1
|
Solgi M, Bagnazari M, Mohammadi M, Azizi A. Thymbra spicata extract and arbuscular mycorrhizae improved the morphophysiological traits, biochemical properties, and essential oil content and composition of Rosemary (Rosmarinus officinalis L.) under salinity stress. BMC PLANT BIOLOGY 2025; 25:220. [PMID: 39966716 PMCID: PMC11834213 DOI: 10.1186/s12870-025-06221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Enhancing the content of essential oils and valuable secondary metabolites is a primary goal for medicinal plant breeders. In this study, the effects of Thymbra spicata extract at concentrations of 0% (C), 10% (TS1), and 20% (TS2), along with mycorrhizal fungus (MF) biofertilizer at a rate of 50 g/2.5 kg of soil, were evaluated on the growth, photosynthetic pigments, relative water content (RWC), proline, protein, malondialdehyde (MDA), catalase (CAT), phenylalanine ammonia-lyase (PAL), and essential oil content and composition of Rosmarinus officinalis L. under varying salinity stress levels of 0 mM (S0), 100 mM (S1), and 200 mM (S2) NaCl. The experiment was conducted as a factorial study within a completely randomized design, with three replications. RESULTS As salinity stress increased, the yield and growth characteristics of the plants declined. However, the applied treatments effectively mitigated the negative effects of salinity. The highest chlorophyll a, b, and total chlorophyll contents were observed in the TS2 + MF treatment under nonsaline conditions. Under S2 salinity stress, carotenoid and anthocyanin contents increased by 38.29% and 11.11%, respectively, with the use of TS2 + MF. Under S1 stress conditions, the proline and soluble sugar content increased by 268% and 44%, respectively, in the MF treatment. Essential oil content was enhanced by 80.43% with the TS2 + MF treatment under S1 stress. Essential oil analysis showed significant increases in camphene (9.71%), β-pinene (43.75%), α-phellandrene (13.3%), geranyl acetate (156%), cineole (21.39%), and β-linalool (5.12%) in the TS2 + MF treatment compared to the control under S1 stress conditions. CONCLUSIONS Among all the treatments, the combined application of TS2 and MF proved to be the most effective in enhancing the morphophysiological and biochemical characteristics of rosemary plants. This treatment not only boosted the production of essential oils and secondary metabolites but also mitigated the detrimental effects of salinity stress. Therefore, it is recommended as a beneficial agricultural practice for improving the productivity and quality of rosemary plants under salinity stress.
Collapse
Affiliation(s)
- Mojtaba Solgi
- Department of Horticultural Sciences, College of Agriculture, Ilam University, Ilam, 69311, Iran
| | - Majid Bagnazari
- Department of Horticultural Sciences, College of Agriculture, Ilam University, Ilam, 69311, Iran.
| | - Meisam Mohammadi
- Department of Horticultural Sciences, College of Agriculture, Ilam University, Ilam, 69311, Iran
| | - Afsaneh Azizi
- Department of Horticultural Sciences, College of Agriculture, Shahid Chamran University, Ahvaz, Iran
| |
Collapse
|
2
|
Vinod Kumar J, Saha Chowdhury R, Kantamraju P, Dutta S, Pal K, Ghosh S, Das S, Mandal R, Datta S, Choudhury A, Mandal S, Sahana N. Anthocyanin profiling of genetically diverse pigmented potato ( Solanum tuberosum L.) clonal accessions from north-eastern sub-Himalayan plateau of India. Heliyon 2024; 10:e36730. [PMID: 39281522 PMCID: PMC11399594 DOI: 10.1016/j.heliyon.2024.e36730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024] Open
Abstract
White-fleshed potatoes have health concerns due to high glycemic index. Native and unexplored pigmented potato landraces may offer adequate and future smart alternatives with a balanced nutritional profile. Twenty-five pigmented potato clonal accessions across the eastern sub-Himalayan plateau of India were collected, purified and categorized into 'Badami' (UBAC) and 'Deshi' (UDAC) types. Evaluation of different nutritional attributes revealed that pigmented UBAC accessions are boosted with, high total dietary fibre, and total anthocyanin content and have remarkably low reducing sugar and glycemic index. Non-targeted LC-MS analysis identified caffeoyl and coumaroyl derivatives of delphinidin and petunidin glycosides, as major classes of anthocyanin compounds in pigmented potato accessions. HPLC-mediated quantification revealed high contents of delphinidin in the majority of accessions along with the selective presence of other anthocyanins. Selected accession was found to have polyphenolic compounds like gallic acid, vanillic acid, cinnamic acid and quercetin. The genetic cluster analysis of clonal accessions divided these genotypes into five major clusters. An ISSR repeat motif (AGG)6 was tightly linked with the total anthocyanin content of the accessions in Single Marker Analysis. Altogether, these native pigmented potato accessions offer a nutritious and healthy alternative to the conventional white-fleshed potato genotypes.
