutic methodologies, underscoring the urgency for innovative therapeutic strategies. Subsequently, it elucidates the logic behind the employment of stimuli-responsive drug delivery systems, which promise targeted drug administration and the minimization of adverse reactions. The review proffers an in-depth analysis of diverse types of stimuli-responsive systems, including thermoresponsive, pH-responsive, and enzyme-responsive nanocarriers. The paramount importance of material choice, biocompatibility, and drug loading strategies in the design of these systems is accentuated. The review explores characterization methodologies for stimuli-responsive nanocarriers and probes preclinical evaluations of their efficacy, toxicity, pharmacokinetics, and biodistribution in mammary carcinoma models. Clinical applications of stimuli-responsive systems, ongoing clinical trials, the potential of combination therapies, and the utility of multifunctional nanocarriers for the co-delivery of assorted drugs and therapies are also discussed. The manuscript addresses the persistent challenge of drug resistance in mammary carcinoma and the potential of stimuli-responsive systems in surmounting it. Regulatory and safety considerations, including FDA guidelines and biocompatibility assessments, are outlined. The review concludes by spotlighting future trajectories and emergent technologies in stimuli-responsive drug delivery, focusing on pioneering approaches, advancements in nanotechnology, and personalized medicine considerations. This review aims to serve as a valuable compendium for researchers and clinicians interested in the development of efficacious and safe stimuli-responsive drug delivery systems for the treatment of breast carcinoma.
Collapse
Affiliation(s)
- Israa Habeeb Naser
- Medical Laboratories Techniques Department, AL-Mustaqbal University, Hillah, Babil, Iraq
| | - Muhaned Zaid
- Department of Pharmacy, Al-Manara College for Medical Sciences, Maysan, Amarah, Iraq
| | - Eyhab Ali
- Al-Zahraa University for Women, Karbala, Iraq
| | - Hayder Imad Jabar
- Department of Pharmaceutics, College of Pharmacy, University of Al-Ameed, Karbala, Iraq
| | | | | | | | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia
| | | | - Sarah Salah Jalal
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq
- College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq.
| |
Collapse
|
16
|
Jin Z, Wang Y, Han M, Wang L, Lin F, Jia Q, Ren W, Xu J, Yang W, Zhao GA, Sun X, Jing C. Tumor microenvironment-responsive size-changeable and biodegradable HA-CuS/MnO 2 nanosheets for MR imaging and synergistic chemodynamic therapy/phototherapy. Colloids Surf B Biointerfaces 2024; 238:113921. [PMID: 38631280 DOI: 10.1016/j.colsurfb.2024.113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
Tumor microenvironment (TME)-responsive size-changeable and biodegradable nanoplatforms for multimodal therapy possess huge advantages in anti-tumor therapy. Hence, we developed a hyaluronic acid (HA) modified CuS/MnO2 nanosheets (HCMNs) as a multifunctional nanoplatform for synergistic chemodynamic therapy (CDT)/photothermal therapy (PTT)/photodynamic therapy (PDT). The prepared HCMNs exhibited significant NIR light absorption and photothermal conversion efficiency because of the densely deposited ultra-small sized CuS nanoparticles on the surface of MnO2 nanosheet. They could precisely target the tumor cells and rapidly decomposed into small sized nanostructures in the TME, and then efficiently promote intracellular ROS generation through a series of cascade reactions. Moreover, the local temperature elevation induced by photothermal effect also promote the PDT based on CuS nanoparticles and the Fenton-like reaction of Mn2+, thereby enhancing the therapeutic efficiency. Furthermore, the T1-weighted magnetic resonance (MR) imaging was significantly enhanced by the abundant Mn2+ ions from the decomposition process of HCMNs. In addition, the CDT/PTT/PDT synergistic therapy using a single NIR light source exhibited considerable anti-tumor effect via in vitro cell test. Therefore, the developed HCMNs will provide great potential for MR imaging and multimodal synergistic cancer therapy.
Collapse
Affiliation(s)
- Zhen Jin
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Neural Sensor and Control Engineering Technology Research Center, Xinxiang, Henan 453003, China.
| | - Yunkai Wang
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Miaomiao Han
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Li Wang
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Fei Lin
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Qianfang Jia
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Wu Ren
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Jiawei Xu
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Wenhao Yang
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Guo-An Zhao
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Xuming Sun
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Neural Sensor and Control Engineering Technology Research Center, Xinxiang, Henan 453003, China.
| | - Changqin Jing
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| |
Collapse
|
17
|
Liu J, Zhou Y, Lyu Q, Yao X, Wang W. Targeted protein delivery based on stimuli-triggered nanomedicine. EXPLORATION (BEIJING, CHINA) 2024; 4:20230025. [PMID: 38939867 PMCID: PMC11189579 DOI: 10.1002/exp.20230025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/07/2023] [Indexed: 06/29/2024]
Abstract
Protein-based drugs have shown unique advantages to treat various diseases in recent years. However, most protein therapeutics in clinical use are limited to extracellular targets with low delivery efficiency. To realize targeted protein delivery, a series of stimuli-triggered nanoparticle formulations have been developed to improve delivery efficiency and reduce off-target release. These smart nanoparticles are designed to release cargo proteins in response to either internal or external stimuli at pathological tissues. In this way, varieties of protein-based drugs including antibodies, enzymes, and pro-apoptotic proteins can be effectively delivered to desired sites for the treatment of cancer, inflammation, metabolic diseases, and so on with minimal side effects. In this review, recent advances in the design of stimuli-triggered nanomedicine for targeted protein delivery in different biomedical applications will be discussed. A deeper understanding of these emerging strategies helps develop more efficient protein delivery systems for clinical use in the future.
Collapse
Affiliation(s)
- Jinzhao Liu
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Yang Zhou
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Qingyang Lyu
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Xiaotong Yao
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Department of ChemistryFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Weiping Wang
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| |
Collapse
|
18
|
Mao M, Wu Y, He Q. Recent advances in targeted drug delivery for the treatment of glioblastoma. NANOSCALE 2024; 16:8689-8707. [PMID: 38606460 DOI: 10.1039/d4nr01056f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Glioblastoma multiforme (GBM) is one of the highly malignant brain tumors characterized by significant morbidity and mortality. Despite the recent advancements in the treatment of GBM, major challenges persist in achieving controlled drug delivery to tumors. The management of GBM poses considerable difficulties primarily due to unresolved issues in the blood-brain barrier (BBB)/blood-brain tumor barrier (BBTB) and GBM microenvironment. These factors limit the uptake of anti-cancer drugs by the tumor, thus limiting the therapeutic options. Current breakthroughs in nanotechnology provide new prospects concerning unconventional drug delivery approaches for GBM treatment. Specifically, swimming nanorobots show great potential in active targeted delivery, owing to their autonomous propulsion and improved navigation capacities across biological barriers, which further facilitate the development of GBM-targeted strategies. This review presents an overview of technological progress in different drug administration methods for GBM. Additionally, the limitations in clinical translation and future research prospects in this field are also discussed. This review aims to provide a comprehensive guideline for researchers and offer perspectives on further development of new drug delivery therapies to combat GBM.
Collapse
Affiliation(s)
- Meng Mao
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China.
| | - Yingjie Wu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China.
| | - Qiang He
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
19
|
Xiang K, Li Y, Cong H, Yu B, Shen Y. Peptide-based non-viral gene delivery: A comprehensive review of the advances and challenges. Int J Biol Macromol 2024; 266:131194. [PMID: 38554914 DOI: 10.1016/j.ijbiomac.2024.131194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Gene therapy is the most effective treatment option for diseases, but its effectiveness is affected by the choice and design of gene carriers. The genes themselves have to pass through multiple barriers in order to enter the cell and therefore require additional vectors to carry them inside the cell. In gene therapy, peptides have unique properties and potential as gene carriers, which can effectively deliver genes into specific cells or tissues, protect genes from degradation, improve gene transfection efficiency, and enhance gene targeting and biological responsiveness. This paper reviews the research progress of peptides and their derivatives in the field of gene delivery recently, describes the obstacles encountered by foreign materials to enter the interior of the cell, and introduces the following classes of functional peptides that can carry materials into the interior of the cell, and assist in transmembrane translocation of carriers, thus breaking through endosomal traps to enable successful entry of genetic materials into the nucleus of the cell. The paper also discusses the combined application of peptide vectors with other vectors to enhance its transfection ability, explores current challenges encountered by peptide vectors, and looks forward to future developments in the field.
