1
|
Christensen SJ, Madsen MS, Zinck SS, Hedberg C, Sørensen OB, Svensson B, Meyer AS. Bioinformatics and functional selection of GH77 4-α-glucanotransferases for potato starch modification. N Biotechnol 2024; 79:39-49. [PMID: 38097138 DOI: 10.1016/j.nbt.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/26/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
4-α-glucanotransferases (4αGTs, EC 2.4.1.25) from glycoside hydrolase family 77 (GH77) catalyze chain elongation of starch amylopectin chains and can be utilized to structurally modify starch to tailor its gelation properties. The potential relationship between the structural design of 4αGTs and functional starch modification is unknown. Here, family GH77 was mined in silico for enzyme candidates based on sub-grouping guided by Conserved Unique Peptide Patterns (CUPP) bioinformatics categorization. From + 12,000 protein sequences a representative set of 27 4αGTs, representing four different domain architectures, different bacterial origins and diverse CUPP groups, was selected for heterologous expression and further study. Most of the enzymes catalyzed starch modification, but their efficacies varied substantially. Five of the 4αGTs were characterized in detail, and their action was compared to that of the industrial benchmark enzyme, Tt4αGT (CUPP 77_1.2), from Thermus thermophilus. Reaction optima of the five 4αGTs ranged from ∼40-60 °C and pH 7.3-9.0. Several were stable for a minimum 4 h at 70 °C. Domain architecture type A proteins, consisting only of a catalytic domain, had high thermal stability and high starch modification ability. All five novel 4αGTs (and Tt4αGT) induced enhanced gelling of potato starch. One, At4αGT from Azospirillum thermophilum (CUPP 77_2.4), displayed distinct starch modifying abilities, whereas T24αGT from Thermus sp. 2.9 (CUPP 77_1.2) modified the starch similarly to Tt4αGT, but slightly more effectively. T24αGT and At4αGT are thus interesting candidates for industrial starch modification. A model is proposed to explain the link between the 4αGT induced molecular modifications and macroscopic starch gelation.
Collapse
Affiliation(s)
- Stefan Jarl Christensen
- Protein Chemistry and Enzyme Technology, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark; KMC, Brande, Denmark
| | - Michael Schmidt Madsen
- Protein Chemistry and Enzyme Technology, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Signe Schram Zinck
- Protein Chemistry and Enzyme Technology, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark; KMC, Brande, Denmark
| | | | | | - Birte Svensson
- Protein Chemistry and Enzyme Technology, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anne S Meyer
- Protein Chemistry and Enzyme Technology, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
2
|
Li X, Wang Y, Wu J, Jin Z, Dijkhuizen L, Svensson B, Bai Y. Designing starch derivatives with desired structures and functional properties via rearrangements of glycosidic linkages by starch-active transglycosylases. Crit Rev Food Sci Nutr 2023; 64:8265-8278. [PMID: 37051937 DOI: 10.1080/10408398.2023.2198604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Modification of starch by transglycosylases from glycoside hydrolase families has attracted much attention recently; these enzymes can produce starch derivatives with novel properties, i.e. processability and functionality, employing highly efficient and safe methods. Starch-active transglycosylases cleave starches and transfer linear fragments to acceptors introducing α-1,4 and/or linear/branched α-1,6 glucosidic linkages, resulting in starch derivatives with excellent properties such as complexing and resistance to digestion characteristics, and also may be endowed with new properties such as thermo-reversible gel formation. This review summarizes the effects of variations in glycosidic linkage composition on structure and properties of modified starches. Starch-active transglycosylases are classified into 4 groups that form compounds: (1) in cyclic with α-1,4 glucosidic linkages, (2) with linear chains of α-1,4 glucosidic linkages, (3) with branched α-1,6 glucosidic linkages, and (4) with linear chains of α-1,6 glucosidic linkages. We discuss potential processability and functionality of starch derivatives with different linkage combinations and structures. The changes in properties caused by rearrangements of glycosidic linkages provide guidance for design of starch derivatives with desired structures and properties, which promotes the development of new starch products and starch processing for the food industry.
Collapse
Affiliation(s)
- Xiaoxiao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yu Wang
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Lubbert Dijkhuizen
- CarbExplore Research B.V, Groningen, The Netherlands
- Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Ngawiset S, Ismail A, Murakami S, Pongsawasdi P, Rungrotmongkol T, Krusong K. Identification of crucial amino acid residues involved in large ring cyclodextrin synthesis by amylomaltase from Corynebacterium glutamicum. Comput Struct Biotechnol J 2023; 21:899-909. [PMID: 36698977 PMCID: PMC9860158 DOI: 10.1016/j.csbj.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
Amylomaltase can be used to synthesize large ring cyclodextrins (LR-CDs), applied as drug solubilizer, gene delivery vehicle and protein aggregation suppressor. This study aims to determine the functional amino acid positions of Corynebacterium glutamicum amylomaltase (CgAM) involved in LR-CD synthesis by site-directed mutagenesis approach and molecular dynamic simulation. Mutants named Δ167, Y23A, P228Y, E231Y, A413F and G417F were constructed, purified, and characterized. The truncated CgAM, Δ167 exhibited no starch transglycosylation activity, indicating that the N-terminal domain of CgAM is necessary for enzyme activity. The P228Y, A413F and G417F produced larger LR-CDs from CD36-CD40 as compared to CD29 by WT. A413F and G417F mutants produced significantly low LR-CD yield compared to the WT. The A413F mutation affected all tested enzyme activities (starch tranglycosylation, disproportionation and cyclization), while the G417F mutation hindered the cyclization activity. P228Y mutation significantly lowered the k cat of disproportionation activity, while E231Y mutant exhibited much higher k cat and K m values for starch transglycosylation, compared to that of the WT. In addition, Y23A mutation affected the kinetic parameters of starch transglycosylation and cyclization. Molecular dynamic simulation further confirmed these mutations' impacts on the CgAM and LR-CD interactions. Identified functional amino acids for LR-CD synthesis may serve as a model for future modification to improve the properties and yield of LR-CDs.