Collapse
Affiliation(s)
- Jammugani Vinod Kumar
- Department of Biochemistry, Uttar Banga Krishi Viswavidyalaya, Pundibari, 736165, Cooch Behar, West Bengal, India
| | - Riman Saha Chowdhury
- Department of Vegetable and Spice Crops, Uttar Banga Krishi Viswavidyalaya, Pundibari, 736165, Cooch Behar, West Bengal, India
- Department of Horticulture, School of Agriculture and Allied Sciences, The Neotia University, Sarisha, Diamond Harbour, West Bengal, India
| | - Prudveesh Kantamraju
- Department of Biochemistry, Uttar Banga Krishi Viswavidyalaya, Pundibari, 736165, Cooch Behar, West Bengal, India
| | - Subir Dutta
- Department of Genetics and Plant Breeding, Uttar Banga Krishi Viswavidyalaya, Pundibari, 736165, Cooch Behar, West Bengal, India
| | - Kumaresh Pal
- Department of Biochemistry, Uttar Banga Krishi Viswavidyalaya, Pundibari, 736165, Cooch Behar, West Bengal, India
| | - Srinjoy Ghosh
- Department of Biochemistry, Uttar Banga Krishi Viswavidyalaya, Pundibari, 736165, Cooch Behar, West Bengal, India
| | - Simanta Das
- Department of Biochemistry, Uttar Banga Krishi Viswavidyalaya, Pundibari, 736165, Cooch Behar, West Bengal, India
| | - Rupsanatan Mandal
- Department of Genetics and Plant Breeding, Uttar Banga Krishi Viswavidyalaya, Pundibari, 736165, Cooch Behar, West Bengal, India
- DNA Fingerprinting Laboratory, Regional Research Station, Terai Zone, Uttar Banga Krishi Viswavidyalaya, Cooch Behar, West Bengal, India
| | - Suchand Datta
- Department of Vegetable and Spice Crops, Uttar Banga Krishi Viswavidyalaya, Pundibari, 736165, Cooch Behar, West Bengal, India
| | - Ashok Choudhury
- Soil Microbiology Laboratory, Regional Research Station, Terai Zone, Uttar Banga Krishi Viswavidyalaya, Cooch Behar, West Bengal, India
| | - Somnath Mandal
- Department of Biochemistry, Uttar Banga Krishi Viswavidyalaya, Pundibari, 736165, Cooch Behar, West Bengal, India
| | - Nandita Sahana
- Department of Biochemistry, Uttar Banga Krishi Viswavidyalaya, Pundibari, 736165, Cooch Behar, West Bengal, India
| |
Collapse
|
3
|
Jiang X, Gu Y, Zhang L, Sun J, Yan J, Wang C, Lai B, Wu H. Physicochemical Properties of Granular and Gelatinized Lotus Rhizome Starch with Varied Proximate Compositions and Structural Characteristics. Foods 2023; 12:4330. [PMID: 38231847 DOI: 10.3390/foods12234330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
As a traditional and popular dietary supplement, lotus rhizome starch (LRS) has health benefits for its many nutritional components and is especially suitable for teenagers and seniors. In this paper, the approximate composition, apparent amylose content (AAC), and structural characteristics of five LRS samples from different regions were investigated, and their correlations with the physicochemical properties of granular and gelatinized LRS were revealed. LRS exhibited rod-shaped and ellipsoidal starch granules, with AAC ranging from 26.6% to 31.7%. LRS-3, from Fuzhou, Jiangxi Province, exhibited a deeper hydrogel color and contained more ash, with 302.6 mg/kg iron, and it could reach the pasting temperature of 62.6 °C. In comparison, LRS-5, from Baoshan, Yunnan Province, exhibited smoother granule surface, less fragmentation, and higher AAC, resulting in better swelling power and freeze-thaw stability. The resistant starch contents of LRS-3 and LRS-5 were the lowest (15.3%) and highest (69.7%), respectively. The enzymatic digestion performance of LRS was positively correlated with ash content and short- and long-term ordered structures but negatively correlated with AAC. Furthermore, the color and network firmness of gelatinized LRS was negatively correlated with its ash content, and the retrograde trend and freeze-thaw stability were more closely correlated with AAC and structural characteristics. These results revealed the physicochemical properties of LRS from different regions and suggested their advantages in appropriate applications as a hydrogel matrix.