Collapse
Affiliation(s)
- Kai Xiang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bio nanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
20
|
Xiao Q, Shang L, Peng Y, Zhang L, Wei Y, Zhao D, Zhao Y, Wan J, Wang Y, Wang D. Rational Design of Coordination Polymers Composited Hollow Multishelled Structures for Drug Delivery. SMALL METHODS 2024:e2301664. [PMID: 38678518 DOI: 10.1002/smtd.202301664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/30/2024] [Indexed: 05/01/2024]
Abstract
Multifunctional drug delivery systems (DDS) are in high demand for effectively targeting specific cells, necessitating excellent biocompatibility, precise release mechanisms, and sustained release capabilities. The hollow multishelled structure (HoMS) presents a promising solution, integrating structural and compositional design for efficient DDS development amidst complex cellular environments. Herein, starting from a Fe-based metal-organic framework (MOF), amorphous coordination polymers (CP) composited HoMS with controlled shell numbers are fabricated by balancing the rate of MOF decomposition and shell formation. Fe-CP HoMS loaded with DOX is utilized for synergistic chemotherapy and chemodynamic therapy, offering excellent responsive drug release capability (excellent pH-triggered drug release 82% within 72 h at pH 5.0 solution with doxorubicin (DOX) loading capacity of 284 mg g-1). In addition to its potent chemotherapy attributes, Fe-CP-HoMS possesses chemodynamic therapy potential by continuously catalyzing H2O2 to generate ·OH species within cancer cells, thus effectively inhibiting cancer cell proliferation. DOX@3S-Fe-CP-HoMS, at a concentration of 12.5 µg mL-1, demonstrates significant inhibitory effects on cancer cells while maintaining minimal cytotoxicity toward normal cells. It is envisioned that CP-HoMS could serve as an effective and biocompatible platform for the advancement of intelligent drug delivery systems in the realm of cancer therapy.
Collapse
Affiliation(s)
- Qian Xiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Lingling Shang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yang Peng
- Center of Digital Dentistry/Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Ludan Zhang
- Center of Digital Dentistry/Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yanze Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Decai Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yasong Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiawei Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yuguang Wang
- Center of Digital Dentistry/Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
21
|
Li R, Hu X, Li W, Wu W, Xu J, Lin Y, Shi S, Dong C. Nebulized pH-Responsive Nanospray Combined with Pentoxifylline and Edaravone to Lungs for Efficient Treatments of Acute Respiratory Distress Syndrome. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8310-8320. [PMID: 38343060 DOI: 10.1021/acsami.3c15691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The COVID-19 pandemic has become an unprecedented global medical emergency, resulting in more than 5 million deaths. Acute respiratory distress syndrome (ARDS) caused by COVID-19, characterized by the release of a large number of pro-inflammatory cytokines and the production of excessive toxic ROS, is the most common serious complication leading to death. To develop new strategies for treating ARDS caused by COVID-19, a mouse model of ARDS was established by using lipopolysaccharide (LPS). Subsequently, we have constructed a novel nanospray with anti-inflammatory and antioxidant capacity by loading pentoxifylline (PTX) and edaravone (Eda) on zeolite imidazolate frameworks-8 (ZIF-8). This nanospray was endowed with synergetic therapy, which could kill two birds with one stone: (1) the loaded PTX played a powerful anti-inflammatory role by inhibiting the activation of inflammatory cells and the synthesis of pro-inflammatory cytokines; (2) Eda served as a free radical scavenger in ARDS. Furthermore, compared with the traditional intravenous administration, nanosprays can be administered directly and inhaled efficiently and reduce the risk of systemic adverse reactions greatly. This nanospray could not only coload two drugs efficiently but also realize acid-responsive release on local lung tissue. Importantly, ZIF8-EP nanospray showed an excellent therapeutic effect on ARDS in vitro and in vivo, which provided a new direction for the treatment of ARDS.
Collapse
Affiliation(s)
- Ruihao Li
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Xiaochun Hu
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China
| | - Wenhui Li
- Shanghai Institute of Quality Inspection and Technical Research, Shanghai 201100, P. R. China
| | - Wenjing Wu
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Jin Xu
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Yun Lin
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Shuo Shi
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Chunyan Dong
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
22
|
Zheng B, Chen Y, Niu L, Zhang X, Yang Y, Wang S, Chen W, Cai Z, Huang W, Huang W. Modulating the tumoral SPARC content to enhance albumin-based drug delivery for cancer therapy. J Control Release 2024; 366:596-610. [PMID: 38184232 DOI: 10.1016/j.jconrel.2023.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/23/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Insufficient delivery of therapeutic agents into solid tumors by systemic administration remains a major challenge in cancer treatment. Secreted protein acidic and rich in cysteine (SPARC) has high binding affinity to albumin and has been shown to enhance the penetration and uptake of albumin-based drug carriers in tumors. Here, we developed a strategy to alter the tumor microenvironment (TME) by upregulating SPARC to enhance the delivery efficiency of albumin-based drug carriers into tumors. We prepared albumin nanoparticles encapsulating an NF-κB controllable CRISPR activation system (SP-NPs). SP-NPs achieved tumor-selective SPARC upregulation by responding to the highly activated NF-κB in tumor cells. Whereas a single dose of SP-NPs only modestly upregulated SPARC expression, serial administration of SP-NPs created a positive feedback loop that induced progressive increases in SPARC expression as well as tumor cell uptake and tumor penetration of the nanoparticles in vitro, in organoids, and in subcutaneous tumors in vivo. Additionally, pre-treatment with SP-NPs significantly enhanced the anti-tumor efficacy of Abraxane, a commercialized albumin-bound paclitaxel nanoformulation. Our data provide evidence that modulating SPARC in the TME can enhance the efficiency of albumin-based drug delivery to solid tumors, which may result in new strategies to increase the efficacy of nanoparticle-based cancer drugs.
Collapse
Affiliation(s)
- Binbin Zheng
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Yanping Chen
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China
| | - Liman Niu
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Xinyuan Zhang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China
| | - Yubin Yang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China
| | - Shanzhao Wang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China
| | - Wei Chen
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, PR China
| | - Zhiming Cai
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, PR China
| | - Wei Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Weiren Huang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, PR China.
| |
Collapse
|
23
|
Sun Y, Wu Q, Fu Q, Cong H, Shen Y, Yu B, Hu H. Reactive oxygen species-responsive polyprodrug micelles deliver cell cycle regulators for chemosensitization. Talanta 2024; 267:125242. [PMID: 37801926 DOI: 10.1016/j.talanta.2023.125242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023]
Abstract
Combination chemotherapy is a common strategy to enhance treatment efficacy and avoid multidrug resistance (MDR) in clinical practice. However, it is difficult to ensure the co-enrichment and reasonable ratio of synergistic drugs in the lesion site after intravenous administration. Integrating synergistic drugs into a nanocarrier can improve drug stability, targeting, drug loading, and importantly, ensure that synergistic drugs work at one destination. This study uses 10-hydroxycamptothecin (HCPT) to construct a polymeric prodrug micelle, and the demethylcantharidin (DMC) is proportionally encapsulated within the micelle. Triggered by reactive oxygen species (ROS), HCPT and DMC were released simultaneously from the co-delivery platform in tumor cells. DMC promotes abnormal cell division by inhibiting the synthesis of the cell cycle checkpoint kinase Protein phosphatase 2A (PP2A), leading to increased cell vulnerability to DNA damage, disordered replication, and death. The co-delivery platform exhibited satisfactory biosafety and antitumor efficacy in vivo. The proposed co-delivery platform may provide a valuable reference for the translation of clinical combination chemotherapy regimens into nano-drug delivery systems.
