1
|
Guan S, Xin Y, Ren K, Wang H, Dong J, Wang H, Zhang J, Xu X, Yao B, Zhao L, Peng R. Mechanism of Microwave Radiation-Induced Learning and Memory Impairment Based on Hippocampal Metabolomics. Brain Sci 2024; 14:441. [PMID: 38790420 PMCID: PMC11118611 DOI: 10.3390/brainsci14050441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
The brain is complex and metabolically active, and the detection of metabolites plays an important role in brain development and diseases. Currently, there is a lack of research on the metabolic spectrum changes in learning and memory impairment, and hippocampal damage induced by microwave radiation from the metabolic perspective. Aiming to provide sensitive indicators for microwave radiation-induced brain damage and establish a foundation for understanding its injury mechanisms, this study employed non-targeted metabolomics to investigate metabolic fluctuations and key metabolic pathway alterations in rats' hippocampal tissue after microwave radiation. The memory and spatial exploration abilities of rats decreased after radiation. The postsynaptic densities were thickened in the MW group. The cholesterol sulfate, SM(d16:1/24:1(15Z)), and linoelaidylcarnitine were significantly increased after radiation, whereas etrahydrocorticosterone, L-phenylalanine, and histamine were significantly decreased after radiation. These metabolites were enriched in signaling pathways related to the inflammatory mediator regulation of transient receptor potential (TRP) channels, neuroactive ligand-receptor interaction, steroid hormone biosynthesis, and phenylalanine, tyrosine, and tryptophan biosynthesis. These findings indicate that microwave radiation causes spatial learning and memory dysfunction in rats and structural damage to hippocampal tissue.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.G.); (L.Z.)
| |
Collapse
|
2
|
Daramola O, Gutierrez Reyes CD, Chávez-Reyes J, Marichal-Cancino BA, Nwaiwu J, Onigbinde S, Adeniyi M, Solomon J, Bhuiyan MMAA, Mechref Y. Metabolomic Changes in Rat Serum after Chronic Exposure to Glyphosate-Based Herbicide. Metabolites 2024; 14:50. [PMID: 38248853 PMCID: PMC10819816 DOI: 10.3390/metabo14010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Glyphosate-based herbicides (GBHs) have gained extensive popularity in recent decades. For many years, glyphosate has been regarded as harmless or minimally toxic to mammals due to the absence of its primary target, the shikimic acid pathway in humans. Nonetheless, mounting evidence suggests that glyphosate may cause adverse health effects in humans via other mechanisms. In this study, we described the metabolomic changes in the serum of experimental rats exposed to chronic GBH using the highly sensitive LC-MS/MS technique. We investigated the possible relationship between chronic exposure to GBH and neurological disorders. Our findings suggest that chronic exposure to GBH can alter spatial learning memory and the expression of some important metabolites that are linked to neurophysiological disorders in young rats, with the female rats showing higher susceptibility compared to the males. This indicates that female rats are more likely to show early symptoms of the disorder on exposure to chronic GBH compared to male rats. We observed that four important metabolites (paraxanthine, epinephrine, L-(+)-arginine, and D-arginine) showed significant changes and involvement in neurological changes as suggested by ingenuity pathway analysis. In conclusion, our results indicate that chronic exposure to GBH can increase the risk of developing neurological disorders.
Collapse
Affiliation(s)
- Oluwatosin Daramola
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Cristian D. Gutierrez Reyes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Jesús Chávez-Reyes
- Center of Basic Sciences, Department of Physiology and Pharmacology, Universidad Autónoma de Aguascalientes, Ags, CP 20131, Mexico; (J.C.-R.); (B.A.M.-C.)
| | - Bruno A. Marichal-Cancino
- Center of Basic Sciences, Department of Physiology and Pharmacology, Universidad Autónoma de Aguascalientes, Ags, CP 20131, Mexico; (J.C.-R.); (B.A.M.-C.)
| | - Judith Nwaiwu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Moyinoluwa Adeniyi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Joy Solomon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Md Mostofa Al Amin Bhuiyan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (O.D.); (C.D.G.R.); (J.N.); (S.O.); (M.A.); (J.S.); (M.M.A.A.B.)
| |
Collapse
|
3
|
Wang J, Liu B, Sun F, Xu Y, Luan H, Yang M, Wang C, Zhang T, Zhou Z, Yan H. Histamine H3R antagonist counteracts the impaired hippocampal neurogenesis in Lipopolysaccharide-induced neuroinflammation. Int Immunopharmacol 2022; 110:109045. [DOI: 10.1016/j.intimp.2022.109045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 11/05/2022]
|
4
|
Valle-Bautista R, Márquez-Valadez B, Herrera-López G, Griego E, Galván EJ, Díaz NF, Arias-Montaño JA, Molina-Hernández A. Long-Term Functional and Cytoarchitectonic Effects of the Systemic Administration of the Histamine H1 Receptor Antagonist/Inverse Agonist Chlorpheniramine During Gestation in the Rat Offspring Primary Motor Cortex. Front Neurosci 2022; 15:740282. [PMID: 35140581 PMCID: PMC8820484 DOI: 10.3389/fnins.2021.740282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Abstract
The transient histaminergic system is among the first neurotransmitter systems to appear during brain development in the rat mesencephalon/rhombencephalon. Histamine increases FOXP2-positive deep-layer neuron differentiation of cortical neural stem cells through H1 receptor activation in vitro. The in utero or systemic administration of chlorpheniramine (H1 receptor antagonist/inverse agonist) during deep-layer cortical neurogenesis decreases FOXP2 neurons in the developing cortex, and H1R- or histidine decarboxylase-knockout mice show impairment in learning and memory, wakefulness and nociception, functions modulated by the cerebral cortex. Due to the role of H1R in cortical neural stem cell neurogenesis, the purpose of this study was to evaluate the postnatal impact of the systemic administration of chlorpheniramine during deep-layer cortical neuron differentiation (E12–14) in the primary motor cortex (M1) of neonates (P0) and 21-day-old pups (P21). Chlorpheniramine or vehicle were systemically administered (5 mg/kg, i.p.) to pregnant Wistar rats at gestational days 12–14, and the expression and distribution of deep- (FOXP2 and TBR1) and superficial-layer (SATB2) neuronal cortical markers were analyzed in neonates from both groups. The qRT-PCR analysis revealed a reduction in the expression of Satb2 and FoxP2. However, Western blot and immunofluorescence showed increased protein levels in the chlorpheniramine-treated group. In P21 pups, the three markers showed impaired distribution and increased immunofluorescence in the experimental group. The Sholl analysis evidenced altered dendritic arborization of deep-layer neurons, with lower excitability in response to histamine, as evaluated by whole-cell patch-clamp recording, as well as diminished depolarization-evoked [3H]-glutamate release from striatal slices. Overall, these results suggest long-lasting effects of blocking H1Rs during early neurogenesis that may impact the pathways involved in voluntary motor activity and cognition.