Collapse
Affiliation(s)
- Xinyu Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yiting Gu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lichao Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Jinjian Sun
- Dalian Center for Food and Drug Control and Certification, Dalian 116037, China
| | - Jianan Yan
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ce Wang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Bin Lai
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Haitao Wu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
4
|
Haider MW, Nafees M, Iqbal R, Asad HU, Azeem F, Ali B, Shaheen G, Iqbal J, Vyas S, Arslan M, Rahman MHU, Elshikh MS, Ali MA. Postharvest starch and sugars adjustment in potato tubers of wide-ranging dormancy genotypes subjected to various sprout forcing techniques. Sci Rep 2023; 13:14845. [PMID: 37684294 PMCID: PMC10491617 DOI: 10.1038/s41598-023-37711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/26/2023] [Indexed: 09/10/2023] Open
Abstract
The development of an efficient, safe, and environment-friendly technique to terminate tuber dormancy in potatoes (Solanum tuberosum L.) is of great concern due to the immense scope of multiple cropping all over the globe. The breakage of tuber dormancy has been associated with numerous physiological changes, including a decline in the level of starch and an increase in the levels of sugars during storage of freshly harvested seed potatoes, although their consistency across genotypes and various dormancy-breaking techniques have not yet been fully elucidated. The purpose of the present research is to assess the efficacy of four different dormancy-breaking techniques, such as soaking in 90, 60, or 30 mg L-1 solutions of benzyl amino purine (BAP) and 30, 20, or 10 mg L-1 gibberellic acid (GA3) alone and in the combination of optimized concentrations; cold pre-treatment at 6, 4, or 2 °C; electric shock at 80, 60, 40, or 20 Vs; and irradiation at 3.5, 3, 2.5, 2, 1.5, or 1 kGy on the tuber dormancy period and sprout length of six genotypes. Furthermore, the changes that occurred in tuber weight and endogenous starch, sucrose, fructose, and glucose contents in experimental genotypes following the application of these techniques were also examined. Overall, the most effective technique to terminate tuber dormancy and hasten spout growth was the combined application of BAP and GA3, which reduced the length of dormancy by 9.6 days compared to the untreated control, following 6.7 days of electric current, 4.4 days of cold pre-treatment, and finally irradiation (3.3 days). The 60 mg L-1 solution of BAP greatly reduced the dormancy period in all genotypes but did not affect the sprout length at all. The genotypes showed a weak negative correlation (r = - 0.4) (P < 0.05) of endogenous starch contents with dormancy breakage and weight loss or a moderate (r = - 0.5) correlation with sprout length, but a strong positive correlation (r = 0.8) of tuber glucose, fructose, and sucrose contents with dormancy breakage and weight loss. During 3 weeks of storage, sprouting commencement and significant weight loss occurred as tuber dormancy advanced towards breakage due to a reduction in starch and an increase in the sucrose, fructose, and glucose contents of the tubers. These findings could be advantageous for postponing or accelerating seed potato storage as well as investigating related physiological research in the future.
Collapse
Affiliation(s)
- Muhammad Wasim Haider
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Muhammad Nafees
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Habat Ullah Asad
- Centre for Agriculture and Bioscience International, Rawalpindi, 46300, Pakistan
| | - Farrukh Azeem
- Agri Development, Fauji Fresh N Freeze Ltd, Gulberg II, Lahore, 48000, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Ghazala Shaheen
- Department of Eastern Medicine, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Javed Iqbal
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Shweta Vyas
- Department of Pure and Applied Chemistry, University of Kota, Kota, Rajasthan, 324001, India
| | - Muhammad Arslan
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, 53115, Bonn, Germany
| | - Muhammad Habib Ur Rahman
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, 53115, Bonn, Germany.