Collapse
Affiliation(s)
- Sirikul Ngawiset
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Abbas Ismail
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Shuichiro Murakami
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki-shi, Kanagawa 214–8571, Japan
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand,Program in Bioinformatics and Computational Chemistry, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kuakarun Krusong
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand,Corresponding author.
| |
Collapse
|
4
|
Molecular weight, chain length distribution and long-term retrogradation of cassava starch modified by amylomaltase. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Christensen SJ, Madsen MS, Zinck SS, Hedberg C, Sørensen OB, Svensson B, Meyer AS. Enzymatic potato starch modification and structure-function analysis of six diverse GH77 4-alpha-glucanotransferases. Int J Biol Macromol 2022; 224:105-114. [DOI: 10.1016/j.ijbiomac.2022.10.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/18/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
6
|
Li X, Wang Y, Wu J, Jin Z, Dijkhuizen L, Hachem MA, Bai Y. Thermoproteus uzoniensis 4-α-glucanotransferase catalyzed production of a thermo-reversible potato starch gel with superior rheological properties and freeze-thaw stability. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Kierulf AV, Whaley JK, Liu W, Smoot JT, Jenab E, Perez Herrera M, Abbaspourrad A. Heat- and shear-reversible networks in food: A review. Compr Rev Food Sci Food Saf 2022; 21:3405-3435. [PMID: 35765752 DOI: 10.1111/1541-4337.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/27/2022]
Abstract
While nature behaves like an irreversible network with respect to entropy and time, certain systems in nature exist that are, to some extent, reversible. The property of reversibility imparts unique benefits to systems that possess them, making them suitable for designing self-healing, stimuli-responsive, and smart materials that can be used in widely divergent fields. Reversible networks are currently being exploited for applications in tissue engineering, drug delivery, and soft robotics. They are also being utilized as low-calorie fat mimetics with melt-in-your-mouth textures, as well as being explored as potential scaffolds for three-dimensional (3D) printable food, among other applications. This review aims to gather representative examples of heat- and shear-reversible networks in the food science literature from the last 30 or so years, in other words, reversible food gels made either from linear biopolymers or from colloidal, particulate dispersions, including those that have been modified specifically to induce reversibility. An overview of the network mechanisms involved that impart reversibility, including a discussion of the strength and range of forces involved, will be highlighted. A model that explains why certain networks are thermoreversible while others are shear-reversible, and why others are both, will also be proposed. A fundamental understanding of these mechanisms will prove invaluable when designing reversible networks in the future, making possible the precise control of their properties, thus fostering innovative applications within the food industry and beyond.
Collapse
Affiliation(s)
- Arkaye V Kierulf
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA.,Tate & Lyle Solutions USA LLC, Hoffman Estates, Illinois, USA
| | - Judith K Whaley
- Tate & Lyle Solutions USA LLC, Hoffman Estates, Illinois, USA
| | - Weichang Liu
- Tate & Lyle Solutions USA LLC, Hoffman Estates, Illinois, USA
| | - James T Smoot
- Tate & Lyle Solutions USA LLC, Hoffman Estates, Illinois, USA
| | - Ehsan Jenab
- Tate & Lyle Solutions USA LLC, Hoffman Estates, Illinois, USA
| | | | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
8
|
Hu J, Li X, Cheng Z, Fan X, Ma Z, Hu X, Wu G, Xing Y. Modified Tartary buckwheat (Fagopyrum tataricum Gaertn.) starch by gaseous ozone: Structural, physicochemical and in vitro digestible properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Krusong K, Ismail A, Wangpaiboon K, Pongsawasdi P. Production of Large-Ring Cyclodextrins by Amylomaltases. Molecules 2022; 27:molecules27041446. [PMID: 35209232 PMCID: PMC8875642 DOI: 10.3390/molecules27041446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Amylomaltase is a well-known glucan transferase that can produce large ring cyclodextrins (LR-CDs) or so-called cycloamyloses via cyclization reaction. Amylomaltases have been found in several microorganisms and their optimum temperatures are generally around 60–70 °C for thermostable amylomaltases and 30–45 °C for the enzymes from mesophilic bacteria and plants. The optimum pHs for mesophilic amylomaltases are around pH 6.0–7.0, while the thermostable amylomaltases are generally active at more acidic conditions. Size of LR-CDs depends on the source of amylomaltases and the reaction conditions including pH, temperature, incubation time, and substrate. For example, in the case of amylomaltase from Corynebacterium glutamicum, LR-CD productions at alkaline pH or at a long incubation time favored products with a low degree of polymerization. In this review, we explore the synthesis of LR-CDs by amylomaltases, structural information of amylomaltases, as well as current applications of LR-CDs and amylomaltases.
Collapse
Affiliation(s)
- Kuakarun Krusong
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand; (A.I.); (K.W.)
- Correspondence: ; Tel.: + 66-(0)2-218-5413
| | - Abbas Ismail
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand; (A.I.); (K.W.)
| | - Karan Wangpaiboon
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand; (A.I.); (K.W.)