Collapse
Affiliation(s)
- Ying Sun
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Qimeng Wu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Quanyou Fu
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China; Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China.
| | - Hao Hu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
24
|
Wang X, Zhang M, Li Y, Cong H, Yu B, Shen Y. Research Status of Dendrimer Micelles in Tumor Therapy for Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304006. [PMID: 37635114 DOI: 10.1002/smll.202304006] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/16/2023] [Indexed: 08/29/2023]
Abstract
Dendrimers are a family of polymers with highly branched structure, well-defined composition, and extensive functional groups, which have attracted great attention in biomedical applications. Micelles formed by dendrimers are ideal nanocarriers for delivering anticancer agents due to the explicit study of their characteristics of particle size, charge, and biological properties such as toxicity, blood circulation time, biodistribution, and cellular internalization. Here, the classification, preparation, and structure of dendrimer micelles are reviewed, and the specific functional groups modified on the surface of dendrimers for tumor active targeting, stimuli-responsive drug release, reduced toxicity, and prolonged blood circulation time are discussed. In addition, their applications are summarized as various platforms for biomedical applications related to cancer therapy including drug delivery, gene transfection, nano-contrast for imaging, and combined therapy. Other applications such as tissue engineering and biosensor are also involved. Finally, the possible challenges and perspectives of dendrimer micelles for their further applications are discussed.
Collapse
Affiliation(s)
- Xijie Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of, Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
25
|
Wu Q, Hu Y, Yu B, Hu H, Xu FJ. Polysaccharide-based tumor microenvironment-responsive drug delivery systems for cancer therapy. J Control Release 2023; 362:19-43. [PMID: 37579973 DOI: 10.1016/j.jconrel.2023.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/05/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
The biochemical indicators of tumor microenvironment (TME) that are different from normal tissues provide the possibility for constructing intelligent drug delivery systems (DDSs). Polysaccharides with good biocompatibility, biodegradability, and unique biological properties are ideal materials for constructing DDSs. Nanogels, micelles, organic-inorganic nanocomposites, hydrogels, and microneedles (MNs) are common polysaccharide-based DDSs. Polysaccharide-based DDSs enable precise control of drug delivery and release processes by incorporating TME-specific biochemical indicators. The classification and design strategies of polysaccharide-based TME-responsive DDSs are comprehensively reviewed. The advantages and challenges of current polysaccharide-based DDSs are summarized and the future directions of development are foreseen. The polysaccharide-based TME-responsive DDSs are expected to provide new strategies and solutions for cancer therapy and make important contributions to the realization of precision medicine.
Collapse
Affiliation(s)
- Qimeng Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yang Hu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hao Hu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China.
| | - Fu-Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
26
|
Shaikh S, Younis M, Yingying S, Tanziela T, Yuan L. Bleomycin loaded exosomes enhanced antitumor therapeutic efficacy and reduced toxicity. Life Sci 2023; 330:121977. [PMID: 37499934 DOI: 10.1016/j.lfs.2023.121977] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Bleomycin (BLM) is a chemotherapeutic agent with potent antitumor activity against the tumor. However, lung fibrosis is the main drawback that limits BLM use. Tumor targeted, safe, efficient and natural delivery of BLM is important to increase the effectiveness and reduce the toxic side effects. Although tumor derived Exosomes (Exo), provide a potential vehicle for in vivo drug delivery due to their cell tropism. This study primarily focuses on generating a natural delivery platform for Exo loaded with BLM and testing its therapeutic efficacy against cancer. METHODS Exosomes were isolated from cancer cells and incubated with BLM. Exo were characterized by transmission electron microscopy, western blot analysis and nanoparticle tracking analysis. We performed in vitro and in vivo analyses to evaluate the effect of Exo-BLM. RESULTS Exosomes loaded with BLM are highly cancer targeting and cause the cytotoxicity of tumor cells by ROS. The fluorescence images showed that Exo-BLM accumulated in cancer cells. The results revealed that Exo-BLM induces tumor cell apoptosis by the caspase pathway. In vivo, the treatment of Exo-BLM showed targeted ability and enhanced the antitumor activity. CONCLUSION This study provides an avenue for specific BLM therapeutics with minimal side effects.
Collapse
Affiliation(s)
- Sana Shaikh
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Muhammad Younis
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Center for Inflammation, Immunity & Infection, Georgia State University, Institute for Biomedical Sciences, Atlanta, GA, USA
| | - Shao Yingying
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Tanziela Tanziela
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Liudi Yuan
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
27
|
Guo Y, Gao F, Ahmed A, Rafiq M, Yu B, Cong H, Shen Y. Immunotherapy: cancer immunotherapy and its combination with nanomaterials and other therapies. J Mater Chem B 2023; 11:8586-8604. [PMID: 37614168 DOI: 10.1039/d3tb01358h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Immunotherapy is a new type of tumor treatment after surgery, radiotherapy and chemotherapy, and can be used to manage and destroy tumor cells through activating or strengthening the immune response. Immunotherapy has the benefits of a low recurrence rate and high specificity compared to traditional treatment methods. Immunotherapy has developed rapidly in recent years and has become a research hotspot. Currently, chimeric antigen receptor T-cell immunotherapy and immune checkpoint inhibitors are the most effective tumor immunotherapies in clinical practice. While tumor immunotherapy brings hope to patients, it also faces some challenges and still requires continuous research and progress. Combination therapy is the future direction of anti-tumor treatment. In this review, the main focus is on an overview of the research progress of immune checkpoint inhibitors, cellular therapies, tumor vaccines, small molecule inhibitors and oncolytic virotherapy in tumor treatment, as well as the combination of immunotherapy with other treatments.
Collapse
Affiliation(s)
- Yuanyuan Guo
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Fengyuan Gao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Adeel Ahmed
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Muhammad Rafiq
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
28
|
Qi Y, Ren S, Ye J, Bi S, Shi L, Fang Y, Wang G, Finfrock YZ, Li J, Che Y, Ning G. Copper-Single-Atom Coordinated Nanotherapeutics for Enhanced Sonothermal-Parallel Catalytic Synergistic Cancer Therapy. Adv Healthc Mater 2023; 12:e2300291. [PMID: 37157943 DOI: 10.1002/adhm.202300291] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Phototherapy and sonotherapy are recognized by scientific medicine as effective strategies for treating certain cancers. However, these strategies have limitations such as an inability to penetrate deeper tissues and overcome the antioxidant tumor microenvironment. In this study, a novel "BH" interfacial-confined coordination strategy to synthesize hyaluronic acid-functionalized single copper atoms dispersed over boron imidazolate framework-derived nanocubes (HA-NC_Cu) to achieve sonothermal-catalytic synergistic therapy is reported. Notably, HA-NC_Cu demonstrates exceptional sonothermal conversion performance under low-intensity ultrasound irradiation, attained through intermolecular lattice vibrations. In addition, it shows promise as an efficient biocatalyst, able to generate high-toxicity hydroxyl radicals in response to tumor-endogenous hydrogen peroxide and glutathione. Density functional theory calculations reveal that the superior parallel catalytic performance of HA-NC_Cu originates from the CuN4 C/B active sites. Both in vitro and in vivo evaluations consistently demonstrate that the sonothermal-catalytic synergistic strategy significantly improves tumor inhibition rate (86.9%) and long-term survival rate (100%). In combination with low-intensity ultrasound irradiation, HA-NC_Cu triggers a dual death pathway of apoptosis and ferroptosis in MDA-MB-231 breast cancer cells, comprehensively limiting primary triple-negative breast cancer. This study highlights the applications of single-atom-coordinated nanotherapeutics in sonothermal-catalytic synergistic therapy, which may create new opportunities in biomedical research.