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
5
|
Schmidt M, Begemann J, Weber L, Gattner C, Smit I. Genotype specific starch characteristics in relation to resistant starch formation in table potatoes. Food Funct 2023; 14:7096-7108. [PMID: 37458480 DOI: 10.1039/d3fo01626a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Table potatoes are important staple foods with a higher satiety index than rice or pasta, but also reach a higher glycemic index (GI), leading to contradictory dietary recommendations. Previous studies identified resistant starch (RS) content as primary criterium for the GI. Hence, the relevance of starch molecular properties for genotype specific RS formation was investigated. Six common table potato varieties were used to investigate the starch pasting and digestibility in whole tubers and their isolated starches. A Micro-Visco Amylograph was used to simulate the cooking process for isolated starches and determine their pasting curves. In vitro starch digestibility was determined for raw freeze-dried cooked tubers kept at 4 °C for up to 72 h and for isolated starches. Moreover, important molecular starch properties, including granule size distribution, molar mass distribution, amylose content and inter- and intra-molecular structures were determined. The results show substantial differences in starch digestibility and pasting characteristics among genotypes. Soraya starch showed small and low-branched amylopectin and small granule size as characteristics for rapid RS formation in isolated starch, which was not evident in the whole tuber. In contrast, Huckleberry Gold formed RS in the tuber already shortly after cooking, whereas slow RS formation was evident in the isolated starch. The results suggest, that starch structural characteristics play a role in RS formation, but non-starch constituents of the tuber have to be considered as well. The results help to identify breeding goals for varieties with low GI and high nutritional value.
Collapse
Affiliation(s)
- Marcus Schmidt
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Cereals, Detmold, Germany.
| | - Jens Begemann
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Cereals, Detmold, Germany.
| | - Lydia Weber
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Cereals, Detmold, Germany.
| | - Christian Gattner
- NORIKA Nordring-Kartoffelzucht- und Vermehrungs-GmbH Groß Lüsewitz Parkweg 4, 18190 Sanitz, Germany
| | - Inga Smit
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Cereals, Detmold, Germany.
| |
Collapse
|
6
|
Tiwari RK, Lal MK, Kumar R, Sharma S, Sagar V, Kumar A, Singh B, Aggarwal R. Impact of Fusarium Infection on Potato Quality, Starch Digestibility, In Vitro Glycemic Response, and Resistant Starch Content. J Fungi (Basel) 2023; 9:jof9040466. [PMID: 37108920 PMCID: PMC10144655 DOI: 10.3390/jof9040466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Potato dry rot disease caused by multiple Fusarium species is a major global concern in potato production. In this investigation, the tubers of cultivars Kufri Jyoti and Kufri Frysona were artificially inoculated with an individual or combined inoculum of Fusarium sambucinum and Fusarium solani. Fusarium sambucinum caused a significantly higher lesion development (p < 0.01) than Fusarium solani, irrespective of cultivars. The combined inoculum of both the Fusarium species caused significantly higher rot development (p < 0.005) in inoculated tubers. Analyses of starch and amylose content revealed that individual or mixed infection of fungi caused a significant reduction (p < 0.005) in these parameters compared to healthy tubers. The increased starch digestibility due to fungal infection caused a higher glycemic index and glycemic load. The resistant starch also deteriorated in the infected potato tubers as compared to the control. Kufri Jyoti showed a higher starch and amylose content reduction in response to the treatments compared to Kufri Frysona. The correlation analysis demonstrated a negative correlation in lesion diameter and rot volume with starch and amylose content (p < -0.80). However, the glycemic index and resistant starch were positively correlated with lesion development. Altogether, these findings highlight the progressive deterioration of quality parameters, which will be a critical concern for processing industry stakeholders and consumers.