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand;
| |
Collapse
|
10
|
Bangar SP, Ashogbon AO, Singh A, Chaudhary V, Whiteside WS. Enzymatic modification of starch: A green approach for starch applications. Carbohydr Polym 2022; 287:119265. [DOI: 10.1016/j.carbpol.2022.119265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/02/2022]
|
11
|
Fu Y, Jiang E, Yao Y. New Techniques in Structural Tailoring of Starch Functionality. Annu Rev Food Sci Technol 2022; 13:117-143. [PMID: 35080964 DOI: 10.1146/annurev-food-102821-035457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inherent characteristics of native starches such as water insolubility, retrogradation and syneresis, and instability in harsh processing conditions (e.g., high temperature and shearing, low pH) limit their industrial applications. As starch properties mainly depend on starch composition and structure, structural tailoring of starch has been important for overcoming functional limitations and expanding starch applications in different fields. In this review, we first introduce the basics of starch structure, properties, and functionalities and then describe the interactions of starch with lipids, polysaccharides, and phenolics. After reviewing genetic, chemical, and enzymatic modifications of starch, we describe current progress in the areas of porous starch and starch-based nanoparticles. New techniques, such as using the CRISPR-Cas9 technique to tailor starch structures and using an emulsion-assisted approach in forming functional starch nanoparticles, are only feasible when they are established based on fundamental knowledge of starch. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yezhi Fu
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania
| | - Evelyn Jiang
- Department of Food Science, Purdue University, West Lafayette, Indiana; .,Lincolnshire, Illinois
| | - Yuan Yao
- Department of Food Science, Purdue University, West Lafayette, Indiana;
| |
Collapse
|
12
|
Nakapong S, Tumhom S, Kaulpiboon J, Pongsawasdi P. Heterologous expression of 4α-glucanotransferase: overproduction and properties for industrial applications. World J Microbiol Biotechnol 2022; 38:36. [PMID: 34993677 DOI: 10.1007/s11274-021-03220-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
4α-Glucanotransferase (4α-GTase) is unique in its ability to form cyclic oligosaccharides, some of which are of industrial importance. Generally, low amount of enzymes is produced by or isolated from their natural sources: animals, plants, and microorganisms. Heterologous expressions of these enzymes, in an attempt to increase their production for applicable uses, have been widely studied since 1980s; however, the expressions are mostly performed in the prokaryotic bacteria, mostly Escherichia coli. Site-directed mutagenesis has added more value to these expressed enzymes to display the desired properties beneficial for their applications. The search for further suitable properties for food application leads to an extended research in expression by another group of host organism, the generally-recognized as safe host including the Bacillus and the eukaryotic yeast systems. Herein, our review focuses on two types of 4α-GTase: the cyclodextrin glycosyltransferase and amylomaltase. The updated studies on the general structure and properties of the two enzymes with emphasis on heterologous expression, mutagenesis for property improvement, and their industrial applications are provided.
Collapse
Affiliation(s)
- Santhana Nakapong
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Suthipapun Tumhom
- Office of National Higher Education Science Research and Innovation Policy Council, Ministry of Higher Education Science Research and Innovation, Bangkok, 10330, Thailand
| | - Jarunee Kaulpiboon
- Division of Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
| | - Piamsook Pongsawasdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
13
|
Korompokis K, Verbeke K, Delcour JA. Structural factors governing starch digestion and glycemic responses and how they can be modified by enzymatic approaches: A review and a guide. Compr Rev Food Sci Food Saf 2021; 20:5965-5991. [PMID: 34601805 DOI: 10.1111/1541-4337.12847] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022]
Abstract
Starch is the most abundant glycemic carbohydrate in the human diet. Consumption of starch-rich food products that elicit high glycemic responses has been linked to the occurrence of noncommunicable diseases such as cardiovascular disease and diabetes mellitus type II. Understanding the structural features that govern starch digestibility is a prerequisite for developing strategies to mitigate any negative health implications it may have. Here, we review the aspects of the fine molecular structure that in native, gelatinized, and gelled/retrograded starch directly impact its digestibility and thus human health. We next provide an informed guidance for lowering its digestibility by using specific enzymes tailoring its molecular and three-dimensional supramolecular structure. We finally discuss in vivo studies of the glycemic responses to enzymatically modified starches and relevant food applications. Overall, structure-digestibility relationships provide opportunities for targeted modification of starch during food production and improving the nutritional profile of starchy foods.
Collapse
Affiliation(s)
- Konstantinos Korompokis
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Leuven, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Kristin Verbeke
- Translational Research Center in Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Leuven, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Leoni C, Gattulli BAR, Pesole G, Ceci LR, Volpicella M. Amylomaltases in Extremophilic Microorganisms. Biomolecules 2021; 11:biom11091335. [PMID: 34572549 PMCID: PMC8465469 DOI: 10.3390/biom11091335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Amylomaltases (4-α-glucanotransferases, E.C. 2.4.1.25) are enzymes which can perform a double-step catalytic process, resulting in a transglycosylation reaction. They hydrolyse glucosidic bonds of α-1,4'-d-glucans and transfer the glucan portion with the newly available anomeric carbon to the 4'-position of an α-1,4'-d-glucan acceptor. The intramolecular reaction produces a cyclic α-1,4'-glucan. Amylomaltases can be found only in prokaryotes, where they are involved in glycogen degradation and maltose metabolism. These enzymes are being studied for possible biotechnological applications, such as the production of (i) sugar substitutes; (ii) cycloamyloses (molecules larger than cyclodextrins), which could potentially be useful as carriers and encapsulating agents for hydrophobic molecules and also as effective protein chaperons; and (iii) thermoreversible starch gels, which could be used as non-animal gelatin substitutes. Extremophilic prokaryotes have been investigated for the identification of amylomaltases to be used in the starch modifying processes, which require high temperatures or extreme conditions. The aim of this article is to present an updated overview of studies on amylomaltases from extremophilic Bacteria and Archaea, including data about their distribution, activity, potential industrial application and structure.
Collapse
Affiliation(s)
- Claudia Leoni
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Amendola, 70126 Bari, Italy; (C.L.); (B.A.R.G.); (G.P.)
| | - Bruno A. R. Gattulli
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Amendola, 70126 Bari, Italy; (C.L.); (B.A.R.G.); (G.P.)
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Amendola, 70126 Bari, Italy; (C.L.); (B.A.R.G.); (G.P.)
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Luigi R. Ceci
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Amendola, 70126 Bari, Italy; (C.L.); (B.A.R.G.); (G.P.)
- Correspondence: (L.R.C.); (M.V.); Tel.: +39-080-544-3311 (L.R.C. & M.V.)
| | - Mariateresa Volpicella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Amendola, 70126 Bari, Italy; (C.L.); (B.A.R.G.); (G.P.)
