1
|
Hassan F, Mu B, Yang Y. Natural polysaccharides and proteins-based films for potential food packaging and mulch applications: A review. Int J Biol Macromol 2024; 261:129628. [PMID: 38272415 DOI: 10.1016/j.ijbiomac.2024.129628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/17/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Conventional nondegradable packaging and mulch films, after reaching the end of their use, become a major source of waste and are primarily disposed of in landfills. Accumulation of non-degradable film residues in the soil leads to diminished soil fertility, reduced crop yield, and can potentially affect humans. Application of degradable films is still limited due to the high cost, poor mechanical, and gas barrier properties of current biobased synthetic polymers. In this respect, natural polysaccharides and proteins can offer potential solutions. Having versatile functional groups, three-dimensional network structures, biodegradability, ease of processing, and the potential for surface modifications make polysaccharides and proteins excellent candidates for quality films. Besides, their low-cost availability as industrial waste/byproducts makes them cost-effective alternatives. This review paper covers the performance properties, cost assessment, and in-depth analysis of macromolecular structures of some natural polysaccharides and proteins-based films that have great potential for packaging and mulch applications. Proper dissolution of biopolymers to improve molecular interactions and entanglement, and establishment of crosslinkages to form an ordered and cohesive polymeric structure can help to obtain films with good properties. Simple aqueous-based film formulation techniques and utilization of waste/byproducts can stimulate the adoption of affordable biobased films on a large-scale.
Collapse
Affiliation(s)
- Faqrul Hassan
- Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States
| | - Bingnan Mu
- Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States
| | - Yiqi Yang
- Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States; Department of Biological Systems Engineering, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States.
| |
Collapse
|
2
|
Gamage A, Thiviya P, Mani S, Ponnusamy PG, Manamperi A, Evon P, Merah O, Madhujith T. Environmental Properties and Applications of Biodegradable Starch-Based Nanocomposites. Polymers (Basel) 2022; 14:polym14214578. [PMID: 36365571 PMCID: PMC9656360 DOI: 10.3390/polym14214578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2022] Open
Abstract
In recent years, the demand for environmental sustainability has caused a great interest in finding novel polymer materials from natural resources that are both biodegradable and eco-friendly. Natural biodegradable polymers can displace the usage of petroleum-based synthetic polymers due to their renewability, low toxicity, low costs, biocompatibility, and biodegradability. The development of novel starch-based bionanocomposites with improved properties has drawn specific attention recently in many applications, including food, agriculture, packaging, environmental remediation, textile, cosmetic, pharmaceutical, and biomedical fields. This paper discusses starch-based nanocomposites, mainly with nanocellulose, chitin nanoparticles, nanoclay, and carbon-based materials, and their applications in the agriculture, packaging, biomedical, and environment fields. This paper also focused on the lifecycle analysis and degradation of various starch-based nanocomposites.
Collapse
Affiliation(s)
- Ashoka Gamage
- Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Correspondence: (A.G.); (O.M.); Tel.: +94-714430714 (A.G.); +33-5-3432-3523 (O.M.)
| | - Punniamoorthy Thiviya
- Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Sudhagar Mani
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| | | | - Asanga Manamperi
- Department of Chemical Engineering, College of Engineering, Kettering University, Flint, MI 48504-6214, USA
| | - Philippe Evon
- Laboratoire de Chimie Agro-Industrielle (LCA), Institut National de la Recherche Agronomique, Université de Toulouse, CEDEX 4, 31030 Toulouse, France
| | - Othmane Merah
- Laboratoire de Chimie Agro-Industrielle (LCA), Institut National de la Recherche Agronomique, Université de Toulouse, CEDEX 4, 31030 Toulouse, France
- Département Génie Biologique, IUT A, Université Paul Sabatier, 32000 Auch, France
- Correspondence: (A.G.); (O.M.); Tel.: +94-714430714 (A.G.); +33-5-3432-3523 (O.M.)