Collapse
Affiliation(s)
- Rocío Valle-Bautista
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Subdirección de Investigación Biomédica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Berenice Márquez-Valadez
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Subdirección de Investigación Biomédica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Gabriel Herrera-López
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ernesto Griego
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Emilio J. Galván
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Néstor-Fabián Díaz
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Subdirección de Investigación Biomédica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Anayansi Molina-Hernández
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Subdirección de Investigación Biomédica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
- *Correspondence: Anayansi Molina-Hernández, ; orcid.org/0000-0002-4787-312X
| |
Collapse
|
5
|
Histamine in the Crosstalk Between Innate Immune Cells and Neurons: Relevance for Brain Homeostasis and Disease. Curr Top Behav Neurosci 2021; 59:261-288. [PMID: 34432259 DOI: 10.1007/7854_2021_235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Histamine is a biogenic amine playing a central role in allergy and peripheral inflammatory reactions and acts as a neurotransmitter and neuromodulator in the brain. In the adult, histamine is produced mainly by mast cells and hypothalamic neurons, which project their axons throughout the brain. Thus, histamine exerts a range of functions, including wakefulness control, learning and memory, neurogenesis, and regulation of glial activity. Histamine is also known to modulate innate immune responses induced by brain-resident microglia cells and peripheral circulating monocytes, and monocyte-derived cells (macrophages and dendritic cells). In physiological conditions, histamine per se causes mainly a pro-inflammatory phenotype while counteracting lipopolysaccharide-induced inflammation both in microglia, monocytes, and monocyte-derived cells. In turn, the activation of the innate immune system can profoundly affect neuronal survival and function, which plays a critical role in the onset and development of brain disorders. Therefore, the dual role of histamine/antihistamines in microglia and monocytes/macrophages is relevant for identifying novel putative therapeutic strategies for brain diseases. This review focuses on the effects of histamine in innate immune responses and the impact on neuronal survival, function, and differentiation/maturation, both in physiological and acute (ischemic stroke) and chronic neurodegenerative conditions (Parkinson's disease).
Collapse
|
6
|
Carthy E, Ellender T. Histamine, Neuroinflammation and Neurodevelopment: A Review. Front Neurosci 2021; 15:680214. [PMID: 34335160 PMCID: PMC8317266 DOI: 10.3389/fnins.2021.680214] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
The biogenic amine, histamine, has been shown to critically modulate inflammatory processes as well as the properties of neurons and synapses in the brain, and is also implicated in the emergence of neurodevelopmental disorders. Indeed, a reduction in the synthesis of this neuromodulator has been associated with the disorders Tourette's syndrome and obsessive-compulsive disorder, with evidence that this may be through the disruption of the corticostriatal circuitry during development. Furthermore, neuroinflammation has been associated with alterations in brain development, e.g., impacting synaptic plasticity and synaptogenesis, and there are suggestions that histamine deficiency may leave the developing brain more vulnerable to proinflammatory insults. While most studies have focused on neuronal sources of histamine it remains unclear to what extent other (non-neuronal) sources of histamine, e.g., from mast cells and other sources, can impact brain development. The few studies that have started exploring this in vitro, and more limited in vivo, would indicate that non-neuronal released histamine and other preformed mediators can influence microglial-mediated neuroinflammation which can impact brain development. In this Review we will summarize the state of the field with regard to non-neuronal sources of histamine and its impact on both neuroinflammation and brain development in key neural circuits that underpin neurodevelopmental disorders. We will also discuss whether histamine receptor modulators have been efficacious in the treatment of neurodevelopmental disorders in both preclinical and clinical studies. This could represent an important area of future research as early modulation of histamine from neuronal as well as non-neuronal sources may provide novel therapeutic targets in these disorders.
Collapse
Affiliation(s)
- Elliott Carthy
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Tommas Ellender
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
7
|
Weir K, Kim DW, Blackshaw S. A potential role for somatostatin signaling in regulating retinal neurogenesis. Sci Rep 2021; 11:10962. [PMID: 34040115 PMCID: PMC8155210 DOI: 10.1038/s41598-021-90554-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Neuropeptides have been reported to regulate progenitor proliferation and neurogenesis in the central nervous system. However, these studies have typically been conducted using pharmacological agents in ex vivo preparations, and in vivo evidence for their developmental function is generally lacking. Recent scRNA-Seq studies have identified multiple neuropeptides and their receptors as being selectively expressed in neurogenic progenitors of the embryonic mouse and human retina. This includes Sstr2, whose ligand somatostatin is transiently expressed by immature retinal ganglion cells. By analyzing retinal explants treated with selective ligands that target these receptors, we found that Sstr2-dependent somatostatin signaling induces a modest, dose-dependent inhibition of photoreceptor generation, while correspondingly increasing the relative fraction of primary progenitor cells. These effects were confirmed by scRNA-Seq analysis of retinal explants but abolished in Sstr2-deficient retinas. Although no changes in the relative fraction of primary progenitors or photoreceptor precursors were observed in Sstr2-deficient retinas in vivo, scRNA-Seq analysis demonstrated accelerated differentiation of neurogenic progenitors. We conclude that, while Sstr2 signaling may act to negatively regulate retinal neurogenesis in combination with other retinal ganglion cell-derived secreted factors such as Shh, it is dispensable for normal retinal development.
Collapse
Affiliation(s)
- Kurt Weir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
8
|
Volonté C, Apolloni S, Sabatelli M. Histamine beyond its effects on allergy: Potential therapeutic benefits for the treatment of Amyotrophic Lateral Sclerosis (ALS). Pharmacol Ther 2019; 202:120-131. [PMID: 31233766 DOI: 10.1016/j.pharmthera.2019.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
Abstract
ALS currently remains a challenge despite many efforts in performing successful clinical trials and formulating therapeutic solutions. By learning from current failures and striving for success, scientists and clinicians are checking every possibility to search for missing hints and efficacious treatments. Because the disease is very complex and heterogeneous and, moreover, targeting not only motor neurons but also several different cell types including muscle, glial, and immune cells, the right answer to ALS is conceivably a multidrug strategy or the use of broad-spectrum molecules. The aim of the present work is to gather evidence about novel perspectives on ALS pathogenesis and to present recent and innovative paradigms for therapy. In particular, we describe how an old molecule possessing immunomodulatory and neuroprotective functions beyond its recognized effects on allergy, histamine, might have a renewed and far-reaching momentum in ALS.
Collapse
Affiliation(s)
- Cinzia Volonté
- CNR-Institute of Cell Biology and Neurobiology/UCSC, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Santa Lucia IRCCS, Preclinical Neuroscience, Via Del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Savina Apolloni
- Fondazione Santa Lucia IRCCS, Preclinical Neuroscience, Via Del Fosso di Fiorano 65, 00143 Rome, Italy
| | - Mario Sabatelli
- Institute of Neurology-Catholic University of Sacro Cuore, Clinic Center NEMO- Fondazione Pol. A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy
| |
Collapse
|
9
|
Histamine modulates hippocampal inflammation and neurogenesis in adult mice. Sci Rep 2019; 9:8384. [PMID: 31182747 PMCID: PMC6558030 DOI: 10.1038/s41598-019-44816-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/24/2019] [Indexed: 01/30/2023] Open
Abstract
Evidence points to a dual role of histamine in microglia-mediated neuroinflammation, a key pathological feature of several neurodegenerative pathologies. Moreover, histamine has been suggested as a modulator of adult neurogenesis. Herein, we evaluated the effect of histamine in hippocampal neuroinflammation and neurogenesis under physiological and inflammatory contexts. For that purpose, mice were intraperitoneally challenged with lipopolysaccharide (LPS) followed by an intrahippocampal injection of histamine. We showed that histamine per se triggered glial reactivity and induced mild long-term impairments in neurogenesis, reducing immature neurons dendritic volume and complexity. Nevertheless, in mice exposed to LPS (2 mg/Kg), histamine was able to counteract LPS-induced glial activation and release of pro-inflammatory molecules as well as neurogenesis impairment. Moreover, histamine prevented LPS-induced loss of immature neurons complexity as well as LPS-induced loss of both CREB and PSD-95 proteins (essential for proper neuronal activity). Altogether, our results highlight histamine as a potential therapeutic agent to treat neurological conditions associated with hippocampal neuroinflammation and neurodegeneration.