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
- Correspondence: (L.R.C.); (M.V.); Tel.: +39-080-544-3311 (L.R.C. & M.V.)
| |
Collapse
|
15
|
Korompokis K, Deleu LJ, De Brier N, Delcour JA. Investigation of starch functionality and digestibility in white wheat bread produced from a recipe containing added maltogenic amylase or amylomaltase. Food Chem 2021; 362:130203. [PMID: 34091172 DOI: 10.1016/j.foodchem.2021.130203] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/14/2021] [Accepted: 05/23/2021] [Indexed: 11/25/2022]
Abstract
In the crumb of fresh white wheat bread, starch is fully gelatinized. Its molecular and three-dimensional structure are major factors limiting the rate of its digestion. The aim of this study was to in situ modify starch during bread making with starch-modifying enzymes (maltogenic amylase and amylomaltase) and to investigate the impact thereof on bread characteristics, starch retrogradation and digestibility. Maltogenic amylase treatment increased the relative content of short amylopectin chains (degree of polymerization ≤ 8). This resulted in lower starch retrogradation and crumb firmness upon storage, and reduced extent (up to 18%) of in vitro starch digestion for fresh and stored breads. Amylomaltase only modestly shortened amylose chains and had no measurable impact on amylopectin structure. Modification with this enzyme led to slower bread crumb firming but did not influence starch digestibility.
Collapse
Affiliation(s)
- Konstantinos Korompokis
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Lomme J Deleu
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Niels De Brier
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| |
Collapse
|
16
|
Klostermann CE, van der Zaal PH, Schols HA, Buwalda PL, Bitter JH. The influence of α-1,4-glucan substrates on 4,6-α-d-glucanotransferase reaction dynamics during isomalto/malto-polysaccharide synthesis. Int J Biol Macromol 2021; 181:762-768. [PMID: 33798574 DOI: 10.1016/j.ijbiomac.2021.02.220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/26/2021] [Accepted: 02/09/2021] [Indexed: 11/18/2022]
Abstract
Starch-based isomalto/malto-polysaccharides (IMMPs) are soluble dietary fibres produced by the incubation of α-(1 → 4) linked glucans with the 4,6-α-glucanotransferase (GTFB) enzyme. In this study, we investigated the reaction dynamics of the GTFB enzyme by using isoamylase debranched starches as simplified linear substrates. Modification of α-glucans by GTFB was investigated over time and analysed with 1H NMR, HPSEC, HPAEC combined with glucose release measurements. We demonstrate that GTFB modification of linear substrates followed a substrate/acceptor model, in which α-(1 → 4) linked glucans DP ≥ 6 functioned as donor substrate, and α-(1 → 4) linked malto-oligomers DP < 6 functioned as acceptor. The presence of α-(1 → 4) linked malto-oligomers DP < 6 resulted in higher GTFB transferase activity, while their absence resulted in higher GTFB hydrolytic activity. The information obtained in this study provides a better insight into GTFB reaction dynamics and will be useful for α-glucan selection for the targeted synthesis of IMMPs in the future.
Collapse
Affiliation(s)
- C E Klostermann
- Biobased Chemistry & Technology, Wageningen University & Research, PO Box 17, 6700 AA Wageningen, the Netherlands; Laboratory of Food Chemistry, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - P H van der Zaal
- Biobased Chemistry & Technology, Wageningen University & Research, PO Box 17, 6700 AA Wageningen, the Netherlands
| | - H A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - P L Buwalda
- Biobased Chemistry & Technology, Wageningen University & Research, PO Box 17, 6700 AA Wageningen, the Netherlands; Coöperatie AVEBE u.a., P.O. Box 15, 9640, AA, Veendam, the Netherlands
| | - J H Bitter
- Biobased Chemistry & Technology, Wageningen University & Research, PO Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
17
|
Khummanee N, Rudeekulthamrong P, Kaulpiboon J. Enzymatic Synthesis of Functional Xylose Glucoside and Its Application to Prebiotic. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821020058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Park S, Kim YR. Clean label starch: production, physicochemical characteristics, and industrial applications. Food Sci Biotechnol 2021; 30:1-17. [PMID: 33552613 PMCID: PMC7847421 DOI: 10.1007/s10068-020-00834-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 11/30/2022] Open
Abstract
Recently, health-conscious consumers have a tendency to avoid the use of modified starch in their food products because of reluctance regarding food additives or chemical processes. The present paper considers the characteristics and manufacturing methods of clean label starch, which is free from chemical modification. Clean label starch manufacturing is mainly dependent on starch blending, physical and enzymatic modification methods. Physical modifications include ultrasound, hydrothermal (e.g., heat-moisture treatment and annealing), pre-gelatinization (e.g., drum drying, roll drying, spray cooking, and extrusion cooking), high-pressure (high hydrostatic pressure), and pulsed electric field treatments. These physical processes allow variation of starch properties, such as morphological, thermal, rheological, and pasting properties. Enzyme treatment can change the properties of starch more dramatically. Actual use of clean label starch with such altered properties has occurred in industry and is described here. This review may provide useful information on the current status and future direction of clean label starch in the field of food science.
Collapse
Affiliation(s)
- Shinjae Park
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea
| | - Yong-Ro Kim
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
19
|
Korompokis K, Deleu LJ, De Brier N, Delcour JA. Use of Amylomaltase to Steer the Functional and Nutritional Properties of Wheat Starch. Foods 2021; 10:foods10020303. [PMID: 33540801 PMCID: PMC7913068 DOI: 10.3390/foods10020303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 01/06/2023] Open
Abstract
The fine molecular structure of starch governs its functionality and digestibility, and enzymatic approaches can be utilized to tailor its properties. The aim of this study was to investigate the in situ modification of starch by amylomaltase (AMM) from Thermus thermophilus in model starch systems subjected to hydrothermal treatments under standardized conditions and the relationship between molecular structure, rheological properties and in vitro digestibility. When low dosages of AMM were added to a wheat starch suspension prior to submitting it to a temperature-time profile in a Rapid Visco Analyzer, the increased peak viscosity observed was attributed to partial depolymerization of amylose, which facilitated starch swelling and viscosity development. At higher dosages, the effect was smaller. The low cold paste viscosity as a result of the activity of AMM reflected substantial amylose depolymerization. At the same time, amylopectin chains were substantially elongated. The longer amylopectin chains were positively correlated (R2 = 0.96) with the melting enthalpies of retrograded starches, which, in turn, were negatively correlated with the extent (R2 = 0.92) and rate (R2 = 0.79) of in vitro digestion. It was concluded that AMM has the potential to be used to deliver novel starch functionalities and enhance its nutritional properties.