Collapse
Affiliation(s)
- Ye Qi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Shuangsong Ren
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, 193 Lianhe Road, Dalian, Liaoning, 116011, P. R. China
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Shengnan Bi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Lei Shi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Yueguang Fang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Guangyao Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Y Zou Finfrock
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Jun Li
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ying Che
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, 193 Lianhe Road, Dalian, Liaoning, 116011, P. R. China
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| |
Collapse
|
29
|
He S, Jia X, Feng S, Hu J. Three Strategies in Engineering Nanomedicines for Tumor Microenvironment-Enabled Phototherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300078. [PMID: 37226364 DOI: 10.1002/smll.202300078] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/29/2023] [Indexed: 05/26/2023]
Abstract
Canonical phototherapeutics have several limitations, including a lack of tumor selectivity, nondiscriminatory phototoxicity, and tumor hypoxia aggravation. The tumor microenvironment (TME) is characterized by hypoxia, acidic pH, and high levels of H2 O2 , GSH, and proteases. To overcome the shortcomings of canonical phototherapy and achieve optimal theranostic effects with minimal side effects, unique TME characteristics are employed in the development of phototherapeutic nanomedicines. In this review, the effectiveness of three strategies for developing advanced phototherapeutics based on various TME characteristics is examined. The first strategy involves targeted delivery of phototherapeutics to tumors with the assistance of TME-induced nanoparticle disassembly or surface modification. The second strategy involves near-infrared absorption increase-induced phototherapy activation triggered by TME factors. The third strategy involves enhancing therapeutic efficacy by ameliorating TME. The functionalities, working principles, and significance of the three strategies for various applications are highlighted. Finally, possible challenges and future perspectives for further development are discussed.
Collapse
Affiliation(s)
- Shiliang He
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xiao Jia
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Sai Feng
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
- Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
30
|
Lin X, Li F, Guan J, Wang X, Yao C, Zeng Y, Liu X. Janus Silica Nanoparticle-Based Tumor Microenvironment Modulator for Restoring Tumor Sensitivity to Programmed Cell Death Ligand 1 Immune Checkpoint Blockade Therapy. ACS NANO 2023; 17:14494-14507. [PMID: 37485850 DOI: 10.1021/acsnano.3c01019] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
An immunosuppressive tumor microenvironment (TME) with inadequate and exhausted tumor-infiltrating cytotoxic lymphocytes and abundant cellular immunosuppressors is the major obstacle responsible for the poor efficacy of PD-1/PD-L1 (programmed cell death 1 and its ligand 1) immune checkpoint blockade (ICB) therapy. Herein, a Janus silica nanoparticle (JSNP)-based immunomodulator is explored to reshape the TME for boosting the therapeutic outcomes of αPD-L1 therapy. The designed JSNP has two distinct domains, namely, an ultra pH-responsive side (UPS), which could encapsulate PI3Kγ inhibitor IPI549 in the pore structure, and a polycation-grafted intra-glutathione (GSH)-sensitive side (IGS), which could absorb CXCL9 cDNA on the surface. The final IPI549@UPS-IGS-PDMAEMA@CXCL9 cDNA (IUIPC) could release IPI549 in weak acid TME to target myeloid-derived suppressor cells (MDSCs) to reverse negative immunoregulation and then release CXCL9 cDNA in tumor cells with abundant GSH for sustained CXCL9 chemokine expression and secretion to improve cytotoxic lymphocyte recruitment signals, thereby jointly restoring tumor sensitivity to PD-1/PD-L1 ICB therapy. As expected, the IUIPC-mediated TME remodeling during αPD-L1 therapy significantly ameliorated TME immunosuppression, as well as induced potent systemic antitumor immune responses, which ultimately achieved a robustly boosted antitumor efficacy proven by remarkable suppression of primary tumor growth, obvious prevention of tumor recurrence, and significant regression of abscopal tumors. Hence, the IUIPC-mediated TME-regulating strategy provides an enormous perspective for the improvement of PD-1/PD-L1 ICB therapy.
Collapse
Affiliation(s)
- Xinyi Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Feida Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Jianhua Guan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xiaoyan Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| |
Collapse
|
31
|
Sun Z, Ren M, Shan B, Yang Q, Zhao Z, Liu X, Yin L. One-pot synthesis of dynamically cross-linked polymers for serum-resistant nucleic acid delivery. Biomater Sci 2023; 11:5653-5662. [PMID: 37431292 DOI: 10.1039/d3bm00685a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Cationic polymers used for nucleic acid delivery often suffer from complicated syntheses, undesired intracellular cargo release and low serum stability. Herein, a series of ternary polymers were synthesized via facile green chemistry to achieve efficient plasmid DNA and mRNA delivery in serum. During the one-pot synthesis of the ternary polymer, acetylphenylboric acid (APBA), polyphenol and low-molecular weight polyethyleneimine (PEI 1.8k) were dynamically cross-linked with each other due to formation of an imine between PEI 1.8k and APBA and formation of a boronate ester between APBA and polyphenol. Series of polyphenols, including ellagic acid (EA), epigallocatechin gallate (EGCG), nordihydroguaiaretic acid (NDGA), rutin (RT) and rosmarinic acid (RA), and APBA molecules, including 2-acetylphenylboric acid (2-APBA), 3-acetylphenylboric acid (3-APBA) and 4-acetylphenylboric acid (4-APBA), were screened and the best-performing ternary polymer, 2-PEI-RT, constructed from RT and 2-APBA, was identified. The ternary polymer featured efficient DNA condensation to favor cellular internalization, and the acidic environment in endolysosomes triggered effective degradation of the polymer to promote cargo release. Thus, 2-PEI-RT showed robust plasmid DNA transfection efficiencies in various tumor cells in serum, outperforming the commercial reagent PEI 25k by 1-3 orders of magnitude. Moreover, 2-PEI-RT mediated efficient cytosolic delivery of Cas9-mRNA/sgRNA to enable pronounced CRISPR-Cas9 genome editing in vitro. Such a facile and robust platform holds great potential for non-viral nucleic acid delivery and gene therapy.
Collapse
Affiliation(s)
- Zhisong Sun
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Mengyao Ren
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Bingchen Shan
- Department of Orthopaedics, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| | - Qiang Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Ziyin Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Xun Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou215004, China.
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| |
Collapse
|
32
|
Huang W, Yao F, Tian S, Liu M, Liu G, Jiang Y. Recent Advances in Zein-Based Nanocarriers for Precise Cancer Therapy. Pharmaceutics 2023; 15:1820. [PMID: 37514006 PMCID: PMC10384823 DOI: 10.3390/pharmaceutics15071820] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer has emerged as a leading cause of death worldwide. However, the pursuit of precise cancer therapy and high-efficiency delivery of antitumor drugs remains an enormous obstacle. The major challenge is the lack of a smart drug delivery system with the advantages of biodegradability, biocompatibility, stability, targeting and response release. Zein, a plant-based protein, possesses a unique self-assembly ability to encapsulate anticancer drugs directly or indirectly. Using zein as a nanotherapeutic pharmaceutic preparation can protect anticancer drugs from harsh environments, such as sunlight, stomach acid and pepsin. Moreover, the surface functionalization of zein is easily realized, which can endow it with targeting and stimulus-responsive release capacity. Hence, zein is an ideal nanocarrier for the precise delivery of anticancer drugs. Combined with our previous research experiences, we attempt to review the current state of the preparation of zein-based nanocarriers for anticancer drug delivery. The challenges, solutions and development trends of zein-based nanocarriers for precise cancer therapy are discussed. This review will provide a guideline for precise cancer therapy in the future.
Collapse
Affiliation(s)
- Wenquan Huang
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Fei Yao
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Shuangyan Tian
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Mohao Liu
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Guijin Liu
- School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Yanbin Jiang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
33
|
Zhou M, Yao Y, Ma S, Zou M, Chen Y, Cai S, Zhao F, Wu H, Xiao F, Abudushalamu G, Fan X, Wu G. Dual-targeted and dual-sensitive self-assembled protein nanocarrier delivering hVEGI-192 for triple-negative breast cancer. Int J Biol Macromol 2023:125475. [PMID: 37353129 DOI: 10.1016/j.ijbiomac.2023.125475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
Breast cancer is a highly prevalent malignancy worldwide among women with an increasing incidence in recent years. Triple-negative breast cancer (TNBC), a specific type of breast cancer, occurs primarily in young women and exhibits large tumor size, high clinical stage, and extremely poor prognosis with a high rate of lymph node, liver, and lung metastases. TNBC is insensitive to endocrine therapy and trastuzumab treatment, and there is an urgent need for effective therapeutics and treatment guidelines. However, investigations into antiangiogenic agents for the treatment of TNBC are ongoing. In this study, we successfully engineered a self-assembled protein nanocarrier TfRBP9-hVEGI-192-ELP fusion protein (TVEFP) to deliver the therapeutic protein, human vascular endothelial growth inhibitor (hVEGI-192). This was found to be effective in inhibiting tumor angiogenesis in vivo. The protein nanocarrier effectively inhibited the progression of TNBC in vivo and showed the behavior of self-assembly, thermoresponsiveness, enzyme stimulation-responsiveness, tumor-targeting, biocompatibility, and biodegradability. Near-infrared imaging studies showed that fluorescent dye-stained TVEFP effectively aggregated at the tumor site. The TVEFP nanocarrier significantly expands the application of the therapeutic protein hVEGI-192 and improves the imaging and biotherapeutic effects in TNBC, chiefly based on anti-angiogenesis effects.