Collapse
|
10
|
Vargas-Romero F, González-Barrios R, Guerra-Calderas L, Escobedo-Avila I, Cortés-Pérez D, López-Ornelas A, Rocha L, Soto-Reyes E, Velasco I. Histamine Modulates Midbrain Dopamine Neuron Differentiation Through the Regulation of Epigenetic Marks. Front Cell Neurosci 2019; 13:215. [PMID: 31178697 PMCID: PMC6536891 DOI: 10.3389/fncel.2019.00215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/29/2019] [Indexed: 01/18/2023] Open
Abstract
During midbrain development, dopamine neuron differentiation occurs before birth. Epigenetic processes such as DNA methylation and demethylation as well as post-translational modification of histones occur during neurogenesis. Here, we administered histamine (HA) into the brain of E12 embryos in vivo and observed significant lower immunoreactivity of Lmx1a+ and Tyrosine Hydroxylase (TH)+ cells, with parallel decreases in the expression of early (Lmx1a, Msx1) and late (Th) midbrain dopaminergic (mDA) genes. With MeDIP assays we found that HA decreases the percentage of 5-methylcytosine of Pitx3 and Th, without changes in 5-hydroxymethylcytosine. Additionally, HA treatment caused a significant increase in the repressive epigenetic modifications H3K9me3 in Pitx3 and Th, and also more H3K27me3 marks in Th. Furthermore, HA has a long-term effect on the formation of the nigrostriatal and mesolimbic/mesocortical pathways, since it causes a significant decrease in midbrain TH immunoreactivity, as well as alterations in dopaminergic neuronal fibers, and significant lower TH-positive area in the forebrain in whole-mount stainings. These findings suggest that HA diminishes dopaminergic gene transcription by altering several epigenetic components related to DNA and histone modifications, which affects mDA neuron progression during development.
Collapse
Affiliation(s)
- Fernanda Vargas-Romero
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lissania Guerra-Calderas
- Departamento de Ciencias Naturales, Universidad Autonoma Metropolitana, Unidad Cuajimalpa, Mexico City, Mexico
| | - Itzel Escobedo-Avila
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez" - Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniel Cortés-Pérez
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez" - Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adolfo López-Ornelas
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez" - Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luisa Rocha
- Departamento de Farmacobiologia, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City, Mexico
| | - Ernesto Soto-Reyes
- Departamento de Ciencias Naturales, Universidad Autonoma Metropolitana, Unidad Cuajimalpa, Mexico City, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez" - Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
11
|
Márquez-Valadez B, Aquino-Miranda G, Quintero-Romero MO, Papacostas-Quintanilla H, Bueno-Nava A, López-Rubalcava C, Díaz NF, Arias-Montaño JA, Molina-Hernández A. The Systemic Administration of the Histamine H 1 Receptor Antagonist/Inverse Agonist Chlorpheniramine to Pregnant Rats Impairs the Development of Nigro-Striatal Dopaminergic Neurons. Front Neurosci 2019; 13:360. [PMID: 31040765 PMCID: PMC6476962 DOI: 10.3389/fnins.2019.00360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/29/2019] [Indexed: 11/13/2022] Open
Abstract
The dopaminergic and histaminergic systems are the first to appear during the development of the nervous system. Through the activation of H1 receptors (H1Rs), histamine increases neurogenesis of the cortical deep layers, while reducing the dopaminergic phenotype (cells immunoreactive to tyrosine hydroxylase, TH+) in embryo ventral mesencephalon. Although the function of histamine in neuronal differentiation has been studied, the role of H1Rs in neurogenesis has not been addressed. For this purpose, the H1R antagonist/inverse agonist chlorpheniramine was systemically administered (5 mg/kg, i.p.) to pregnant Wistar rats (gestational days 12-14, E12-14), and control and experimental embryos (E14 and E16) and pups (21-day-old) were evaluated for changes in nigro-striatal development. Western blot and immunohistochemistry determinations showed a significant increase in the dopaminergic markers' TH and PITX3 in embryos from chlorpheniramine-treated rats at E16. Unexpectedly, 21-day-old pups from the chlorpheniramine-treated group, showed a significant reduction in TH immunoreactivity in the substantia nigra pars compacta and dorsal striatum. Furthermore, striatal dopamine content, evoked [3H]-dopamine release and methamphetamine-stimulated motor activity were significantly lower compared to the control group. These results indicate that H1R blockade at E14-E16 favors the differentiation of dopaminergic neurons, but hampers their migration, leading to a decrease in dopaminergic innervation of the striatum in post-natal life.
Collapse
Affiliation(s)
- Berenice Márquez-Valadez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.,Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Guillermo Aquino-Miranda
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Mijail-Oliver Quintero-Romero
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Helena Papacostas-Quintanilla
- Laboratorio de Psicofarmacología y Trastornos de la Alimentación, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados delInstituto Politécnico Nacional, Mexico City, Mexico
| | - Antonio Bueno-Nava
- División de Neurociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Carolina López-Rubalcava
- Laboratorio de Psicofarmacología y Trastornos de la Alimentación, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados delInstituto Politécnico Nacional, Mexico City, Mexico
| | - Néstor Fabián Díaz
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Anayansi Molina-Hernández
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| |
Collapse
|
12
|
Liao R, Chen Y, Cheng L, Fan L, Chen H, Wan Y, You Y, Zheng Y, Jiang L, Chen Z, Zhang X, Hu W. Histamine H1 Receptors in Neural Stem Cells Are Required for the Promotion of Neurogenesis Conferred by H3 Receptor Antagonism following Traumatic Brain Injury. Stem Cell Reports 2019; 12:532-544. [PMID: 30745032 PMCID: PMC6409425 DOI: 10.1016/j.stemcr.2019.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 01/08/2023] Open
Abstract
The neurological recovery following traumatic brain injury (TBI) is limited, largely due to a deficiency in neurogenesis. The present study explores the effects of histamine H3 receptor (H3R) antagonism on TBI and mechanisms related to neurogenesis. H3R antagonism or H3R gene knockout alleviated neurological injury in the late phase of TBI, and also promoted neuroblast differentiation to enhance neurogenesis through activation of the histaminergic system. Histamine H1 receptor, but not H2 receptor, in neural stem cells is shown to be essential for this promotion by using Hrh1fl/fl;NestinCreERT2 and Hrh2fl/fl;NestinCreERT2 mice. Moreover, increase in mature and functional neurons at the penumbra area conferred by H3R antagonism was abrogated in Hrh1fl/fl;NestinCreERT2 mice. Taken together, H3R antagonism provides neuroprotection against TBI in the late phase through the promotion of neurogenesis, and the H1 receptor in neural stem cells is required for this action. H3R may serve as a new target for clinical treatment of TBI. Histamine H3R antagonism provides neuroprotection against traumatic brain injury H3R antagonism promotes neuroblast differentiation to enhance neurogenesis H1R in NSCs is required for the promotion of neurogenesis H3R antagonism increases mature and functional neurons mediated by H1R in NSCs
Collapse
Affiliation(s)
- Rujia Liao
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Science, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Youchao Chen
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Science, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Li Cheng
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Science, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Lishi Fan
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Science, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Han Chen
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Science, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Yushan Wan
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Science, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Yi You
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Science, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Yanrong Zheng
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Science, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Lei Jiang
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Science, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Zhong Chen
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Science, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Xiangnan Zhang
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Science, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China.
| | - Weiwei Hu
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Science, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Pharmacy of Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China.
| |
Collapse
|
13
|
Zhang W, Wang W, Yu DX, Xiao Z, He Z. Application of nanodiagnostics and nanotherapy to CNS diseases. Nanomedicine (Lond) 2018; 13:2341-2371. [PMID: 30088440 DOI: 10.2217/nnm-2018-0163] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease, Parkinson's disease and stroke are the most common CNS diseases, all characterized by progressive cellular dysfunction and death in specific areas of the nervous system. Therapeutic development for these diseases has lagged behind other disease areas due to difficulties in early diagnosis, long disease courses and drug delivery challenges, not least due to the blood-brain barrier. Over recent decades, nanotechnology has been explored as a potential tool for the diagnosis, treatment and monitoring of CNS diseases. In this review, we describe the application of nanotechnology to common CNS diseases, highlighting disease pathogenesis and the underlying mechanisms and promising functional outcomes that make nanomaterials ideal candidates for early diagnosis and therapy. Moreover, we discuss the limitations of nanotechnology, and possible solutions.