Collapse
Affiliation(s)
- Konstantinos Korompokis
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium; (L.J.D.); (J.A.D.)
- Correspondence: ; Tel.: +32-163-22-783
| | - Lomme J. Deleu
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium; (L.J.D.); (J.A.D.)
| | - Niels De Brier
- Belgian Red Cross, Motstraat 42, B-2800 Mechelen, Belgium;
| | - Jan A. Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium; (L.J.D.); (J.A.D.)
| |
Collapse
|
20
|
Majzoobi M, Farahnaky A. Granular cold-water swelling starch; properties, preparation and applications, a review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106393] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Gene cloning, expression enhancement in Escherichia coli and biochemical characterization of a highly thermostable amylomaltase from Pyrobaculum calidifontis. Int J Biol Macromol 2020; 165:645-653. [DOI: 10.1016/j.ijbiomac.2020.09.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 11/18/2022]
|
22
|
Fang K, He W, Jiang Y, Li K, Li J. Preparation, characterization and physicochemical properties of cassava starch-ferulic acid complexes by mechanical activation. Int J Biol Macromol 2020; 160:482-488. [DOI: 10.1016/j.ijbiomac.2020.05.213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
|
23
|
Park HR, Kang J, Rho SJ, Kim YR. Structural and physicochemical properties of enzymatically modified rice starch as influenced by the degree of enzyme treatment. J Carbohydr Chem 2020. [DOI: 10.1080/07328303.2020.1788574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hye Rin Park
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jihyun Kang
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Shin-Joung Rho
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Yong-Ro Kim
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Wang Y, Li X, Ji H, Zheng D, Jin Z, Bai Y, Svensson B. Thermophilic 4-α-Glucanotransferase from Thermoproteus Uzoniensis Retards the Long-Term Retrogradation but Maintains the Short-Term Gelation Strength of Tapioca Starch. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5658-5667. [PMID: 32352781 DOI: 10.1021/acs.jafc.0c00927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gelation of starch is a process during short-term retrogradation. However, long-term retrogradation always leads to the quality deterioration of starch-based food. In this work, a new type of modified tapioca starch (MTS) gel with maintained short-term gelation strength and retarded long-term retrogradation was prepared using a novel recombinantly produced and characterized 4-α-glucanotransferase (TuαGT). In the resulting MTS, the exterior chains of the amylopectin part were elongated and the content of amylose was reduced because of the disproportionation activity of TuαGT. The retrogradation analysis demonstrated that the MTS possessed highly weakened long-term retrogradation characteristics as compared to the native starch. Most importantly, the strength of the gel formed by regelatinized MTS is very close to that of gelatinized native tapioca starch when storing below 30 °C. These findings provide a starting point for developing a novel method for the enzymatic modification of the starch-based gels.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoxiao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Danni Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
25
|
Solubility, stability, and bioaccessibility improvement of curcumin encapsulated using 4-α-glucanotransferase-modified rice starch with reversible pH-induced aggregation property. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Zhoukun L, Wenwen Z, Lei Z, Yanxin W, Yajuan Z, Yan Q, Xue L, Yan H, Zhongli C. Gene Expression and Biochemical Characterization of a GH77 4‐α‐Glucanotransferase CcGtase FromCorallococcussp. EGB. STARCH-STARKE 2019. [DOI: 10.1002/star.201800254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Li Zhoukun
- Key Laboratory of Agricultural Environmental MicrobiologyMinistry of AgricultureCollege of Life ScienceNanjing Agricultural UniversityNanjing 210095P. R. China
| | - Zheng Wenwen
- Key Laboratory of Agricultural Environmental MicrobiologyMinistry of AgricultureCollege of Life ScienceNanjing Agricultural UniversityNanjing 210095P. R. China
| | - Zhang Lei
- Key Laboratory of Agricultural Environmental MicrobiologyMinistry of AgricultureCollege of Life ScienceNanjing Agricultural UniversityNanjing 210095P. R. China
| | - Wang Yanxin
- Key Laboratory of Agricultural Environmental MicrobiologyMinistry of AgricultureCollege of Life ScienceNanjing Agricultural UniversityNanjing 210095P. R. China
| | - Zhang Yajuan
- Key Laboratory of Agricultural Environmental MicrobiologyMinistry of AgricultureCollege of Life ScienceNanjing Agricultural UniversityNanjing 210095P. R. China
| | - Qiao Yan
- Key Laboratory of Agricultural Environmental MicrobiologyMinistry of AgricultureCollege of Life ScienceNanjing Agricultural UniversityNanjing 210095P. R. China
| | - Luo Xue
- Key Laboratory of Agricultural Environmental MicrobiologyMinistry of AgricultureCollege of Life ScienceNanjing Agricultural UniversityNanjing 210095P. R. China
| | - Huang Yan
- Key Laboratory of Agricultural Environmental MicrobiologyMinistry of AgricultureCollege of Life ScienceNanjing Agricultural UniversityNanjing 210095P. R. China
| | - Cui Zhongli
- Key Laboratory of Agricultural Environmental MicrobiologyMinistry of AgricultureCollege of Life ScienceNanjing Agricultural UniversityNanjing 210095P. R. China
| |
Collapse
|
27
|
Boonna S, Rolland-Sabaté A, Lourdin D, Tongta S. Macromolecular characteristics and fine structure of amylomaltase-treated cassava starch. Carbohydr Polym 2019; 205:143-150. [DOI: 10.1016/j.carbpol.2018.10.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 11/27/2022]
|
28
|
Gangoiti J, Corwin SF, Lamothe LM, Vafiadi C, Hamaker BR, Dijkhuizen L. Synthesis of novel α-glucans with potential health benefits through controlled glucose release in the human gastrointestinal tract. Crit Rev Food Sci Nutr 2018; 60:123-146. [PMID: 30525940 DOI: 10.1080/10408398.2018.1516621] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The glycemic carbohydrates we consume are currently viewed in an unfavorable light in both the consumer and medical research worlds. In significant part, these carbohydrates, mainly starch and sucrose, are looked upon negatively due to their rapid and abrupt glucose delivery to the body which causes a high glycemic response. However, dietary carbohydrates which are digested and release glucose in a slow manner are recognized as providing health benefits. Slow digestion of glycemic carbohydrates can be caused by several factors, including food matrix effect which impedes α-amylase access to substrate, or partial inhibition by plant secondary metabolites such as phenolic compounds. Differences in digestion rate of these carbohydrates may also be due to their specific structures (e.g. variations in degree of branching and/or glycosidic linkages present). In recent years, much has been learned about the synthesis and digestion kinetics of novel α-glucans (i.e. small oligosaccharides or larger polysaccharides based on glucose units linked in different positions by α-bonds). It is the synthesis and digestion of such structures that is the subject of this review.