Collapse
Affiliation(s)
- Meiling Zhou
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yuming Yao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Shuo Ma
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Mingyuan Zou
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yaya Chen
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Shijie Cai
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Fengfeng Zhao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Huina Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Feng Xiao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - GuliNazhaer Abudushalamu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Xiaobo Fan
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China.
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Laboratory Medcine, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
34
|
Verkhovskii RA, Ivanov AN, Lengert EV, Tulyakova KA, Shilyagina NY, Ermakov AV. Current Principles, Challenges, and New Metrics in pH-Responsive Drug Delivery Systems for Systemic Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15051566. [PMID: 37242807 DOI: 10.3390/pharmaceutics15051566] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
The paradigm of drug delivery via particulate formulations is one of the leading ideas that enable overcoming limitations of traditional chemotherapeutic agents. The trend toward more complex multifunctional drug carriers is well-traced in the literature. Nowadays, the prospectiveness of stimuli-responsive systems capable of controlled cargo release in the lesion nidus is widely accepted. Both endogenous and exogenous stimuli are employed for this purpose; however, endogenous pH is the most common trigger. Unfortunately, scientists encounter multiple challenges on the way to the implementation of this idea related to the vehicles' accumulation in off-target tissues, their immunogenicity, the complexity of drug delivery to intracellular targets, and finally, the difficulties in the fabrication of carriers matching all imposed requirements. Here, we discuss fundamental strategies for pH-responsive drug delivery, as well as limitations related to such carriers' application, and reveal the main problems, weaknesses, and reasons for poor clinical results. Moreover, we attempted to formulate the profiles of an "ideal" drug carrier in the frame of different strategies drawing on the example of metal-comprising materials and considered recently published studies through the lens of these profiles. We believe that this approach will facilitate the formulation of the main challenges facing researchers and the identification of the most promising trends in technology development.
Collapse
Affiliation(s)
- Roman A Verkhovskii
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia
| | - Alexey N Ivanov
- Central Research Laboratory, Saratov State Medical University of V. I. Razumovsky, Ministry of Health of the Russian Federation, 410012 Saratov, Russia
| | - Ekaterina V Lengert
- Central Research Laboratory, Saratov State Medical University of V. I. Razumovsky, Ministry of Health of the Russian Federation, 410012 Saratov, Russia
- Institute of Molecular Theranostics, I. M. Sechenov First Moscow State Medical University, 8 Trubetskaya Str., 119991 Moscow, Russia
| | - Ksenia A Tulyakova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Natalia Yu Shilyagina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Alexey V Ermakov
- Central Research Laboratory, Saratov State Medical University of V. I. Razumovsky, Ministry of Health of the Russian Federation, 410012 Saratov, Russia
- Institute of Molecular Theranostics, I. M. Sechenov First Moscow State Medical University, 8 Trubetskaya Str., 119991 Moscow, Russia
| |
Collapse
|
35
|
Zhang R, Nie T, Wang L, He D, Kang Y, Zhang C, Wu J. Facile synthesis of poly(disulfide)s through one-step oxidation polymerization for redox-responsive drug delivery. Biomater Sci 2023. [PMID: 37144301 DOI: 10.1039/d3bm00461a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Poly(disulfide)s-based systems with repetitive disulfide bonds in their backbones are emerging as promising tumor microenvironment responsive platforms for drug delivery. However, complicated synthesis and purification processes have restricted their further application. Herein, we developed redox-responsive poly(disulfide)s (PBDBM) by one-step oxidation polymerization of a commercially available monomer, 1,4-butanediol bis(thioglycolate) (BDBM). PBDBM can self-assemble with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol)3400 (DSPE-PEG3.4k) by the nanoprecipitation method and be formulated into PBDBM NPs (sub 100 nm). It can also be loaded with docetaxel (DTX), a first-line chemotherapy agent for breast cancer, to form DTX@PBDBM NPs with a loading capacity of 6.13%. DTX@PBDBM NPs with favorable size stability and redox-responsive capability exhibit superior antitumor activity in vitro. In addition, owing to the different glutathione (GSH) levels in normal and tumor cells, PBDBM NPs with disulfide bonds could synergistically increase intracellular ROS levels, further inducing apoptosis and cell cycle arrest in the G2/M phase. Moreover, in vivo studies revealed that PBDBM NPs could accumulate in tumors, suppress 4T1 tumor growth, and significantly attenuate the systemic toxicity of DTX. Thus, a novel redox-responsive poly(disulfide)s nanocarrier was successfully and facilely developed for cancer drug delivery and effective breast cancer therapy.
Collapse
Affiliation(s)
- Ruhe Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Tianqi Nie
- Guangzhou Twelfth People's Hospital, Guangzhou 510620, China
| | - Liying Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Danni He
- Department of Medical Ultrasonics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yang Kang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Chao Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, China.
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
36
|
Yang M, Zhang C, Wang R, Wu X, Li H, Yoon J. Cancer Immunotherapy Elicited by Immunogenic Cell Death Based on Smart Nanomaterials. SMALL METHODS 2023; 7:e2201381. [PMID: 36609838 DOI: 10.1002/smtd.202201381] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/13/2022] [Indexed: 05/17/2023]
Abstract
Cancer immunotherapy has been a revolutionary cancer treatment modality because it can not only eliminate primary tumors but also prevent metastases and recurrent tumors. Immunogenic cell death (ICD) induced by various treatment modalities, including chemotherapy, phototherapy, and radiotherapy, converts dead cancer cells into therapeutic vaccines, eliciting a systemic antigen-specific antitumor. However, the outcome effect of cancer immunotherapy induced by ICD has been limited due to the low accumulation efficiency of ICD inducers in the tumor site and concomitant damage to normal tissues. The boom in smart nanomaterials is conducive to overcoming these hurdles owing to their virtues of good stability, targeted lesion site, high bioavailability, on-demand release, and good biocompatibility. Herein, the design of targeted nanomaterials, various ICD inducers, and the applications of nanomaterials responsive to different stimuli, including pH, enzymes, reactive oxygen species, or dual responses are summarized. Furthermore, the prospect and challenges are briefly outlined to provide reference and inspiration for designing novel smart nanomaterials for immunotherapy induced by ICD.
Collapse
Affiliation(s)
- Mengyao Yang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Cheng Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Rui Wang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Xiaofeng Wu
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
37
|
Liu X, Zhao Z, Sun X, Wang J, Yi W, Wang D, Li Y. Blocking Cholesterol Metabolism with Tumor-Penetrable Nanovesicles to Improve Photodynamic Cancer Immunotherapy. SMALL METHODS 2023; 7:e2200898. [PMID: 36307388 DOI: 10.1002/smtd.202200898] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/23/2022] [Indexed: 05/17/2023]
Abstract
Photodynamic therapy (PDT)-mediated cancer immunotherapy is attenuated due to the dysfunction of T cells in immunosuppressive tumor microenvironment (TME). Cholesterol metabolism plays a vital role in T cell signaling and effector. While the metabolic fitness of tumor infiltrating CD8+ T cells is impaired by nutrition restriction in TME and accumulated metabolites by tumor cells. Here a matrix metalloproteinase-2-sensitive tumor-penetrable nanovesicle is designed to regulate cholesterol metabolism pathway for enhancing photodynamic cancer immunotherapy. The nanovesicles accumulate in tumor and release internalizing RGD to promote deep penetration. Released avasimibe from the nanovesicles simultaneously blocks cholesterol metabolism in CD8+ T and tumor cells, thus reinvigorating the functions of T cells and suppressing the migration of tumor cells. Immune responses induced by PDT-triggered immunogenic cell death are further improved with cholesterol metabolism blockage. Compared with PDT alone, the designed nanovesicles display enhanced tumor growth inhibition in B16-F10 mouse tumor model. The approach provides an alternative strategy to improve photodynamic cancer immunotherapy by cholesterol metabolism intervention.