Collapse
Affiliation(s)
- Rahul Kumar Tiwari
- Division of Plant Protection, ICAR-Central Potato Research Institute, Shimla 171001, India
- Division of Plant Pathology, ICAR-Indian Agriculture Research Institute, New Delhi 110012, India
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry and Postharvest Technology, ICAR-Central Potato Research Institute, Shimla 171001, India
| | - Ravinder Kumar
- Division of Plant Protection, ICAR-Central Potato Research Institute, Shimla 171001, India
| | - Sanjeev Sharma
- Division of Plant Protection, ICAR-Central Potato Research Institute, Shimla 171001, India
| | - Vinay Sagar
- Division of Plant Protection, ICAR-Central Potato Research Institute, Shimla 171001, India
| | - Awadhesh Kumar
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Brajesh Singh
- Division of Crop Physiology, Biochemistry and Postharvest Technology, ICAR-Central Potato Research Institute, Shimla 171001, India
| | - Rashmi Aggarwal
- Division of Plant Pathology, ICAR-Indian Agriculture Research Institute, New Delhi 110012, India
| |
Collapse
|
7
|
Development of Reverse Transcription Recombinase Polymerase Amplification (RT-RPA): A Methodology for Quick Diagnosis of Potato Leafroll Viral Disease in Potato. Int J Mol Sci 2023; 24:ijms24032511. [PMID: 36768834 PMCID: PMC9916786 DOI: 10.3390/ijms24032511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Potatoes are developed vegetatively from tubers, and therefore potato virus transmission is always a possibility. The potato leafroll virus (PLRV) is a highly devastating virus of the genus Polerovirus and family Luteoviridae and is regarded as the second-most destructive virus after Potato virus Y. Multiple species of aphids are responsible for the persistent and non-propagating transmission of PLRV. Due to intrinsic tuber damage (net necrosis), the yield and quality are drastically diminished. PLRV is mostly found in phloem cells and in extremely low amounts. Therefore, we have attempted to detect PLRV in both potato tuber and leaves using a highly sensitive, reliable and cheap method of one-step reverse transcription-recombinase polymerase amplification (RT-RPA). In this study, an isothermal amplification and detection approach was used for efficient results. Out of the three tested primer sets, one efficiently amplified a 153-bp product based on the coat protein gene. In the present study, there was no cross-reactivity with other potato viruses and the optimal amplification reaction time was thirty minutes. The products of RT-RPA were amplified at a temperature between 38 and 42 °C using a simple heating block/water bath. The present developed protocol of one-step RT-RPA was reported to be highly sensitive for both leaves and tuber tissues equally in comparison to the conventional reverse transcription-polymerase chain reaction (RT-PCR) method. By using template RNA extracted employing a cellular disc paper-based extraction procedure, the method was not only simplified but it detected the virus as effectively as purified total RNA. The simplified one-step RT-RPA test was proven to be successful by detecting PLRV in 129 samples of various potato cultivars (each consisting of leaves and tubers). According to our knowledge, this is the first report of a one-step RT-RPA performed using simple RNA extracted from cellular disc paper that is equally sensitive and specific for detecting PLRV in potatoes. In terms of versatility, durability and the freedom of a highly purified RNA template, the one-step RT-RPA assay exceeds the RT-PCR assay, making it an effective alternative for the certification of planting materials, breeding for virus resistance and disease monitoring.
Collapse
|
8
|
Title: The Diversity of Phytic acid content and grain processing play decisive role on minerals bioavailability in rice. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Impacts of Pretreatment Techniques on the Quality of Tuber Flours. ScientificWorldJournal 2022; 2022:9323694. [PMID: 35795013 PMCID: PMC9252694 DOI: 10.1155/2022/9323694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/17/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Besides dietary sources of energy, roots and tuber crops can also serve as functional foods and nutraceutical ingredients to be explored in disease risk reduction and wellness. However, they are easily spoiled because of their high moisture contents and enzymatic reactions. Therefore, this review aimed at gathering information on the effects of various pretreatment methods on the quality of tuber crops before converting them into flour. Studies reported by different scholars showed that there were significant differences in physicochemical and functional properties between untreated tuber and the treated tuber samples. The review also highlighted that the chemical treatment methods, particularly sulfite treatment, could increase the lightness value of the flour. In addition, blanching could induce a decrease in protein, ash, and fat. Despite this, blanching pretreatment techniques increased moisture and carbohydrate content. Chemical treatment increases the ash content, which might be responsible for chemical diffusion into the sample. The reviewed results showed that the application of different pretreatments on tuber crops significantly improves many quality characteristics such as color, fiber content, carbohydrate, and the functional properties used for value addition during food product development in the industry. Therefore, application of pretreatment methods particularly chemical treatments could enhance nutritional value, and functional and physical properties of tuber flours.