Collapse
Affiliation(s)
- Weiyuan Zhang
- Yunnan Key Laboratory of Stem Cell & Regenerative Medicine, Institute of Molecular & Clinical Medicine, Kunming Medical University, Kunming 650500, PR China
| | - Wenyue Wang
- Department of Anatomy & Developmental Biology, Monash University, Clayton, 3800 Clayton, Melbourne 3800, Australia
| | - David X Yu
- Department of Anatomy & Developmental Biology, Monash University, Clayton, 3800 Clayton, Melbourne 3800, Australia
| | - Zhicheng Xiao
- Department of Anatomy & Developmental Biology, Monash University, Clayton, 3800 Clayton, Melbourne 3800, Australia
| | - Zhiyong He
- Yunnan Key Laboratory of Stem Cell & Regenerative Medicine, Institute of Molecular & Clinical Medicine, Kunming Medical University, Kunming 650500, PR China.,Department of Anatomy & Developmental Biology, Monash University, Clayton, 3800 Clayton, Melbourne 3800, Australia
| |
Collapse
|
14
|
Wasielewska JM, Grönnert L, Rund N, Donix L, Rust R, Sykes AM, Hoppe A, Roers A, Kempermann G, Walker TL. Mast cells increase adult neural precursor proliferation and differentiation but this potential is not realized in vivo under physiological conditions. Sci Rep 2017; 7:17859. [PMID: 29259265 PMCID: PMC5736663 DOI: 10.1038/s41598-017-18184-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/07/2017] [Indexed: 11/09/2022] Open
Abstract
There is growing evidence that both peripheral and resident immune cells play an important part in regulating adult neural stem cell proliferation and neurogenesis, although the contribution of the various immune cell types is still unclear. Mast cells, a population of immune cells known for their role in the allergic response, have been implicated in the regulation of adult hippocampal neurogenesis. Mast cell-deficient c-kitW-sh/W-sh mice have previously been shown to exhibit significantly decreased adult hippocampal neurogenesis and associated learning and memory deficits. However, given that numerous other cell types also express high levels of c-kit, the utility of these mice as a reliable model of mast cell-specific depletion is questionable. We show here, using a different model of mast cell deficiency (Mcpt5CreR26DTA/DTA), that precursor proliferation and adult neurogenesis are not influenced by mast cells in vivo. Interestingly, when applied at supraphysiological doses, mast cells can activate latent hippocampal precursor cells and increase subventricular zone precursor proliferation in vitro, an effect that can be blocked with specific histamine-receptor antagonists. Thus, we conclude that while both mast cells and their major chemical mediator histamine have the potential to affect neural precursor proliferation and neurogenesis, this is unlikely to occur under physiological conditions.
Collapse
Affiliation(s)
- Joanna M Wasielewska
- CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Lisa Grönnert
- CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Nicole Rund
- CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Lukas Donix
- CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Ruslan Rust
- Brain Research Institute ETH and University of Zurich, Zurich, Switzerland
| | - Alexander M Sykes
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anja Hoppe
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Axel Roers
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gerd Kempermann
- CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Tara L Walker
- CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany. .,German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany.
| |
Collapse
|
15
|
Solís KH, Méndez LI, García-López G, Díaz NF, Portillo W, De Nova-Ocampo M, Molina-Hernández A. The Histamine H1 Receptor Participates in the Increased Dorsal Telencephalic Neurogenesis in Embryos from Diabetic Rats. Front Neurosci 2017; 11:676. [PMID: 29311766 PMCID: PMC5735119 DOI: 10.3389/fnins.2017.00676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/20/2017] [Indexed: 01/05/2023] Open
Abstract
Increased neuron telencephalic differentiation during deep cortical layer formation has been reported in embryos from diabetic mice. Transitory histaminergic neurons within the mesencephalon/rhombencephalon are responsible for fetal histamine synthesis during development, fibers from this system arrives to the frontal and parietal cortex at embryo day (E) 15. Histamine is a neurogenic factor for cortical neural stem cells in vitro through H1 receptor (H1R) which is highly expressed during corticogenesis in rats and mice. Furthermore, in utero administration of an H1R antagonist, chlorpheniramine, decreases the neuron markers microtubuline associated protein 2 (MAP2) and forkhead box protein 2. Interestingly, in the diabetic mouse model of diabetes induced with streptozotocin, an increase in fetal neurogenesis in terms of MAP2 expression in the telencephalon is reported at E11.5. Because of the reported effects on cortical neuron differentiation of maternal diabetes in one hand and of histamine in the other, here the participation of histamine and H1R on the increased dorsal telencephalic neurogenesis was explored. First, the increased neurogenesis in the dorsal telencephalon at E14 in diabetic rats was corroborated by immunohistochemistry and Western blot. Then, changes during corticogenesis in the level of histamine was analyzed by ELISA and in H1R expression by qRT-PCR and Western blot and, finally, we tested H1R participation in the increased dorsal telencephalic neurogenesis by the systemic administration of chlorpheniramine. Our results showed a significant increase of histamine at E14 and in the expression of the receptor at E12. The administration of chlorpheniramine to diabetic rats at E12 prevented the increased expression of βIII-tubulin and MAP2 mRNAs (neuron markers) and partially reverted the increased level of MAP2 protein at E14, concluding that H1R have an important role in the increased neurogenesis within the dorsal telencephalon of embryos from diabetic rats. This study opens new perspective on the participation of HA and H1R receptor in early corticogenesis in health and disease.
Collapse
Affiliation(s)
- Karina H Solís
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Mexico City, Mexico.,Programa Institucional de Biomedicina Molecular, Sección de Estudios de Posgrado e Investigación, Insituto Politécnico Nacional, Escuela Nacional de Medicina y Homeopatía, Mexico City, Mexico
| | - Laura I Méndez
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - Néstor F Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - Wendy Portillo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla Querétaro, Mexico
| | - Mónica De Nova-Ocampo
- Programa Institucional de Biomedicina Molecular, Sección de Estudios de Posgrado e Investigación, Insituto Politécnico Nacional, Escuela Nacional de Medicina y Homeopatía, Mexico City, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Mexico City, Mexico
| |
Collapse
|
16
|
Anti-Inflammatory Strategy for M2 Microglial Polarization Using Retinoic Acid-Loaded Nanoparticles. Mediators Inflamm 2017; 2017:6742427. [PMID: 29138531 PMCID: PMC5613690 DOI: 10.1155/2017/6742427] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/06/2017] [Accepted: 07/30/2017] [Indexed: 12/11/2022] Open
Abstract
Inflammatory mechanisms triggered by microglial cells are involved in the pathophysiology of several brain disorders, hindering repair. Herein, we propose the use of retinoic acid-loaded polymeric nanoparticles (RA-NP) as a means to modulate microglia response towards an anti-inflammatory and neuroprotective phenotype (M2). RA-NP were first confirmed to be internalized by N9 microglial cells; nanoparticles did not affect cell survival at concentrations below 100 μg/mL. Then, immunocytochemical studies were performed to assess the expression of pro- and anti-inflammatory mediators. Our results show that RA-NP inhibited LPS-induced release of nitric oxide and the expression of inducible nitric oxide synthase and promoted arginase-1 and interleukin-4 production. Additionally, RA-NP induced a ramified microglia morphology (indicative of M2 state), promoting tissue viability, particularly neuronal survival, and restored the expression of postsynaptic protein-95 in organotypic hippocampal slice cultures exposed to an inflammatory challenge. RA-NP also proved to be more efficient than the free equivalent RA concentration. Altogether, our data indicate that RA-NP may be envisioned as a promising therapeutic agent for brain inflammatory diseases.