Collapse
Affiliation(s)
- Xiaochen Liu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zitong Zhao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiangshi Sun
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jue Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenzhe Yi
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dangge Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Shandong, 264000, China
| |
Collapse
|
38
|
Jiang S, Chen X, Lin J, Huang P. Lactate-Oxidase-Instructed Cancer Diagnosis and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207951. [PMID: 36353879 DOI: 10.1002/adma.202207951] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/15/2022] [Indexed: 05/12/2023]
Abstract
Lactate oxidase (LOx) has attracted extensive interest in cancer diagnosis and therapy in recent years owing to its specific catalysis on l-lactate; its catalytic process consumes oxygen (O2 ) and generates a large amount of hydrogen peroxide (H2 O2 ) and pyruvate. Given high levels of lactate in tumor tissues and its tight correlation with tumor growth, metastasis, and recurrence, LOx-based biosensors including H2 O2 -based, O2 -based, pH-sensitive, and electrochemical have been designed for cancer diagnosis, and various LOx-based cancer therapy strategies including lactate-depletion-based metabolic cancer therapy/immunotherapy, hypoxia-activated chemotherapy, H2 O2 -based chemodynamic therapy, and multimodal synergistic cancer therapy have also been developed. In this review, the lactate-specific catalytic properties of LOx are introduced, and the recent advances on LOx-instructed cancer diagnostic or therapeutic platforms and corresponding biological applications are summarized. Additionally, the challenges and potential of LOx-based nanomedicines are highlighted.
Collapse
Affiliation(s)
- Shanshan Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Xin Chen
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| |
Collapse
|
39
|
Heidari Nia M, Ashkar S, Munguia-Lopez JG, Kinsella J, van de Ven TGM. Hairy Nanocellulose-Based Supramolecular Architectures for Sustained Drug Release. Biomacromolecules 2023; 24:2100-2117. [PMID: 37068101 DOI: 10.1021/acs.biomac.2c01514] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The engineering of a new type of trifunctional biopolymer-based nanosponges polymerized by cross-linking beta-cyclodextrin ethylene diamine (βCD-EDA) with bifunctional hairy nanocellulose (BHNC) is reported herein. We refer to the highly cross-linked polymerized BHNC-βCD-EDA network as BBE. βCD-EDA and BHNC were cross-linked at various ratios with the help of DMTMM (4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium) as a green activator in deionized water as a solvent, which resulted in different morphological shapes of BBE. Some of these structures were chiral due to cross-linked liquid crystalline structures. A comprehensive characterization study was done to show their unique morphological, structural, and dimensional properties of BBEs. Moreover, to further investigate and to confirm the surface modification of the precursors and final BBE structures, Fourier transform infrared and nuclear magnetic resonance spectroscopy, thermogravimetric analysis, Brunauer-Emmett-Teller analysis, and X-ray diffraction were applied. The hairy nanocellulose particles were considered as the backbone, and the immobilized cyclodextrin cavities can capture doxorubicin, which was used as a model drug molecule via host-guest inclusion complexation. Finally, the obtained BBE networks showed different and sustained drug release profiles and pH responsiveness. BBE biopolymers were tested as biocompatible nanocarriers for controlled release. We realize that these structures are too big for anti-cancer drug delivery by injection or oral intake, but these structures have a high potential to be applied in wound dressing and implants. They could also be used for capturing antibiotics, dyes, and organic compounds from wastewater.
Collapse
Affiliation(s)
- Marzieh Heidari Nia
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, Quebec H3A 2A7, Canada
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Said Ashkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, Quebec H3A 2A7, Canada
| | - Jose Gil Munguia-Lopez
- Faculty of Dentistry, McGill University, 3640 University Street, Montreal, Quebec H3A 0C7, Canada
- Department of Bioengineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9, Canada
| | - Joseph Kinsella
- Department of Bioengineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9, Canada
| | - Theo G M van de Ven
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, Quebec H3A 2A7, Canada
| |
Collapse
|
40
|
Guan X, Zhang L, Lai S, Zhang J, Wei J, Wang K, Zhang W, Li C, Tong J, Lei Z. Green synthesis of glyco-CuInS 2 QDs with visible/NIR dual emission for 3D multicellular tumor spheroid and in vivo imaging. J Nanobiotechnology 2023; 21:118. [PMID: 37005641 PMCID: PMC10067196 DOI: 10.1186/s12951-023-01859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/15/2023] [Indexed: 04/04/2023] Open
Abstract
Glyco-quantum dots (glyco-QDs) have attracted significant interest in bioimaging applications, notably in cancer imaging, because they effectively combine the glycocluster effect with the exceptional optical properties of QDs. The key challenge now lies in how to eliminate the high heavy metal toxicity originating from traditional toxic Cd-based QDs for in vivo bioimaging. Herein, we report an eco-friendly pathway to prepare nontoxic Cd-free glyco-QDs in water by the "direct" reaction of thiol-ending monosaccharides with metal salts precursors. The formation of glyco-CuInS2 QDs could be explained by a nucleation-growth mechanism following the LaMer model. As-prepared four glyco-CuInS2 QDs were water-soluble, monodispersed, spherical in shape and exhibited size range of 3.0-4.0 nm. They exhibited well-separated dual emission in the visible region (500-590 nm) and near-infrared range (~ 827 nm), which may be attributable to visible excitonic emission and near-infrared surface defect emission. Meanwhile, the cell imaging displayed the reversibly distinct dual-color (green and red) fluorescence in tumor cells (HeLa, A549, MKN-45) and excellent membrane-targeting properties of glyco-CuInS2 QDs based on their good biorecognition ability. Importantly, these QDs succeed in penetrating uniformly into the interior (the necrotic zone) of 3D multicellular tumor spheroids (MCTS) due to their high negative charge (zeta potential values ranging from - 23.9 to - 30.1 mV), which overcame the problem of poor penetration depth of existing QDs in in vitro spheroid models. So, confocal analysis confirmed their excellent ability to penetrate and label tumors. Thus, the successful application in in vivo bioimaging of these glyco-QDs verified that this design strategy is an effective, low cost and simple procedure for developing green nanoparticles as cheap and promising fluorescent bioprobes.
Collapse
Affiliation(s)
- Xiaolin Guan
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China.
| | - Liyuan Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Shoujun Lai
- College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Jiaming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Jingyu Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Kang Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Wentao Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Chenghao Li
- Key Laboratory of Traditional Chinese Medicine Prevention and Treatment, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Jinhui Tong
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Ziqiang Lei
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| |
Collapse
|
41
|
Yu R, Geng T, Wei T, Wang M, Cao Y, Du M, He W, Haleem A, Hu R, Cao Y, Chen S. Membrane-disruptive homo-polymethacrylate with both hydrophobicity and pH-sensitive protonation for selective cancer therapy. J Mater Chem B 2023; 11:3364-3372. [PMID: 36883988 DOI: 10.1039/d2tb02749f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The membrane-disruptive strategy, which involves host defense peptides and their mimetics, is a revolutionary cancer treatment based on broad-spectrum anticancer activities. However, clinical application is limited by low selectivity towards tumors. In this context, we have established a highly selective anticancer polymer, i.e. poly(ethylene glycol)-poly(2-azepane ethyl methacrylate) (PEG-PAEMA), that can mediate the membrane-disruptive activity via a subtle pH change between physiological pH and tumor acidity for selective cancer treatment. Specifically, the resulting PEG-PAEMA can assemble into neutral nanoparticles and silence the membrane-disruptive activity at physiological pH and disassemble into cationic free-chains or smaller nanoparticles with potent membrane-disruptive activity after the protonation of the PAEMA block due to tumor acidity, resulting in high selectivity towards tumors. Dramatically, PEG-PAEMA exhibited a >200-fold amplification in hemolysis and <5% in IC50 against Hepa1-6, SKOV3 and CT-26 cells at pH 6.7 as compared to those at pH 7.4, thanks to the selective membrane-disruptive mechanism. Moreover, mid- and high-dose PEG-PAEMA demonstrated higher anticancer efficacy than an optimal clinical prescription (bevacizumab plus PD-1) and, significantly, had few side effects on major organs in the tumor-bearing mice model, agreeing with the highly selective membrane-disruptive activity in vivo. Collectively, this work showcases the latent anticancer pharmacological activity of the PAEMA block, and also brings new hope for selective cancer therapy.