Collapse
Affiliation(s)
- Joana Gangoiti
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Sarah F Corwin
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Lisa M Lamothe
- Nestlé Research Center, Vers-Chez-Les-Blanc, Lausanne, Switzerland
| | | | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
29
|
Asiri SA, Ulbrich M, Flöter E. Partial Hydrolysis of Granular Potato Starch Using α-Amylase - Effect on Physicochemical, Molecular, and Functional Properties. STARCH-STARKE 2018. [DOI: 10.1002/star.201800253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Saeed A. Asiri
- Department of Food Technology and Food Chemistry; Chair of Food Process Engineering; Technische Universität Berlin; Office GG2, Seestraße 13 13353 Berlin Germany
| | - Marco Ulbrich
- Department of Food Technology and Food Chemistry; Chair of Food Process Engineering; Technische Universität Berlin; Office GG2, Seestraße 13 13353 Berlin Germany
| | - Eckhard Flöter
- Department of Food Technology and Food Chemistry; Chair of Food Process Engineering; Technische Universität Berlin; Office GG2, Seestraße 13 13353 Berlin Germany
| |
Collapse
|
30
|
Miao M, Jiang B, Jin Z, BeMiller JN. Microbial Starch-Converting Enzymes: Recent Insights and Perspectives. Compr Rev Food Sci Food Saf 2018; 17:1238-1260. [PMID: 33350152 DOI: 10.1111/1541-4337.12381] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Ming Miao
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
| | - Bo Jiang
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
| | - Zhengyu Jin
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
| | - James N. BeMiller
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
- Dept. of Food Science; Whistler Center for Carbohydrate Research, Purdue Univ.; 745 Agriculture Mall Drive West Lafayette IN 47907-2009 U.S.A
| |
Collapse
|
31
|
Gu F, Borewicz K, Richter B, van der Zaal PH, Smidt H, Buwalda PL, Schols HA. In Vitro Fermentation Behavior of Isomalto/Malto-Polysaccharides Using Human Fecal Inoculum Indicates Prebiotic Potential. Mol Nutr Food Res 2018; 62:e1800232. [PMID: 29710405 PMCID: PMC6033187 DOI: 10.1002/mnfr.201800232] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/09/2018] [Indexed: 12/11/2022]
Abstract
SCOPE This study characterize intestinal fermentation of isomalto/malto-polysaccharides (IMMPs), by monitoring degradation of IMMPs, production of short chain fatty acids (SCFAs), lactic acid, and succinic acid as well as enzyme activity and microbiota composition. METHODS AND RESULTS IMMP-94 (94% α-(1→6) glycosidic linkages), IMMP-96, IMMP-27, and IMMP-dig27 (IMMP-27 after removal of digestible starch segments) are fermented batchwise in vitro using human fecal inoculum. Fermentation digesta samples are taken for analysis in time up till 48 h. The fermentation of α-(1→6) glycosidic linkages in IMMP-94, IMMP-96, and IMMP-dig27 starts after 12 h and finishes within 48 h. IMMP-27 fermentation starts directly after inoculation utilizing α-(1→4) linked glucosyl residues; however, the utilization of α-(1→6) linked glucoses is delayed and start only after the depletion of α-(1→4) linked glucose moieties. SCFAs are produced in high amounts with acetic acid and succinic acid being the major products next to propionic acid and butyric acid. The polysaccharide fraction is degraded into isomalto-oligosaccharides (IMOs) mainly by extracellular enzymes. The smaller IMOs are further degraded by cell-associated enzymes. Overall microbial diversity and the relative abundance of Bifidobacterium and Lactobacillus, significantly increase during the fermentation of IMMPs. CONCLUSION IMMP containing segments of α-(1→6) linked glucose units are slowly fermentable fibers with prebiotic potential.