| | - Terrence Madhujith
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| |
Collapse
|
3
|
Merino D, Zych A, Athanassiou A. Biodegradable and Biobased Mulch Films: Highly Stretchable PLA Composites with Different Industrial Vegetable Waste. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46920-46931. [PMID: 36198101 PMCID: PMC9585519 DOI: 10.1021/acsami.2c10965] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Highly stretchable biobased and biodegradable agricultural mulch films based on polylactic acid (PLA) and 10, 20, or 30 wt % various nonedible vegetable wastes such as spinach stems (SS), tomato pomace (TP), and cocoa shells (CS) are prepared and characterized in this work. The results demonstrate that appropriate PLA plasticization and vegetable waste addition allow for obtaining films suitable for mulching with tensile strengths in the 10-24 MPa range and elongations at break up to 460%, depending on the kind and amount of vegetable waste incorporated. Additionally, the developed mulches show low water solubility (1-15 wt %) and moisture content (1-3 wt %) with a water vapor permeability of up to 3 × 10-10 g s-1 m-1 Pa-1, similar to that of Mater-Bi. In addition, the type of vegetable waste added as filler were demonstrated to significantly affect not only the films' mentioned properties but also their biodegradability. For instance, films prepared with 20 wt % SS were demonstrated to improve PLA soil biodegradability, which increased from 0 to 38 wt % for PLA composites after 6 months of a soil burial experiment. Lastly, the developed composites contain different amounts of plant micro- and macronutrients, indicating their potential as fertilizers. The results found in this work represent a sustainable, fully biobased alternative to other mulches already in the market.
Collapse
|
4
|
Tafa TG, Engida AM. Preparation of green film with improved physicochemical properties and enhanced antimicrobial activity using ingredients from cassava peel, bamboo leaf and rosemary leaf. Heliyon 2022; 8:e10130. [PMID: 36033319 PMCID: PMC9399486 DOI: 10.1016/j.heliyon.2022.e10130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/02/2022] [Accepted: 07/28/2022] [Indexed: 11/24/2022] Open
Abstract
Persistent petroleum based plastic polymers are posing a threat to the environment and human health. Hence, preparation of eco-friendly packaging materials from natural sources is innovative idea to replace persistent plastic films. However, biodegradable films from biomass absorb water that can promote bacterial growth and affect lifetime of film as well as the packed products. In this work, new biodegradable film with improved antimicrobial activity, physicochemical property and less water absorbing and holding property is prepared from modified blend of cassava peel starch (CPS), silica nanoparticle (SNP), glycerol plus rosemary essential oil (REO). The mixture (blend) of CPS, SNPs and glycerol in measured amount of distilled water was treated with acetic anhydride to reduce hydrophilic nature of the blend before adding REO. The content of SNPs in the biofilm was optimized by varying the concentration of SNPs (0.2–0.8%; w/w) keeping other factors constant. Based on the characterization results, the physicochemical property of the biofilms was dependent on the content of SNPs and the best result (film) has been found with 0.6% SNPs which was considered as optimum amount for further experiments. The film prepared from modified blend with 0.6% SNP had shown low water absorption, low water vapor transition rate, improved thermal stability, and less biodegradability. Based on the image from profilometer, the modified blend had shown better homogeneity with REO than unmodified blend and the film with REO had shown better antimicrobial activity as compared to the film without REO (control). The antimicrobial activity of the film with REO was also compared with reference (gentamicin) and its activity was comparable and promising. In general, the prepared film had shown improved physicochemical properties and enhanced antimicrobial activity.
Collapse
Affiliation(s)
- Teklu Gadisa Tafa
- Department of Industrial Chemistry, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Adam Mekonnen Engida
- Department of Industrial Chemistry, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.,Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Akhir MAM, Mustapha M. Formulation of Biodegradable Plastic Mulch Film for Agriculture Crop Protection: A Review. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2041031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Maisara Azad Mat Akhir
- School of Materials and Mineral Resources Engineering, University Sains Malaysia, Nibong Tebal, Penang, Malaysia
- Fakulti Teknologi Kejuruteraan Kimia, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
| | - Mariatti Mustapha
- School of Materials and Mineral Resources Engineering, University Sains Malaysia, Nibong Tebal, Penang, Malaysia
| |
Collapse
|
6
|
A review of recent advances in starch-based materials: Bionanocomposites, pH sensitive films, aerogels and carbon dots. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
7
|
Degradable photo-crosslinked starch-based films with excellent shape memory property. Int J Biol Macromol 2021; 193:1685-1693. [PMID: 34748788 DOI: 10.1016/j.ijbiomac.2021.10.227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 11/21/2022]
Abstract
With the increasingly serious plastic pollution, people's demand for the multi-functional biodegradable plastics is becoming more and more urgent. Inspired by the crosslinked shape memory polymers, the crosslinked starch films were synthesized by inducing the decomposition of benzophenone into free radical and depriving hydrogen on starch macromolecules under UV irradiation, in order to gain a high shape memory performance. The results showed that a three-dimensional crosslinking network between starch macromolecule chains was formed. Compared with the uncrosslinked starch films, the photo-crosslinked films not only had higher mechanical property (tensile strength increased by 154%), but also had better water resistance (water contact angle from 60° to 87°) due to the reduction of free hydroxyl groups. In addition, the stable covalent bonds serving as netpoints endow photo-crosslinked films with great improvement in shape memory property, with nearly 180° bending recovery. More importantly, the maximum shape memory fixity ratio (Rf) and shape memory recovery ratio (Rr) under stretch deformation were 96.5% and 99.8%, respectively. And the Rf and Rr could reach 94.6% and 79.8% even at higher strain. In all, the excellent shape memory performance and good degradability crosslinked starch films, which have great potential application in disposable heat-shrinkable packaging materials.