Collapse
Affiliation(s)
- Rongrong Yu
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application; Key Laboratory of Xin'an Medicine, the Ministry of Education; Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.
| | - Tingting Geng
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application; Key Laboratory of Xin'an Medicine, the Ministry of Education; Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.
| | - Taotian Wei
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application; Key Laboratory of Xin'an Medicine, the Ministry of Education; Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.
| | - Meng Wang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application; Key Laboratory of Xin'an Medicine, the Ministry of Education; Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.
| | - Yin Cao
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application; Key Laboratory of Xin'an Medicine, the Ministry of Education; Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.
| | - Mengting Du
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application; Key Laboratory of Xin'an Medicine, the Ministry of Education; Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.
| | - Weidong He
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Abdul Haleem
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Rongfeng Hu
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application; Key Laboratory of Xin'an Medicine, the Ministry of Education; Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.
| | - Yu Cao
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application; Key Laboratory of Xin'an Medicine, the Ministry of Education; Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.
| | - Shengqi Chen
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application; Key Laboratory of Xin'an Medicine, the Ministry of Education; Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.
| |
Collapse
|
42
|
Zhang Q, Kuang G, Li W, Wang J, Ren H, Zhao Y. Stimuli-Responsive Gene Delivery Nanocarriers for Cancer Therapy. NANO-MICRO LETTERS 2023; 15:44. [PMID: 36752939 PMCID: PMC9908819 DOI: 10.1007/s40820-023-01018-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Gene therapy provides a promising approach in treating cancers with high efficacy and selectivity and few adverse effects. Currently, the development of functional vectors with safety and effectiveness is the intense focus for improving the delivery of nucleic acid drugs for gene therapy. For this purpose, stimuli-responsive nanocarriers displayed strong potential in improving the overall efficiencies of gene therapy and reducing adverse effects via effective protection, prolonged blood circulation, specific tumor accumulation, and controlled release profile of nucleic acid drugs. Besides, synergistic therapy could be achieved when combined with other therapeutic regimens. This review summarizes recent advances in various stimuli-responsive nanocarriers for gene delivery. Particularly, the nanocarriers responding to endogenous stimuli including pH, reactive oxygen species, glutathione, and enzyme, etc., and exogenous stimuli including light, thermo, ultrasound, magnetic field, etc., are introduced. Finally, the future challenges and prospects of stimuli-responsive gene delivery nanocarriers toward potential clinical translation are well discussed. The major objective of this review is to present the biomedical potential of stimuli-responsive gene delivery nanocarriers for cancer therapy and provide guidance for developing novel nanoplatforms that are clinically applicable.
Collapse
Affiliation(s)
- Qingfei Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Gaizhen Kuang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Wenzhao Li
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Yuanjin Zhao
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China.
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
43
|
Li G, Wu S, Chen W, Duan X, Sun X, Li S, Mai Z, Wu W, Zeng G, Liu H, Chen T. Designing Intelligent Nanomaterials to Achieve Highly Sensitive Diagnoses and Multimodality Therapy of Bladder Cancer. SMALL METHODS 2023; 7:e2201313. [PMID: 36599700 DOI: 10.1002/smtd.202201313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Bladder cancer (BC) is among the most common malignant tumors of the genitourinary system worldwide. In recent years, the rate of BC incidence has increased, and the recurrence rate is high, resulting in poor quality of life for patients. Therefore, how to develop an effective method to achieve synchronous precise diagnoses and BC therapies is a difficult problem to solve clinically. Previous reports usually focus on the role of nanomaterials as drug delivery carriers, while a summary of the functional design and application of nanomaterials is lacking. Summarizing the application of functional nanomaterials in high-sensitivity diagnosis and multimodality therapy of BC is urgently needed. This review summarizes the application of nanotechnology in BC diagnosis, including the application of nanotechnology in the sensoring of BC biomarkers and their role in monitoring BC. In addition, conventional and combination therapies strategy in potential BC therapy are analyzed. Moreover, different kinds of nanomaterials in BC multimodal therapy according to pathological features of BC are also outlined. The goal of this review is to present an overview of the application of nanomaterials in the theranostics of BC to provide guidance for the application of functional nanomaterials to precisely diagnose and treat BC.
Collapse
Affiliation(s)
- Guanlin Li
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Sicheng Wu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Wenzhe Chen
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xiaolu Duan
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xinyuan Sun
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Shujue Li
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Zanlin Mai
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Wenzheng Wu
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Guohua Zeng
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Hongxing Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510631, P. R. China
| | - Tianfeng Chen
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510631, P. R. China
| |
Collapse
|
44
|
Tian J, Chen T, Huang B, Liu Y, Wang C, Cui Z, Xu H, Li Q, Zhang W, Liang Q. Inflammation specific environment activated methotrexate-loaded nanomedicine to treat rheumatoid arthritis by immune environment reconstruction. Acta Biomater 2023; 157:367-380. [PMID: 36513249 DOI: 10.1016/j.actbio.2022.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis (RA), as an autoimmune inflammatory disease, is featured by enhanced vascular permeability, irreversible cartilage destroys and bone erosion. Although the pathogenesis of RA is still unclear, the immune environment, particularly the lymphatic system, which is instrumental to immune cell surveillance and interstitial fluid balance, plays vital roles in the process of RA. Herein, an inflammation specific environment activated methotrexate-encapsulated nanomedicine (MTX@NPs) was constructed for RA treatment, which accumulated in inflamed joints, and released MTX in the specific RA microenvironment. Notably, MTX@NPs could regulate the immune environment including reducing the expressions of inflammatory cytokines of macrophages and the inflammatory level of lymphatic epithelial cells (LECs), and ameliorating the lymphatic vessel contraction and drainage. In vitro and In vivo studies illustrated that MTX@NPs exhibited a high RA therapeutic efficacy and insignificant systemic toxicity owing to the suppression of the inflammation response and the improved lymphatic functions of RA joints. It suggests that the nanomedicine paves a potential way to the clinical practice of autoimmune diseases treatments via the regulation of immune environment and lymphatic functions. STATEMENT OF SIGNIFICANCE: Although 1.0% of the population in the world suffers from rheumatoid arthritis (RA), the pathogenesis of RA is still unclear and the therapeutic effect of the first-line clinical drugs is relatively low. Herein, we propose a specific RA-microenvironment triggered nanomedicine (MTX@NPs), which enhances RA treatment of a first-line antirheumatic drug (methotrexate, MTX) by immune environment reconstruction. The nanomedicine exhibits RA joints accumulation by EPR effect, and releases MTX under the specific RA environment, leading to the dramatical drop of M1-type macrophages and acceleration of lymphatic vessel contraction and drainage. Finally, the inflammatory cytokines in RA immune environment are reduced sharply, indicating the outstanding therapeutic efficacy of MTX@NPs to RA.
Collapse
Affiliation(s)
- Jia Tian
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Tao Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Jing'an District Center Hospital of Shanghai, Fudan University, Shanghai 200040, China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yang Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai 201203, China
| | - Chao Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zepeng Cui
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai 201203, China
| | - Qiang Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai 201203, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
45
|
Zhang M, Ma H, Wang X, Yu B, Cong H, Shen Y. Polysaccharide-based nanocarriers for efficient transvascular drug delivery. J Control Release 2023; 354:167-187. [PMID: 36581260 DOI: 10.1016/j.jconrel.2022.12.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
Polysaccharide-based nanocarriers (PBNs) are the focus of extensive investigation because of their biocompatibility, low cost, wide availability, and chemical versatility, which allow a wide range of anticancer agents to be loaded within the nanocarriers. Similar to other nanocarriers, most PBNs are designed to extravasate out of tumor vessels, depending on the enhanced permeability and retention (EPR) effect. However, the EPR effect is compromised in some tumors due to the heterogeneity of tumor structures. Transvascular transport efficacy is decreased by complex blood vessels and condensed tumor stroma. The limited extravasation impedes efficient drug delivery into tumor parenchyma, and thus affects the subsequent tumor accumulation, which hinders the therapeutic effect of PBNs. Therefore, overcoming the biological barriers that restrict extravasation from tumor vessels is of great importance in PBN design. Many strategies have been developed to enhance the EPR effect that involve nanocarrier property regulation and tumor structure remodeling. Moreover, some researchers have proposed active transcytosis pathways that are complementary to the paracellular EPR effect to increase the transvascular extravasation efficiency of PBNs. In this review, we summarize the recent advances in the design of PBNs with enhanced transvascular transport to enable optimization of PBNs in the extravasation of the drug delivery process. We also discuss the obstacles and challenges that need to be addressed to clarify the transendothemial mechanism of PBNs and the potential interactions between extravasation and other drug delivery steps.