Collapse
|
17
|
Abdurakhmanova S, Chary K, Kettunen M, Sierra A, Panula P. Behavioral and stereological characterization of Hdc KO mice: Relation to Tourette syndrome. J Comp Neurol 2017; 525:3476-3487. [PMID: 28681514 DOI: 10.1002/cne.24279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 01/03/2023]
Abstract
A premature termination codon in the human histidine decarboxylase (Hdc) gene has been identified in a family suffering from Guilles de la Tourette syndrome (GTS). In the current study we investigated if mice lacking the histamine producing enzyme HDC share the morphological and cytological phenotype with GTS patients by using magnetic resonance (MRI) and diffusion tensor imaging (DTI), unbiased stereology and immunohistochemistry. Behavior of Hdc knock-out (Hdc KO) mice was assessed in an open field test. The results of stereological, volumetric and DTI analysis measurements showed no significant differences between control and Hdc KO mice. The numbers and distribution of GABAergic parvalbumin or nitric oxide-expressing and cholinergic interneurons were normal in Hdc KO mice. Cortical morphology and layering in adult Hdc KO mice were also preserved. In open field test Hdc KO mice showed impaired exploratory activity and habituation when introduced to novel environment. Our results indicate that Hdc deficiency in mice does not disturb the development of striatal and cortical interneurons and does not lead to the morphological and cytological phenotypes characterized by humans with GTS. Nevertheless, histamine deficiency leads to behavioral alterations probably due to neurotransmitter dysbalance on the level of the striatum.
Collapse
Affiliation(s)
| | - Karthik Chary
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Kettunen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Alejandra Sierra
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pertti Panula
- Department of Anatomy and Neuroscience Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Hu W, Chen Z. The roles of histamine and its receptor ligands in central nervous system disorders: An update. Pharmacol Ther 2017; 175:116-132. [DOI: 10.1016/j.pharmthera.2017.02.039] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Rocha SM, Saraiva T, Cristóvão AC, Ferreira R, Santos T, Esteves M, Saraiva C, Je G, Cortes L, Valero J, Alves G, Klibanov A, Kim YS, Bernardino L. Histamine induces microglia activation and dopaminergic neuronal toxicity via H1 receptor activation. J Neuroinflammation 2016; 13:137. [PMID: 27260166 PMCID: PMC4893260 DOI: 10.1186/s12974-016-0600-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
Background Histamine is an amine widely known as a peripheral inflammatory mediator and as a neurotransmitter in the central nervous system. Recently, it has been suggested that histamine acts as an innate modulator of microglial activity. Herein, we aimed to disclose the role of histamine in microglial phagocytic activity and reactive oxygen species (ROS) production and to explore the consequences of histamine-induced neuroinflammation in dopaminergic (DA) neuronal survival. Methods The effect of histamine on phagocytosis was assessed both in vitro by using a murine N9 microglial cell line and primary microglial cell cultures and in vivo. Cells were exposed to IgG-opsonized latex beads or phosphatidylserine (PS) liposomes to evaluate Fcγ or PS receptor-mediated microglial phagocytosis, respectively. ROS production and protein levels of NADPH oxidases and Rac1 were assessed as a measure of oxidative stress. DA neuronal survival was evaluated in vivo by counting the number of tyrosine hydroxylase-positive neurons in the substantia nigra (SN) of mice. Results We found that histamine triggers microglial phagocytosis via histamine receptor 1 (H1R) activation and ROS production via H1R and H4R activation. By using apocynin, a broad NADPH oxidase (Nox) inhibitor, and Nox1 knockout mice, we found that the Nox1 signaling pathway is involved in both phagocytosis and ROS production induced by histamine in vitro. Interestingly, both apocynin and annexin V (used as inhibitor of PS-induced phagocytosis) fully abolished the DA neurotoxicity induced by the injection of histamine in the SN of adult mice in vivo. Blockade of H1R protected against histamine-induced Nox1 expression and death of DA neurons in vivo. Conclusions Overall, our results highlight the relevance of histamine in the modulation of microglial activity that ultimately may interfere with neuronal survival in the context of Parkinson’s disease (PD) and, eventually, other neurodegenerative diseases which are accompanied by microglia-induced neuroinflammation. Importantly, our results also open promising new perspectives for the therapeutic use of H1R antagonists to treat or ameliorate neurodegenerative processes. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0600-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandra M Rocha
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Tatiana Saraiva
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ana C Cristóvão
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Raquel Ferreira
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Tiago Santos
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Marta Esteves
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Cláudia Saraiva
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Goun Je
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Luísa Cortes
- Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - Jorge Valero
- Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - Gilberto Alves
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Alexander Klibanov
- Division of Cardiovascular Medicine and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Yoon-Seong Kim
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Liliana Bernardino
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal. .,Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
20
|
Saraiva C, Paiva J, Santos T, Ferreira L, Bernardino L. MicroRNA-124 loaded nanoparticles enhance brain repair in Parkinson's disease. J Control Release 2016; 235:291-305. [PMID: 27269730 DOI: 10.1016/j.jconrel.2016.06.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/29/2016] [Accepted: 06/02/2016] [Indexed: 01/17/2023]
Abstract
Modulation of the subventricular zone (SVZ) neurogenic niche can enhance brain repair in several disorders including Parkinson's disease (PD). Herein, we used biocompatible and traceable polymeric nanoparticles (NPs) containing perfluoro-1,5-crown ether (PFCE) and coated with protamine sulfate to complex microRNA-124 (miR-124), a neuronal fate determinant. The ability of NPs to efficiently deliver miR-124 and prompt SVZ neurogenesis and brain repair in PD was evaluated. In vitro, miR-124 NPs were efficiently internalized by neural stem/progenitors cells and neuroblasts and promoted their neuronal commitment and maturation. The expression of Sox9 and Jagged1, two miR-124 targets and stemness-related genes, were also decreased upon miR-124 NP treatment. In vivo, the intracerebral administration of miR-124 NPs increased the number of migrating neuroblasts that reached the granule cell layer of the olfactory bulb, both in healthy and in a 6-hydroxydopamine (6-OHDA) mouse model for PD. MiR-124 NPs were also able to induce migration of neurons into the lesioned striatum of 6-OHDA-treated mice. Most importantly, miR-124 NPs proved to ameliorate motor symptoms of 6-OHDA mice, monitored by the apomorphine-induced rotation test. Altogether, we provide clear evidences to support the use of miR-124 NPs as a new therapeutic approach to boost endogenous brain repair mechanisms in a setting of neurodegeneration.