Collapse
|
10
|
Kumar D, Lal MK, Dutt S, Raigond P, Changan SS, Tiwari RK, Chourasia KN, Mangal V, Singh B. Functional Fermented Probiotics, Prebiotics, and Synbiotics from Non-Dairy Products: A Perspective from Nutraceutical. Mol Nutr Food Res 2022; 66:e2101059. [PMID: 35616160 DOI: 10.1002/mnfr.202101059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/11/2022] [Indexed: 12/24/2022]
Abstract
The current trend of health-conscious consumers and healthy food habits prompts researchers to explore developing food products with synbiotic benefits. Synbiotic foods have gained popularity in recent years due to their functional, nutritional, physiological, and therapeutic characteristics. Lactose intolerance, dyslipidemia, and allergic milk proteins become the barriers in the development of dairy probiotics. The present scenario of an increase in the demand for vegetarian products leads to a rise in the consumption of non-dairy probiotics. Prebiotics like, resistant starch, inulin, and polyphenols are selectively used by gut microbiota to enhance the selection and colonization of probiotics bacteria. Probiotic's action mechanisms include the production of bacteriocins, peptides, short-chain fatty acids, amino acids, vitamins, and other metabolites. Therefore, this review article explores the alternative sources of probiotics so it will help to an understanding of non-dairy based functional fermented foods for both pro and prebiotics. Dietary fibers in vegetables, fruits, and cereals are one of prospective prebiotics and highlighted the various methods for making non-dairy synbiotics based on dietary fibers, such as microencapsulation, freeze-drying, and spray drying is also addressed.
Collapse
Affiliation(s)
- Dharmendra Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Som Dutt
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Pinky Raigond
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | | | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Kumar Nishant Chourasia
- ICAR-Central Research Institute for Jute and Allied Fibres, Kolkata, West Bengal, 700120, India
| | - Vikas Mangal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| |
Collapse
|
11
|
Combinatorial interactive effect of vegetable and condiments with potato on starch digestibility and estimated in vitro glycemic response. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01354-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Chourasia KN, More SJ, Kumar A, Kumar D, Singh B, Bhardwaj V, Kumar A, Das SK, Singh RK, Zinta G, Tiwari RK, Lal MK. Salinity responses and tolerance mechanisms in underground vegetable crops: an integrative review. PLANTA 2022; 255:68. [PMID: 35169941 DOI: 10.1007/s00425-022-03845-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/25/2022] [Indexed: 05/04/2023]
Abstract
The present review gives an insight into the salinity stress tolerance responses and mechanisms of underground vegetable crops. Phytoprotectants, agronomic practices, biofertilizers, and modern biotechnological approaches are crucial for salinity stress management. Underground vegetables are the source of healthy carbohydrates, resistant starch, antioxidants, vitamins, mineral, and nutrients which benefit human health. Soil salinity is a serious threat to agriculture that severely affects the growth, development, and productivity of underground vegetable crops. Salt stress induces several morphological, anatomical, physiological, and biochemical changes in crop plants which include reduction in plant height, leaf area, and biomass. Also, salinity stress impedes the growth of the underground organs, which ultimately reduces crop yield. Moreover, salt stress is detrimental to photosynthesis, membrane integrity, nutrient balance, and leaf water content. Salt tolerance mechanisms involve a complex interplay of several genes, transcription factors, and proteins that are involved in the salinity tolerance mechanism in underground crops. Besides, a coordinated interaction between several phytoprotectants, phytohormones, antioxidants, and microbes is needed. So far, a comprehensive review of salinity tolerance responses and mechanisms in underground vegetables is not available. This review aims to provide a comprehensive view of salt stress effects on underground vegetable crops at different levels of biological organization and discuss the underlying salt tolerance mechanisms. Also, the role of multi-omics in dissecting gene and protein regulatory networks involved in salt tolerance mechanisms is highlighted, which can potentially help in breeding salt-tolerant underground vegetable crops.
Collapse
Affiliation(s)
- Kumar Nishant Chourasia
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, West Bengal, India
| | | | - Ashok Kumar
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, India
| | - Dharmendra Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Awadhesh Kumar
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, India
| | | | - Rajesh Kumar Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientifc and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Gaurav Zinta
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.