Collapse
Affiliation(s)
- Min Zhang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - He Ma
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Xijie Wang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
46
|
Jiang X, Du Z, Zhang X, Zaman F, Song Z, Guan Y, Yu T, Huang Y. Gelatin-based anticancer drug delivery nanosystems: A mini review. Front Bioeng Biotechnol 2023; 11:1158749. [PMID: 37025360 PMCID: PMC10070861 DOI: 10.3389/fbioe.2023.1158749] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
Drug delivery nanosystems (DDnS) is widely developed recently. Gelatin is a high-potential biomaterial originated from natural resources for anticancer DDnS, which can effectively improve the utilization of anticancer drugs and reduce side effects. The hydrophilic, amphoteric behavior and sol-gel transition of gelatin can be used to fulfill various requirements of anticancer DDnS. Additionally, the high number of multifunctional groups on the surface of gelatin provides the possibility of crosslinking and further modifications. In this review, we focus on the properties of gelatin and briefly elaborate the correlation between the properties and anticancer DDnS. Furthermore, we discuss the applications of gelatin-based DDnS in various cancer treatments. Overall, we have summarized the excellent properties of gelatin and correlated with DDnS to provide a manual for the design of gelatin-based materials for DDnS.
Collapse
Affiliation(s)
- Xianchao Jiang
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Zhen Du
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Xinran Zhang
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Fakhar Zaman
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Zihao Song
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Yuepeng Guan
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nano Fiber, Beijing Institute of Fashion Technology, Beijing, China
- *Correspondence: Yuepeng Guan, ; Tengfei Yu, ; Yaqin Huang,
| | - Tengfei Yu
- Department of Ultrasound, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yuepeng Guan, ; Tengfei Yu, ; Yaqin Huang,
| | - Yaqin Huang
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Yuepeng Guan, ; Tengfei Yu, ; Yaqin Huang,
| |
Collapse
|
47
|
Zhang H, Zhou Y, Xu C, Qin X, Guo Z, Wei H, Yu CY. Mediation of synergistic chemotherapy and gene therapy via nanoparticles based on chitosan and ionic polysaccharides. Int J Biol Macromol 2022; 223:290-306. [PMID: 36347370 DOI: 10.1016/j.ijbiomac.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Nanoparticles (NPs)-based on various ionic polysaccharides, including chitosan, hyaluronic acid, and alginate have been frequently summarized for controlled release applications, however, most of the published reviews, to our knowledge, focused on the delivery of a single therapeutic agent. A comprehensive summarization of the co-delivery of multiple therapeutic agents by the ionic polysaccharides-based NPs, especially on the optimization of the polysaccharide structure for overcoming various extracellular and intracellular barriers toward maximized synergistic effects, to our knowledge, has been rarely explored so far. For this purpose, the strategies used for overcoming various extracellular and intracellular barriers in vivo were introduced first to provide guidance for the rational design of ionic polysaccharides-based NPs with desired features, including long-term circulation, enhanced cellular internalization, controllable drug/gene release, endosomal escape and improved nucleus localization. Next, four preparation strategies were summarized including three physical methods of polyelectrolyte complexation, ionic crosslinking, and self-assembly and a chemical conjugation approach. The challenges and future trends of this rapidly developing field were finally discussed in the concluding remarks. The important guidelines on the rational design of ionic polysaccharides-based NPs for maximized synergistic efficiency drawn in this review will promote the future generation and clinical translation of polysaccharides-based NPs for cancer therapy.
Collapse
Affiliation(s)
- Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yangchun Zhou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Chenghui Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xuping Qin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zifen Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
48
|
Sun Y, Jing X, Liu Y, Yu B, Hu H, Cong H, Shen Y. A chitosan derivative-crosslinked hydrogel with controllable release of polydeoxyribonucleotides for wound treatment. Carbohydr Polym 2022; 300:120298. [DOI: 10.1016/j.carbpol.2022.120298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/11/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
49
|
Lelouche SNK, Biglione C, Horcajada P. Advances in plasmonic-based MOF composites, their bio-applications and perspectives in this field. Expert Opin Drug Deliv 2022; 19:1417-1434. [PMID: 36176048 DOI: 10.1080/17425247.2022.2130245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Nanomaterials have been used for bio-applications since the late 20st century. In an attempt to tailor and optimize their properties, and by extension their efficiency, composites have attracted considerable attention. In this regard, recent studies on plasmonic nanoparticles and metal-organic framework (NP@MOF) composites suggested these materials show great promise in this field. AREAS COVERED This review focused on the more recent scientific advances in the synthetic strategies to optimize plasmonic MOF nanocomposites currently available, as well as their bio-application, particularly as biosensors and therapy. EXPERT OPINION Plasmonic MOF nanocomposites have shown great potential as they combine the properties of both materials with proven efficiency in bio-application. On the one hand, nanoMOFs have proven their potential particularly as drug nanocarriers, owing to their exceptional porosity and tunability. On the other hand, plasmonic nanoparticles have been an asset for imaging and phototherapy. Different strategies have been reported to develop these nanocomposites, mainly including core-shell, encapsulation, and in situ reduction. In addition, advanced composite structures should be considered, such as mixed metal nanoparticles, hollow structures or the combination of several approaches. Specifically, plasmonic MOF nanocomposites prove to be attractive stimuli responsive drug delivery systems, phototherapeutic agents as well as highly sensitive biosensors.
Collapse
Affiliation(s)
- Sorraya N K Lelouche
- Advanced Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Catalina Biglione
- Advanced Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| |
Collapse
|
50
|
Gong L, Wang C, Xu P, Gong J, Zhu C, Di S, Li Y, Mu Y, Han H, Zhang Q, Lin Z. Polymeric Nanoreactors with Chemically Tunable Redox Responsivity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40266-40275. [PMID: 35983858 DOI: 10.1021/acsami.2c07663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bioresponsive nanomaterials are increasingly important in a variety of applications such as disease imaging, drug delivery, and tissue engineering. However, it remains a big challenge to manipulate response efficacy of such materials for performance optimization in a highly complex milieu in vivo. Here, we developed chemically adjustable nanoreactors (CANs) with the structure of polymeric cores and albumin shells to achieve tunable redox responsivity. In vitro characterization demonstrates stable, spherical nanoparticles of the CANs with a particle size of about 50 nm. The fluorescence activation ratios of the CANs are determined by various albumin modification densities on the shell. Meanwhile, the response sensitivity of the CANs to GSH levels (0.6-4 mM) can be tuned by acid-base properties of polymeric blocks in the core. This unique tunable redox responsivity enables the CANs suitable for probe optimization in cancer imaging both in vivo and at histological levels. Overall, this study offers a new design strategy for manipulation on performance of core/shell nanoreactors or bioresponsive nanomaterials.
Collapse
Affiliation(s)
- Lidong Gong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P. R. China
| | - Changrong Wang
- Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, Yantai 264003, P. R. China
| | - Pengcheng Xu
- Department of Pharmaceutical Engineering, College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, P. R. China
| | - Jingjing Gong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P. R. China
| | - Chuanda Zhu
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P. R. China
| | - Shiming Di
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P. R. China
| | - Yanglonghao Li
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P. R. China
| | - Yongxu Mu
- The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, P. R. China
| | - Hongbin Han
- Institute of Medical Technology, Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Peking University Health Science Center, Beijing 100191, P. R. China
| | - Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P. R. China
| |
Collapse
|