Collapse
Affiliation(s)
- C Saraiva
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - J Paiva
- CNC-Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal; Biocant - Center of Innovation in Biotechnology, 3060-197 Cantanhede, Portugal
| | - T Santos
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - L Ferreira
- CNC-Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal; Biocant - Center of Innovation in Biotechnology, 3060-197 Cantanhede, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - L Bernardino
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal.
| |
Collapse
|
21
|
Yeo DC, Wiraja C, Zhou Y, Tay HM, Xu C, Hou HW. Interference-free Micro/nanoparticle Cell Engineering by Use of High-Throughput Microfluidic Separation. ACS APPLIED MATERIALS & INTERFACES 2015; 7:20855-20864. [PMID: 26355568 DOI: 10.1021/acsami.5b06167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Engineering cells with active-ingredient-loaded micro/nanoparticles is becoming increasingly popular for imaging and therapeutic applications. A critical yet inadequately addressed issue during its implementation concerns the significant number of particles that remain unbound following the engineering process, which inadvertently generate signals and impart transformative effects onto neighboring nontarget cells. Here we demonstrate that those unbound micro/nanoparticles remaining in solution can be efficiently separated from the particle-labeled cells by implementing a fast, continuous, and high-throughput Dean flow fractionation (DFF) microfluidic device. As proof-of-concept, we applied the DFF microfluidic device for buffer exchange to sort labeled suspension cells (THP-1) from unbound fluorescent dye and dye-loaded micro/nanoparticles. Compared to conventional centrifugation, the depletion efficiency of free dyes or particles was improved 20-fold and the mislabeling of nontarget bystander cells by free particles was minimized. The microfluidic device was adapted to further accommodate heterogeneous-sized mesenchymal stem cells (MSCs). Complete removal of unbound nanoparticles using DFF led to the usage of engineered MSCs without exerting off-target transformative effects on the functional properties of neighboring endothelial cells. Apart from its effectiveness in removing free particles, this strategy is also efficient and scalable. It could continuously process cell solutions with concentrations up to 10(7) cells·mL(-1) (cell densities commonly encountered during cell therapy) without observable loss of performance. Successful implementation of this technology is expected to pave the way for interference-free clinical application of micro/nanoparticle engineered cells.
Collapse
Affiliation(s)
- David C Yeo
- School of Chemical & Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459
| | - Christian Wiraja
- School of Chemical & Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459
| | - Yingying Zhou
- School of Chemical & Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459
| | - Hui Min Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University , 50 Nanyang Drive, Singapore 637553
| | - Chenjie Xu
- School of Chemical & Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459
- NTU-Northwestern Institute of Nanomedicine, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| | - Han Wei Hou
- Lee Kong Chian School of Medicine, Nanyang Technological University , 50 Nanyang Drive, Singapore 637553
| |
Collapse
|
22
|
Zlomuzica A, Dere D, Binder S, De Souza Silva MA, Huston JP, Dere E. Neuronal histamine and cognitive symptoms in Alzheimer's disease. Neuropharmacology 2015; 106:135-45. [PMID: 26025658 DOI: 10.1016/j.neuropharm.2015.05.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/11/2015] [Accepted: 05/03/2015] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by extracellular amyloid plaque deposits, mainly composed of amyloid-beta peptide and intracellular neurofibrillary tangles consisting of aggregated hyperphosphorylated tau protein. Amyloid-beta represents a neurotoxic proteolytic cleavage product of amyloid precursor protein. The progressive cognitive decline that is associated with Alzheimer's disease has been mainly attributed to a deficit in cholinergic neurotransmission due to the continuous degeneration of cholinergic neurons e.g. in the basal forebrain. There is evidence suggesting that other neurotransmitter systems including neuronal histamine also contribute to the development and maintenance of Alzheimer's disease-related cognitive deficits. Pathological changes in the neuronal histaminergic system of such patients are highly predictive of ensuing cognitive deficits. Furthermore, histamine-related drugs, including histamine 3 receptor antagonists, have been demonstrated to alleviate cognitive symptoms in Alzheimer's disease. This review summarizes findings from animal and clinical research on the relationship between the neuronal histaminergic system and cognitive deterioration in Alzheimer's disease. The significance of the neuronal histaminergic system as a promising target for the development of more effective drugs for the treatment of cognitive symptoms is discussed. Furthermore, the option to use histamine-related agents as neurogenesis-stimulating therapy that counteracts progressive brain atrophy in Alzheimer's disease is considered. This article is part of a Special Issue entitled 'Histamine Receptors'.
Collapse
Affiliation(s)
- Armin Zlomuzica
- Mental Health Research and Treatment Center, Ruhr University Bochum, Germany
| | - Dorothea Dere
- Center for Psychological Consultation and Psychotherapy, Georg-August University Göttingen, Germany
| | - Sonja Binder
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Germany
| | - Maria Angelica De Souza Silva
- Institute of Experimental Psychology, Center for Behavioral Neuroscience, Heinrich-Heine University of Düsseldorf, Germany
| | - Joseph P Huston
- Institute of Experimental Psychology, Center for Behavioral Neuroscience, Heinrich-Heine University of Düsseldorf, Germany
| | - Ekrem Dere
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany; UFR des Sciences de la Vie (927), Université Pierre et Marie Curie Paris 6, France.
| |
Collapse
|
23
|
Maguire G, Friedman P. Systems biology approach to developing S 2RM-based “systems therapeutics” and naturally induced pluripotent stem cells. World J Stem Cells 2015; 7:745-756. [PMID: 26029345 PMCID: PMC4444614 DOI: 10.4252/wjsc.v7.i4.745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/25/2014] [Accepted: 03/18/2015] [Indexed: 02/06/2023] Open
Abstract
The degree to, and the mechanisms through, which stem cells are able to build, maintain, and heal the body have only recently begun to be understood. Much of the stem cell’s power resides in the release of a multitude of molecules, called stem cell released molecules (SRM). A fundamentally new type of therapeutic, namely “systems therapeutic”, can be realized by reverse engineering the mechanisms of the SRM processes. Recent data demonstrates that the composition of the SRM is different for each type of stem cell, as well as for different states of each cell type. Although systems biology has been successfully used to analyze multiple pathways, the approach is often used to develop a small molecule interacting at only one pathway in the system. A new model is emerging in biology where systems biology is used to develop a new technology acting at multiple pathways called “systems therapeutics”. A natural set of healing pathways in the human that uses SRM is instructive and of practical use in developing systems therapeutics. Endogenous SRM processes in the human body use a combination of SRM from two or more stem cell types, designated as S2RM, doing so under various state dependent conditions for each cell type. Here we describe our approach in using state-dependent SRM from two or more stem cell types, S2RM technology, to develop a new class of therapeutics called “systems therapeutics.” Given the ubiquitous and powerful nature of innate S2RM-based healing in the human body, this “systems therapeutic” approach using S2RM technology will be important for the development of anti-cancer therapeutics, antimicrobials, wound care products and procedures, and a number of other therapeutics for many indications.
Collapse
|
24
|
Kosi N, Alić I, Kolačević M, Vrsaljko N, Jovanov Milošević N, Sobol M, Philimonenko A, Hozák P, Gajović S, Pochet R, Mitrečić D. Nop2 is expressed during proliferation of neural stem cells and in adult mouse and human brain. Brain Res 2015; 1597:65-76. [DOI: 10.1016/j.brainres.2014.11.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 10/09/2014] [Accepted: 11/19/2014] [Indexed: 02/08/2023]
|
25
|
Baptista S, Lasgi C, Benstaali C, Milhazes N, Borges F, Fontes-Ribeiro C, Agasse F, Silva AP. Methamphetamine decreases dentate gyrus stem cell self-renewal and shifts the differentiation towards neuronal fate. Stem Cell Res 2014; 13:329-41. [DOI: 10.1016/j.scr.2014.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 07/16/2014] [Accepted: 08/05/2014] [Indexed: 01/21/2023] Open
|
26
|
Escobedo-Avila I, Vargas-Romero F, Molina-Hernández A, López-González R, Cortés D, De Carlos JA, Velasco I. Histamine impairs midbrain dopaminergic development in vivo by activating histamine type 1 receptors. Mol Brain 2014; 7:58. [PMID: 25112718 PMCID: PMC4237960 DOI: 10.1186/s13041-014-0058-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/30/2014] [Indexed: 12/02/2022] Open
Abstract
Background Histamine (HA) regulates the sleep-wake cycle, synaptic plasticity and memory in adult mammals. Dopaminergic specification in the embryonic ventral midbrain (VM) coincides with increased HA brain levels. To study the effect of HA receptor stimulation on dopamine neuron generation, we administered HA to dopamine progenitors, both in vitro and in vivo. Results Cultured embryonic day 12 (E12) VM neural stem/progenitor cells expressed transcripts for HA receptors H1R, H2R and H3R. These undifferentiated progenitors increased intracellular calcium upon HA addition. In HA-treated cultures, dopamine neurons significantly decreased after activation of H1R. We performed intrauterine injections in the developing VM to investigate HA effects in vivo. HA administration to E12 rat embryos notably reduced VM Tyrosine Hydroxylase (TH) staining 2 days later, without affecting GABA neurons in the midbrain, or serotonin neurons in the mid-hindbrain boundary. qRT-PCR and Western blot analyses confirmed that several markers important for the generation and maintenance of dopaminergic lineage such as TH, Lmx1a and Lmx1b were significantly diminished. To identify the cell type susceptible to HA action, we injected embryos of different developmental stages, and found that neural progenitors (E10 and E12) were responsive, whereas differentiated dopaminergic neurons (E14 and E16) were not susceptible to HA actions. Proliferation was significantly diminished, whereas neuronal death was not increased in the VM after HA administration. We injected H1R or H2R antagonists to identify the receptor responsible for the detrimental effect of HA on dopaminergic lineage and found that activation of H1R was required. Conclusion These results reveal a novel action of HA affecting dopaminergic lineage during VM development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Iván Velasco
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México D,F,-04510, Mexico.