- Academy of Scientifc and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
13
|
Lal MK, Singh B, Tiwari RK, Kumar S, S G, Gaikwad K, Kumar A, Paul V, Singh MP. Interactive Effect of Retrogradation and Addition of Pulses, Cooking Oil on Predicted Glycemic Index and Resistant Starch of Potato. STARCH-STARKE 2022. [DOI: 10.1002/star.202100221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Milan Kumar Lal
- Division of Plant Physiology ICAR‐Indian Agricultural Research Insitute (ICAR‐IARI) New Delhi 110012 India
- Division of Crop Physiology Biochemistry and Post‐Harvest Technology ICAR‐Central Potato Research Institute (ICAR‐CPRI) Shimla Himachal Pradesh 171001 India
| | - Brajesh Singh
- Division of Crop Physiology Biochemistry and Post‐Harvest Technology ICAR‐Central Potato Research Institute (ICAR‐CPRI) Shimla Himachal Pradesh 171001 India
| | - Rahul Kumar Tiwari
- Division of Plant Physiology ICAR‐Indian Agricultural Research Insitute (ICAR‐IARI) New Delhi 110012 India
- Division of Crop Physiology Biochemistry and Post‐Harvest Technology ICAR‐Central Potato Research Institute (ICAR‐CPRI) Shimla Himachal Pradesh 171001 India
| | - Sudhir Kumar
- Division of Plant Physiology ICAR‐Indian Agricultural Research Insitute (ICAR‐IARI) New Delhi 110012 India
| | - Gopalakrishnan S
- Division of Genetics ICAR‐Indian Agricultural Research Institute (ICAR‐IARI) New Delhi 110012 India
| | - Kishore Gaikwad
- ICAR‐National Institute for Plant Biotechnology (ICAR‐NIPB) New Delhi 110012 India
| | - Awadhesh Kumar
- Division of Crop Physiology and Biochemistry ICAR‐National Rice Research Institute, (ICAR‐NRRI) Cuttack 753006 India
| | - Vijay Paul
- Division of Plant Physiology ICAR‐Indian Agricultural Research Insitute (ICAR‐IARI) New Delhi 110012 India
| | - Madan Pal Singh
- Division of Plant Physiology ICAR‐Indian Agricultural Research Insitute (ICAR‐IARI) New Delhi 110012 India
| |
Collapse
|
14
|
Chourasia KN, Lal MK, Tiwari RK, Dev D, Kardile HB, Patil VU, Kumar A, Vanishree G, Kumar D, Bhardwaj V, Meena JK, Mangal V, Shelake RM, Kim JY, Pramanik D. Salinity Stress in Potato: Understanding Physiological, Biochemical and Molecular Responses. Life (Basel) 2021; 11:life11060545. [PMID: 34200706 PMCID: PMC8228783 DOI: 10.3390/life11060545] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/20/2022] Open
Abstract
Among abiotic stresses, salinity is a major global threat to agriculture, causing severe damage to crop production and productivity. Potato (Solanum tuberosum) is regarded as a future food crop by FAO to ensure food security, which is severely affected by salinity. The growth of the potato plant is inhibited under salt stress due to osmotic stress-induced ion toxicity. Salinity-mediated osmotic stress leads to physiological changes in the plant, including nutrient imbalance, impairment in detoxifying reactive oxygen species (ROS), membrane damage, and reduced photosynthetic activities. Several physiological and biochemical phenomena, such as the maintenance of plant water status, transpiration, respiration, water use efficiency, hormonal balance, leaf area, germination, and antioxidants production are adversely affected. The ROS under salinity stress leads to the increased plasma membrane permeability and extravasations of substances, which causes water imbalance and plasmolysis. However, potato plants cope with salinity mediated oxidative stress conditions by enhancing both enzymatic and non-enzymatic antioxidant activities. The osmoprotectants, such as proline, polyols (sorbitol, mannitol, xylitol, lactitol, and maltitol), and quaternary ammonium compound (glycine betaine) are synthesized to overcome the adverse effect of salinity. The salinity response and tolerance include complex and multifaceted mechanisms that are controlled by multiple proteins and their interactions. This review aims to redraw the attention of researchers to explore the current physiological, biochemical and molecular responses and subsequently develop potential mitigation strategies against salt stress in potatoes.
Collapse
Affiliation(s)
- Kumar Nishant Chourasia
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; (M.K.L.); (R.K.T.); (H.B.K.); (V.U.P.); (G.V.); (D.K.); (V.B.); (V.M.)