Collapse
Affiliation(s)
- Fangjie Gu
- Laboratory of Food ChemistryWageningen University & ResearchP.O. Box 176700 AA WageningenThe Netherlands
| | - Klaudyna Borewicz
- Laboratory of MicrobiologyWageningen University & ResearchWageningen6708 WEThe Netherlands
| | - Bernadette Richter
- Laboratory of Food ChemistryWageningen University & ResearchP.O. Box 176700 AA WageningenThe Netherlands
| | - Pieter H. van der Zaal
- Biobased Chemistry & TechnologyWageningen University & ResearchWageningen6708 WGThe Netherlands
| | - Hauke Smidt
- Laboratory of MicrobiologyWageningen University & ResearchWageningen6708 WEThe Netherlands
| | - Pieter L. Buwalda
- Biobased Chemistry & TechnologyWageningen University & ResearchWageningen6708 WGThe Netherlands
- Coöperatie AVEBE U.A.P.O. Box 159640 AA VeendamThe Netherlands
| | - Henk A. Schols
- Laboratory of Food ChemistryWageningen University & ResearchP.O. Box 176700 AA WageningenThe Netherlands
| |
Collapse
|
32
|
Park SH, Na Y, Kim J, Kang SD, Park KH. Properties and applications of starch modifying enzymes for use in the baking industry. Food Sci Biotechnol 2018; 27:299-312. [PMID: 30263753 PMCID: PMC6049653 DOI: 10.1007/s10068-017-0261-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/05/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022] Open
Abstract
Enzyme technology has many potential applications in the baking industry because carbohydrate-active enzymes specifically react with carbohydrate components, such as starch, in complex food systems. Amylolytic enzymes are added to starch-based foods, such as baking products, to retain moisture more efficiently and to increase softness, freshness, and shelf life. The major reactions used to modify the structure of food starch include: (1) hydrolysis of α-1, 4 or α-1, 6 glycosidic linkages, (2) disproportionation by the transfer of glucan moieties, and (3) branching by formation of α-1, 6 glycosidic linkage. The catalytic reaction of a single enzyme or a mixture of more than two enzymes has been applied, generating novel starches, with chemical changes in the starch structure, in which the changes of molecular mass, branch chain length distribution, and the ratio of amylose to amylopectin may occur. These developments of enzyme technology highlight the potential to create various structured-starches for the food and baking industry.
Collapse
Affiliation(s)
- Sung Hoon Park
- Research Institute of Food and Biotechnology, SPC Group, Seoul, 08826 Korea
| | - Yerim Na
- Research Institute of Food and Biotechnology, SPC Group, Seoul, 08826 Korea
| | - Jungwoo Kim
- Research Institute of Food and Biotechnology, SPC Group, Seoul, 08826 Korea
| | - Shin Dal Kang
- Research Institute of Food and Biotechnology, SPC Group, Seoul, 08826 Korea
| | - Kwan-Hwa Park
- Center for Food and Bioconvergence and Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
| |
Collapse
|
33
|
Yoon SH, Oh YK, Kim YR, Park J, Han SI, Kim YW. Complex formation of a 4-α-glucanotransferase using starch as a biocatalyst for starch modification. Food Sci Biotechnol 2017; 26:1659-1666. [PMID: 30263703 DOI: 10.1007/s10068-017-0203-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/07/2017] [Accepted: 08/30/2017] [Indexed: 11/26/2022] Open
Abstract
A 4-α-glucanotransferases from Thermus thermophilus (TTαGT) possesses an extra substrate binding site, leading to facile purification of the intact enzyme using amylose as an insoluble binding matrix. Due to the cost of amylose and low recovery yield, starch was replaced for amylose as an alternative capturer in this study. Using gelatinized corn starch at pH 9 with 36-h incubation in the presence of 1 M ammonium sulfate increased the TTαGT-starch complex formation yield from 2 to 56%. In preparative-scale production, TTαGT produced in Bacillus subtilis was recovered by 42.1% with the same specific activity as that of purified TTαGT. Structural and rheological analyses of the enzymatically modified starches revealed that the starch complex exhibited catalytic performance comparable to soluble TTαGT, suggesting that the starch complex can be used as a biocatalyst for modified starch production without elution of the enzyme from the complex.
Collapse
Affiliation(s)
- Sun-Hee Yoon
- 1Department of Food and Biotechnology, Korea University, Sejong, 30019 Korea
| | - You-Kyung Oh
- 1Department of Food and Biotechnology, Korea University, Sejong, 30019 Korea
| | - Yong-Ro Kim
- 2Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jiyoung Park
- 3Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, Gyeonggi 16613 Korea
| | - Sang-Ick Han
- 4Department of Functional Crop, Functional Crop Resource Development Division, National Institute of Crop Science, Rural Development Administration, Miryang, Gyeongnam 50424 Korea
| | - Young-Wan Kim
- 1Department of Food and Biotechnology, Korea University, Sejong, 30019 Korea
| |
Collapse
|
34
|
Kumar SB, Prabhasankar P. Enzyme treated flours in noodle processing: a study on an innovative technology. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-017-9494-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Structure of branching enzyme- and amylomaltase modified starch produced from well-defined amylose to amylopectin substrates. Carbohydr Polym 2016; 152:51-61. [DOI: 10.1016/j.carbpol.2016.06.097] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/23/2016] [Accepted: 06/26/2016] [Indexed: 11/23/2022]
|
36
|
Do VH, Mun S, Kim YL, Rho SJ, Park KH, Kim YR. Novel formulation of low-fat spread using rice starch modified by 4-α-glucanotransferase. Food Chem 2016; 208:132-41. [DOI: 10.1016/j.foodchem.2016.03.101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 03/03/2016] [Accepted: 03/28/2016] [Indexed: 10/22/2022]
|
37
|
Rudeekulthamrong P, Kaulpiboon J. Application of amylomaltase for the synthesis of salicin-α-glucosides as efficient anticoagulant and anti-inflammatory agents. Carbohydr Res 2016; 432:55-61. [DOI: 10.1016/j.carres.2016.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/25/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
|
38
|
Mehboob S, Ahmad N, Rashid N, Imanaka T, Akhtar M. Pcal_0768, a hyperactive 4-α-glucanotransferase from Pyrobacculum calidifontis. Extremophiles 2016; 20:559-66. [PMID: 27295220 DOI: 10.1007/s00792-016-0850-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/31/2016] [Indexed: 12/01/2022]
Abstract
Genome sequence of hyperthermophilic archaeon Pyrobaculum calidifontis revealed the presence of an open reading frame, Pcal_0768, corresponding to a putative 4-α-glucanotranferase belonging to glycoside hydrolases (GH) family 77. We have produced, in Escherichia coli, and purified recombinant Pcal_0768 which exhibited high disproportionation (690 U mg(-1)) activity. To the best of our knowledge, this is the highest ever reported activity for any member of family GH77. Maltooligosaccharides, when used as sole substrates, were disproportionated into linear maltooligohomologues. The analysis of the reaction end products revealed no evidence for the production of cycloamyloses. Catalytic activity of the enzyme remained unchanged in the presence or the absence of ionic and nonionic detergents. γ-cyclodextrin, an inhibitor of 4-α-glucanotransferases, did not show any inhibitory effect on Pcal_0768 activity. These properties make Pcal_0768 a potential candidate for starch processing industry.