Collapse
|
8
|
Abstract
Marine sources are gaining popularity and attention as novel materials for manufacturing biopolymers such as proteins and polysaccharides. Due to their biocompatibility, biodegradability, and non-toxicity features, these biopolymers have been claimed to be beneficial in the development of food packaging materials. Several studies have thoroughly researched the extraction, isolation, and latent use of marine biopolymers in the fabrication of environmentally acceptable packaging. Thus, a review was designed to provide an overview of (a) the chemical composition, unique properties, and extraction methods of marine biopolymers; (b) the application of marine biopolymers in film and coating development for improved shelf-life of packaged foods; (c) production flaws and proposed solutions for better isolation of marine biopolymers; (d) methods of preparation of edible films and coatings from marine biopolymers; and (e) safety aspects. According to our review, these biopolymers would make a significant component of a biodegradable food packaging system, reducing the amount of plastic packaging used and resulting in considerable environmental and economic benefits.
Collapse
|
9
|
Rivadeneira-Velasco KE, Utreras-Silva CA, Díaz-Barrios A, Sommer-Márquez AE, Tafur JP, Michell RM. Green Nanocomposites Based on Thermoplastic Starch: A Review. Polymers (Basel) 2021; 13:polym13193227. [PMID: 34641042 PMCID: PMC8512963 DOI: 10.3390/polym13193227] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022] Open
Abstract
The development of bio-based materials has been a consequence of the environmental awareness generated over time. The versatility of native starch is a promising starting point for manufacturing environmentally friendly materials. This work aims to compile information on the advancements in research on thermoplastic starch (TPS) nanocomposites after the addition of mainly these four nanofillers: natural montmorillonite (MMT), organically modified montmorillonite (O-MMT), cellulose nanocrystals (CNC), and cellulose nanofibers (CNF). The analyzed properties of nanocomposites were mechanical, barrier, optical, and degradability. The most important results were that as the nanofiller increases, the TPS modulus and strength increase; however, the elongation decreases. Furthermore, the barrier properties indicate that that the incorporation of nanofillers confers superior hydrophobicity. However, the optical properties (transparency and luminosity) are mostly reduced, and the color variation is more evident with the addition of these fillers. The biodegradability rate increases with these nanocompounds, as demonstrated by the study of the method of burial in the soil. The results of this compilation show that the compatibility, proper dispersion, and distribution of nanofiller through the TPS matrix are critical factors in overcoming the limitations of starch when extending the applications of these biomaterials. TPS nanocomposites are materials with great potential for improvement. Exploring new sources of starch and natural nano-reinforcement could lead to a genuinely eco-friendly material that can replace traditional polymers in applications such as packaging.
Collapse
|
10
|
Merino D, Bertolacci L, Paul UC, Simonutti R, Athanassiou A. Avocado Peels and Seeds: Processing Strategies for the Development of Highly Antioxidant Bioplastic Films. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38688-38699. [PMID: 34346668 PMCID: PMC8397233 DOI: 10.1021/acsami.1c09433] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/23/2021] [Indexed: 05/28/2023]
Abstract
The industrial processing of avocados annually generates more than 1.2 million tons of avocado peels (APs) and avocado seeds (ASs) that have great potential in the production of active bioplastics, although they have never been considered for this aim until now. Separately, the APs and ASs, as well as a combination of avocado peels and seeds (APSs), were evaluated here for the first time for the preparation of antioxidant films, with application in food packaging. Films were prepared by casting, after their processing by three different methods: (1) hydrolysis in acid media, (2) hydrolysis followed by plasticization, and (3) hydrolysis and plasticization followed by blending with pectin polymers in different proportions (25 and 50 wt %). The results indicate that the combination of hydrolysis, plasticization, and pectin blending is essential to obtain materials with competitive mechanical properties, optical clarity, excellent oxygen barrier properties, high antioxidant activity, biodegradability, and migration of components in TENAX suitable for food contact applications. In addition, the materials prepared with APSs are advantageous from the point of view of the industrial waste valorization, since the entire avocado wastes are used for the production of bioplastics, avoiding further separation processes for their valorization.