- Correspondence: (K.N.C.); (D.P.)
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; (M.K.L.); (R.K.T.); (H.B.K.); (V.U.P.); (G.V.); (D.K.); (V.B.); (V.M.)
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; (M.K.L.); (R.K.T.); (H.B.K.); (V.U.P.); (G.V.); (D.K.); (V.B.); (V.M.)
| | - Devanshu Dev
- School of Agricultural Sciences, G D Goenka University, Gurugram 122103, Haryana, India;
| | - Hemant Balasaheb Kardile
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; (M.K.L.); (R.K.T.); (H.B.K.); (V.U.P.); (G.V.); (D.K.); (V.B.); (V.M.)
| | - Virupaksh U. Patil
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; (M.K.L.); (R.K.T.); (H.B.K.); (V.U.P.); (G.V.); (D.K.); (V.B.); (V.M.)
| | - Amarjeet Kumar
- Department of Genetics and Plant Breeding, MTTC&VTC, Central Agriculture University, Imphal 795004, Manipur, India;
| | - Girimalla Vanishree
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; (M.K.L.); (R.K.T.); (H.B.K.); (V.U.P.); (G.V.); (D.K.); (V.B.); (V.M.)
| | - Dharmendra Kumar
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; (M.K.L.); (R.K.T.); (H.B.K.); (V.U.P.); (G.V.); (D.K.); (V.B.); (V.M.)
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; (M.K.L.); (R.K.T.); (H.B.K.); (V.U.P.); (G.V.); (D.K.); (V.B.); (V.M.)
| | - Jitendra Kumar Meena
- ICAR-Central Research Institute for Jute and Allied Fibres, Kolkata 700120, West Bengal, India;
| | - Vikas Mangal
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; (M.K.L.); (R.K.T.); (H.B.K.); (V.U.P.); (G.V.); (D.K.); (V.B.); (V.M.)
| | - Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; (R.M.S.); (J.-Y.K.)
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; (R.M.S.); (J.-Y.K.)
| | - Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; (R.M.S.); (J.-Y.K.)
- Correspondence: (K.N.C.); (D.P.)
| |
Collapse
|
15
|
Tiwari RK, Kumar R, Sharma S, Sagar V, Aggarwal R, Naga KC, Lal MK, Chourasia KN, Kumar D, Kumar M. Potato dry rot disease: current status, pathogenomics and management. 3 Biotech 2020; 10:503. [PMID: 33163322 DOI: 10.1007/s13205-020-02496-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Potato dry rot disease caused by Fusarium species is a major threat to global potato production. The soil and seed-borne diseases influence the crop stand by inhibiting the development of potato sprouts and cause severe rots in seed tubers, table and processing purpose potatoes in cold stores. The symptoms of the dry rot include sunken and wrinkled brown to black tissue patches on tubers having less dry matter and shriveled flesh. Fungal infection accompanied by toxin development in the rotten tubers raises more concern for consumer health. The widespread dry rot causing fungal species (Fusarium graminearum) is reported to have a hemibiotrophic lifestyle. A cascade of enzymes, toxins and small secreted proteins are involved in the pathogenesis of these hemibiotrophs. With the availability of the genome sequence of the most devastating species Fusarium sambucinum, it is important to identify the potential pathogenicity factors and small secreted proteins that will help in designing management strategies. Limited resistant cultivars and the emergence of fungicide-resistant strains have made it more threatening for potato cultivation and trade. Several novel fungicide molecules (Azoxystrobin, chlorothalonil and fludioxonil), are found very effective as tuber treatment chemicals. Besides, many beneficial bioagents and safer chemicals have shown antibiosis and mycoparasitism against this pathogen. Germplasm screening for dry rot resistance is important to assist the resistance breeding program for the development of resistant cultivars. This review aims to draw attention to the symptomatology, infection process, pathogenomics, the role of toxins and management approaches for potato dry rot disease, which is very much critical in designing better management strategies.
Collapse
Affiliation(s)
- Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171 001 India
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171 001 India
| | - Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171 001 India
| | - Vinay Sagar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171 001 India
| | - Rashmi Aggarwal
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | | | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171 001 India
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | | | - Dharmendra Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171 001 India
| | - Manoj Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171 001 India
| |
Collapse
|