| |
Collapse
|
27
|
Ambrée O, Buschert J, Zhang W, Arolt V, Dere E, Zlomuzica A. Impaired spatial learning and reduced adult hippocampal neurogenesis in histamine H1-receptor knockout mice. Eur Neuropsychopharmacol 2014; 24:1394-404. [PMID: 24862254 DOI: 10.1016/j.euroneuro.2014.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/03/2014] [Accepted: 04/27/2014] [Indexed: 01/23/2023]
Abstract
The histamine H1-receptor (H1R) is expressed in wide parts of the brain including the hippocampus, which is involved in spatial learning and memory. Previous studies in H1R knockout (H1R-KO) mice revealed deficits in a variety of learning and memory tasks. It was also proposed that H1R activation is crucial for neuronal differentiation of neural progenitors. Therefore, the aim of this study was to investigate negatively reinforced spatial learning in the water-maze and to assess survival and neuronal differentiation of newborn cells in the adult hippocampus of H1R-KO mice. H1R-KO and wild-type (WT) mice were subjected to the following sequence of tests: (a) cued version, (b) place learning, (c) spatial probe, (d) long-term retention and (e) reversal learning. Furthermore hippocampal neurogenesis in terms of survival and differentiation was assessed in H1R-KO and WT mice. H1R-KO mice showed normal cued learning, but impaired place and reversal learning as well as impaired long-term retention performance. In addition, a marked reduction of newborn neurons in the hippocampus but no changes in differentiation of neural progenitors into neuronal and glial lineage was found in H1R-KO mice. Our data suggest that H1R deficiency in mice is associated with pronounced deficits in hippocampus-dependent spatial learning and memory. Furthermore, we herein provide first evidence that H1R deficiency in the mouse leads to a reduced neurogenesis. However, the exact mechanisms for the reduced number of cells in H1R-KO mice remain elusive and might be due to a reduced survival of newborn hippocampal neurons and/or a reduction in cell proliferation.
Collapse
Affiliation(s)
- Oliver Ambrée
- Department of Psychiatry, University of Münster, Germany
| | - Jens Buschert
- Department of Psychiatry, University of Münster, Germany
| | - Weiqi Zhang
- Department of Psychiatry, University of Münster, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Germany
| | - Ekrem Dere
- Institute of Physiological Psychology, Heinrich-Heine University, Düsseldorf, Germany; UMR 7102, Neurobiologie des Processus Adaptatifs, Université Pierre et Marie Curie, Paris 6, France; Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Armin Zlomuzica
- Institute of Physiological Psychology, Heinrich-Heine University, Düsseldorf, Germany; Mental Health Research and Treatment Center, University of Bochum, Germany.
| |
Collapse
|
28
|
Eiriz MF, Valero J, Malva JO, Bernardino L. New insights into the role of histamine in subventricular zone-olfactory bulb neurogenesis. Front Neurosci 2014; 8:142. [PMID: 24982610 PMCID: PMC4058902 DOI: 10.3389/fnins.2014.00142] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/21/2014] [Indexed: 11/21/2022] Open
Abstract
The subventricular zone (SVZ) contains neural stem cells (NSCs) that generate new neurons throughout life. Many brain diseases stimulate NSCs proliferation, neuronal differentiation and homing of these newborns cells into damaged regions. However, complete cell replacement has never been fully achieved. Hence, the identification of proneurogenic factors crucial for stem cell-based therapies will have an impact in brain repair. Histamine, a neurotransmitter and immune mediator, has been recently described to modulate proliferation and commitment of NSCs. Histamine levels are increased in the brain parenchyma and at the cerebrospinal fluid (CSF) upon inflammation and brain injury, thus being able to modulate neurogenesis. Herein, we add new data showing that in vivo administration of histamine in the lateral ventricles has a potent proneurogenic effect, increasing the production of new neuroblasts in the SVZ that ultimately reach the olfactory bulb (OB). This report emphasizes the multidimensional effects of histamine in the modulation of NSCs dynamics and sheds light into the promising therapeutic role of histamine for brain regenerative medicine.
Collapse
Affiliation(s)
- Maria F Eiriz
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra (CNC-UC) Coimbra, Portugal
| | - Jorge Valero
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra (CNC-UC) Coimbra, Portugal
| | - João O Malva
- Faculty of Medicine, Institute of Biomedical Imaging and Life Sciences (IBILI), University of Coimbra Coimbra, Portugal
| | - Liliana Bernardino
- Faculty of Health Sciences, Health Sciences Research Center, University of Beira Interior Covilhã, Portugal
| |
Collapse
|
29
|
Panula P, Sundvik M, Karlstedt K. Developmental roles of brain histamine. Trends Neurosci 2014; 37:159-68. [PMID: 24486025 DOI: 10.1016/j.tins.2014.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/31/2013] [Accepted: 01/02/2014] [Indexed: 12/17/2022]
Abstract
Histamine appears early during brain development, has been shown to regulate fetal and adult brain-derived stem cells in a receptor type-dependent manner, and has widespread actions on systems involved in arousal and movement. Developmental studies in both rodents and zebrafish have elucidated the spatiotemporal patterning of the histaminergic system and, in zebrafish, have revealed the mechanisms whereby histamine regulates the number of hypocretin/orexin (hcrt) neurons, which in turn may regulate the number of histaminergic cells. Recent demonstrations of increased numbers of histaminergic neurons in patients with narcolepsy highlight the importance, for our understanding of both normal and pathological brain function, of understanding these interactions. Here, we review recent research into the developmental roles of histamine and suggest key areas for future research.