Collapse
Affiliation(s)
- Danila Merino
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genoa 16163, Italy
| | - Laura Bertolacci
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genoa 16163, Italy
| | - Uttam C. Paul
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genoa 16163, Italy
| | - Roberto Simonutti
- Dipartimento
di Scienza dei Materiali, Università
di Milano-Bicocca, Via
Roberto Cozzi 55, 20125 Milano, Italy
| | | |
Collapse
|
11
|
Stasi E, Giuri A, Ferrari F, Armenise V, Colella S, Listorti A, Rizzo A, Ferraris E, Esposito Corcione C. Biodegradable Carbon-based Ashes/Maize Starch Composite Films for Agricultural Applications. Polymers (Basel) 2020; 12:polym12030524. [PMID: 32121560 PMCID: PMC7182920 DOI: 10.3390/polym12030524] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/16/2022] Open
Abstract
The aim of this work is the development and characterization of biodegradable thermoplastic recycled carbon ashes/maize starch (TPAS) composite films for agricultural applications. A proper plasticizer, that is, glycerol, was added to a commercial maize starch in an amount of 35 wt.%. Carbon-based ashes were produced by the biomass pyro-gasification plant CMD ECO 20, starting from lignocellulosic wastes. The ashes were added to glycerol and maize native starch at different amounts ranging from 7 wt. % to 21 wt.%. The composite was mixed at 130 °C for 10 min and then molded. The effect of the different amounts of carbon based ashes on the thermal and physical-mechanical properties of the composite was assessed by using several techniques, such as rheology, wide- angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), moisture absorption, degradation and mechanical tests. The presence of the carbon waste ashes allows to improve thermal and durability performances of the thermoplastic starch (TPS) films. It reduces the water absorption of starch matrix and strongly decreases the deterioration of starch, independently from fillers amount, enhancing the lifetime of the TPS films in outdoor conditions. In addition, the waste carbon ashes/maize starch films present an advantage in comparison to those of neat starch; it can biodegrade, releasing the plant nutrients contained in the ashes into the soil. In conclusion, this approach for recycling carbon waste ashes increases the efficiency of industrial waste management, along with a reduction of its impact on the environment.
Collapse
Affiliation(s)
- Enrica Stasi
- Dipartimento di Ingegneria dell’Innovazione, Università del Salento, 73100 Lecce, Italy; (E.S.); (F.F.)
| | - Antonella Giuri
- Istituto di Nanotecnologia CNR-Nanotec c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy; (A.G.); (A.L.); (A.R.)
| | - Francesca Ferrari
- Dipartimento di Ingegneria dell’Innovazione, Università del Salento, 73100 Lecce, Italy; (E.S.); (F.F.)
| | - Vincenza Armenise
- Dipartimento di Chimica, Università di Bari “A. Moro”, via Orabona, 4, 70126 Bari, Italy;
| | - Silvia Colella
- Istituto di Nanotecnologia CNR-Nanotec c/o Dipartimento di Chimica, Università di Bari “A. Moro”, via Orabona, 4, 70126 Bari, Italy;
| | - Andrea Listorti
- Istituto di Nanotecnologia CNR-Nanotec c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy; (A.G.); (A.L.); (A.R.)
- Dipartimento di Chimica, Università di Bari “A. Moro”, via Orabona, 4, 70126 Bari, Italy;
| | - Aurora Rizzo
- Istituto di Nanotecnologia CNR-Nanotec c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy; (A.G.); (A.L.); (A.R.)
| | - Eleonora Ferraris
- Department of Mechanical Engineering, Campus de Nayer, 2860 KU Leuven, Belgium;
| | - Carola Esposito Corcione
- Dipartimento di Ingegneria dell’Innovazione, Università del Salento, 73100 Lecce, Italy; (E.S.); (F.F.)
- Istituto di Nanotecnologia CNR-Nanotec c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy; (A.G.); (A.L.); (A.R.)
- Correspondence:
| |
Collapse
|
12
|
Development and properties of new kojic acid and chitosan composite biodegradable films for active packaging materials. Int J Biol Macromol 2020; 144:483-490. [DOI: 10.1016/j.ijbiomac.2019.12.126] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 01/09/2023]
|