Collapse
Affiliation(s)
- Sumaira Mehboob
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Nasir Ahmad
- Institute of Agricultural Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| | - Tadayuki Imanaka
- The Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Muhammad Akhtar
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.,School of Biological Sciences, University of Southampton, Southampton, SO16 7PX, UK
| |
Collapse
|
39
|
Suriyakul Na Ayudhaya P, Pongsawasdi P, Laohasongkram K, Chaiwanichsiri S. Properties of Cassava Starch Modified by Amylomaltase fromCorynebacterium glutamicum. J Food Sci 2016; 81:C1363-9. [DOI: 10.1111/1750-3841.13305] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 03/08/2016] [Accepted: 03/15/2016] [Indexed: 11/30/2022]
Affiliation(s)
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Dept. of Biochemistry, Faculty of Science; Chulalongkorn Univ; Bangkok 10330 Thailand
| | - Kalaya Laohasongkram
- Dept. of Food Technology; Faculty of Science, Chulalongkorn Univ; Bangkok 10330 Thailand
| | | |
Collapse
|
40
|
Radeloff MA, Beck RH. “Clean label” – Starches and their functional diversity. SUGAR INDUSTRY-ZUCKERINDUSTRIE 2016. [DOI: 10.36961/si17334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Modern starch milling technologies not only produce the common native starches from corn, wheat, potato and cassava but also can extend the range of commercially available starches by native starch specialities such as waxy and high amylose varieties of corn, potato, pea and rice starch. The functionality of these native starches in form of swelling and gelling characteristics is defined by botanical characteristics such as granule size, amylose-, phosphate and lipid content. The diversity of these native starch functionalities can be extended by physical and enzymatic starch modification techniques. Pregelatinized starches are obtained by drum and roll drying, extrusion or spray cooking often complemented by agglomeration. Heat moisture treatment and annealing result in cold water swelling granular starches and resistant starch, respectively. This extended range of clean label functional native starches is successively replacing E-number coded chemically modified food starch additives from the ingredient list of modern convenience and processed foods.
Collapse
|
41
|
Ahmad N, Mehboob S, Rashid N. Starch-processing enzymes — emphasis on thermostable 4-α-glucanotransferases. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Acceptor specificity of amylomaltase from Corynebacterium glutamicum and transglucosylation reaction to synthesize palatinose glucosides. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Sorndech W, Meier S, Jansson AM, Sagnelli D, Hindsgaul O, Tongta S, Blennow A. Synergistic amylomaltase and branching enzyme catalysis to suppress cassava starch digestibility. Carbohydr Polym 2015; 132:409-18. [DOI: 10.1016/j.carbpol.2015.05.084] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022]
|
44
|
Bharath Kumar S, Prabhasankar P. Chemically modified wheat flours in noodle processing: effect on in vitro starch digestibility and glycemic index. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2015. [DOI: 10.1007/s11694-015-9266-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Jiang H, Miao M, Ye F, Jiang B, Zhang T. Enzymatic modification of corn starch with 4-α-glucanotransferase results in increasing slow digestible and resistant starch. Int J Biol Macromol 2014; 65:208-14. [DOI: 10.1016/j.ijbiomac.2014.01.044] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/09/2014] [Accepted: 01/17/2014] [Indexed: 10/25/2022]
|
46
|
Bharath Kumar S, Prabhasankar P. Low glycemic index ingredients and modified starches in wheat based food processing: A review. Trends Food Sci Technol 2014. [DOI: 10.1016/j.tifs.2013.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Blennow A, Jensen SL, Shaik SS, Skryhan K, Carciofi M, Holm PB, Hebelstrup KH, Tanackovic V. Future Cereal Starch Bioengineering: Cereal Ancestors Encounter Gene Technology and Designer Enzymes. Cereal Chem 2013. [DOI: 10.1094/cchem-01-13-0010-fi] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Andreas Blennow
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Corresponding author. Phone: +45 35333304. Fax: +45 35333333. E-mail:
| | - Susanne L. Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
| | - Shahnoor S. Shaik
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
| | - Katsiaryna Skryhan
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
| | - Massimiliano Carciofi
- Department of Molecular Biology and Genetics, Section of Crop Genetics and Biotechnology, Aarhus University, Denmark
| | - Preben B. Holm
- Department of Molecular Biology and Genetics, Section of Crop Genetics and Biotechnology, Aarhus University, Denmark
| | - Kim H. Hebelstrup
- Department of Molecular Biology and Genetics, Section of Crop Genetics and Biotechnology, Aarhus University, Denmark
| | - Vanja Tanackovic
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
| |
Collapse
|
48
|
Abstract
This article surveys methods for the enzymatic conversion of starch, involving hydrolases and nonhydrolyzing enzymes, as well as the role of microorganisms producing such enzymes. The sources of the most common enzymes are listed. These starch conversions are also presented in relation to their applications in the food, pharmaceutical, pulp, textile, and other branches of industry. Some sections are devoted to the fermentation of starch to ethanol and other products, and to the production of cyclodextrins, along with the properties of these products. Light is also shed on the enzymes involved in the digestion of starch in human and animal organisms. Enzymatic processes acting on starch are useful in structural studies of the substrates and in understanding the characteristics of digesting enzymes. One section presents the application of enzymes to these problems. The information that is included covers the period from the early 19th century up to 2009.
Collapse
|
49
|
van der Maarel MJ, Leemhuis H. Starch modification with microbial alpha-glucanotransferase enzymes. Carbohydr Polym 2013; 93:116-21. [DOI: 10.1016/j.carbpol.2012.01.065] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/09/2012] [Accepted: 01/19/2012] [Indexed: 12/25/2022]
|
50
|
Jensen SL, Larsen FH, Bandsholm O, Blennow A. Stabilization of semi-solid-state starch by branching enzyme-assisted chain-transfer catalysis at extreme substrate concentration. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2012.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|