Collapse
Affiliation(s)
- Pertti Panula
- Neuroscience Center, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; Institute of Biomedicine, Anatomy, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.
| | - Maria Sundvik
- Neuroscience Center, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; Institute of Biomedicine, Anatomy, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Kaj Karlstedt
- Institute of Biomedicine, Physiology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| |
Collapse
|
30
|
Agasse F, Xapelli S, Coronas V, Christiansen SH, Rosa AI, Sardá-Arroyo L, Santos T, Ferreira R, Schitine C, Harnois T, Bourmeyster N, Bragança J, Bernardino L, Malva JO, Woldbye DP. Galanin Promotes Neuronal Differentiation in Murine Subventricular Zone Cell Cultures. Stem Cells Dev 2013; 22:1693-708. [DOI: 10.1089/scd.2012.0161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Fabienne Agasse
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | - Sara Xapelli
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | - Valérie Coronas
- Institut de Physiologie et Biologie Cellulaires, University of Poitiers, CNRS FRE 3511, Poitiers Cedex, France
| | - Søren H. Christiansen
- Protein Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Alexandra I. Rosa
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | - Laura Sardá-Arroyo
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | - Tiago Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | - Raquel Ferreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | - Clarissa Schitine
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
- Neurochemistry Laboratory, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thomas Harnois
- Institut de Physiologie et Biologie Cellulaires, University of Poitiers, CNRS FRE 3511, Poitiers Cedex, France
- CHU de Poitiers, Poitiers Cedex, France
| | - Nicolas Bourmeyster
- Institut de Physiologie et Biologie Cellulaires, University of Poitiers, CNRS FRE 3511, Poitiers Cedex, France
- CHU de Poitiers, Poitiers Cedex, France
| | - José Bragança
- Centre for Molecular and Structural Biomedicine, Institute for Biotechnology and Bioengineering, University of Algarve, Faro, Portugal
| | - Liliana Bernardino
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | - João O. Malva
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | - David P.D. Woldbye
- Protein Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Xapelli S, Agasse F, Sardà-Arroyo L, Bernardino L, Santos T, Ribeiro FF, Valero J, Bragança J, Schitine C, de Melo Reis RA, Sebastião AM, Malva JO. Activation of type 1 cannabinoid receptor (CB1R) promotes neurogenesis in murine subventricular zone cell cultures. PLoS One 2013; 8:e63529. [PMID: 23704915 PMCID: PMC3660454 DOI: 10.1371/journal.pone.0063529] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 04/06/2013] [Indexed: 11/18/2022] Open
Abstract
The endocannabinoid system has been implicated in the modulation of adult neurogenesis. Here, we describe the effect of type 1 cannabinoid receptor (CB1R) activation on self-renewal, proliferation and neuronal differentiation in mouse neonatal subventricular zone (SVZ) stem/progenitor cell cultures. Expression of CB1R was detected in SVZ-derived immature cells (Nestin-positive), neurons and astrocytes. Stimulation of the CB1R by (R)-(+)-Methanandamide (R-m-AEA) increased self-renewal of SVZ cells, as assessed by counting the number of secondary neurospheres and the number of Sox2+/+ cell pairs, an effect blocked by Notch pathway inhibition. Moreover, R-m-AEA treatment for 48 h, increased proliferation as assessed by BrdU incorporation assay, an effect mediated by activation of MAPK-ERK and AKT pathways. Surprisingly, stimulation of CB1R by R-m-AEA also promoted neuronal differentiation (without affecting glial differentiation), at 7 days, as shown by counting the number of NeuN-positive neurons in the cultures. Moreover, by monitoring intracellular calcium concentrations ([Ca2+]i) in single cells following KCl and histamine stimuli, a method that allows the functional evaluation of neuronal differentiation, we observed an increase in neuronal-like cells. This proneurogenic effect was blocked when SVZ cells were co-incubated with R-m-AEA and the CB1R antagonist AM 251, for 7 days, thus indicating that this effect involves CB1R activation. In accordance with an effect on neuronal differentiation and maturation, R-m-AEA also increased neurite growth, as evaluated by quantifying and measuring the number of MAP2-positive processes. Taken together, these results demonstrate that CB1R activation induces proliferation, self-renewal and neuronal differentiation from mouse neonatal SVZ cell cultures.
Collapse
Affiliation(s)
- Sara Xapelli
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, Coimbra, Portugal
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisboa, Portugal
- Unit of Neurosciences, Instituto de Medicina Molecular, University of Lisbon, Lisboa, Portugal
| | - Fabienne Agasse
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, Coimbra, Portugal
- * E-mail: (JOM); (FA)
| | - Laura Sardà-Arroyo
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Liliana Bernardino
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, Coimbra, Portugal
- Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Tiago Santos
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Filipa F. Ribeiro
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisboa, Portugal
- Unit of Neurosciences, Instituto de Medicina Molecular, University of Lisbon, Lisboa, Portugal
| | - Jorge Valero
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, Coimbra, Portugal
| | - José Bragança
- Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine, University of Algarve, Faro, Portugal
| | - Clarissa Schitine
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, Coimbra, Portugal
- Neurochemistry Laboratory, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo A. de Melo Reis
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, Coimbra, Portugal
- Neurochemistry Laboratory, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana M. Sebastião
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisboa, Portugal
- Unit of Neurosciences, Instituto de Medicina Molecular, University of Lisbon, Lisboa, Portugal
| | - João O. Malva
- Center for Research on Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine (polo 3), University of Coimbra, Coimbra, Portugal
- * E-mail: (JOM); (FA)
| |
Collapse
|
32
|
Xapelli S, Agasse F, Sardà-Arroyo L, Bernardino L, Santos T, Ribeiro FF, Valero J, Bragança J, Schitine C, de Melo Reis RA, Sebastião AM, Malva JO. Activation of Type 1 Cannabinoid Receptor (CB1R) Promotes Neurogenesis in Murine Subventricular Zone Cell Cultures. PLoS One 2013; 8:e63529. [DOI: https:/doi.org/10.1371/journal.pone.0063529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
|
33
|
Molina-Hernández A, Rodríguez-Martínez G, Escobedo-Ávila I, Velasco I. Histamine up-regulates fibroblast growth factor receptor 1 and increases FOXP2 neurons in cultured neural precursors by histamine type 1 receptor activation: conceivable role of histamine in neurogenesis during cortical development in vivo. Neural Dev 2013; 8:4. [PMID: 23497494 PMCID: PMC3601999 DOI: 10.1186/1749-8104-8-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/29/2013] [Indexed: 12/30/2022] Open
Abstract
Background During rat development, histamine (HA) is one of the first neuroactive molecules to appear in the brain, reaching its maximal value at embryonic day 14, a period when neurogenesis of deep layers is occurring in the cerebral cortex, suggesting a role of this amine in neuronal specification. We previously reported, using high-density cerebrocortical neural precursor cultures, that micromolar HA enhanced the effect of fibroblast growth factor (FGF)-2 on proliferation, and that HA increased neuronal differentiation, due to HA type 1 receptor (H1R) activation. Results Clonal experiments performed here showed that HA decreased colony size and caused a significant increase in the percentage of clones containing mature neurons through H1R stimulation. In proliferating precursors, we studied whether HA activates G protein-coupled receptors linked to intracellular calcium increases. Neural cells presented an increase in cytoplasmic calcium even in the absence of extracellular calcium, a response mediated by H1R. Since FGF receptors (FGFRs) are known to be key players in cell proliferation and differentiation, we determined whether HA modifies the expression of FGFRs1-4 by using RT-PCR. An important transcriptional increase in FGFR1 was elicited after H1R activation. We also tested whether HA promotes differentiation specifically to neurons with molecular markers of different cortical layers by immunocytochemistry. HA caused significant increases in cells expressing the deep layer neuronal marker FOXP2; this induction of FOXP2-positive neurons elicited by HA was blocked by the H1R antagonist chlorpheniramine in vitro. Finally, we found a notable decrease in FOXP2+ cortical neurons in vivo, when chlorpheniramine was infused in the cerebral ventricles through intrauterine injection. Conclusion These results show that HA, by activating H1R, has a neurogenic effect in clonal conditions and suggest that intracellular calcium elevation and transcriptional up-regulation of FGFR1 participate in HA-induced neuronal differentiation to FOXP2 cells in vitro; furthermore, H1R blockade in vivo resulted in decreased cortical FOXP2+ neurons.
Collapse
Affiliation(s)
- Anayansi Molina-Hernández
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, México, D.F. 04510, México
| | | | | | | |
Collapse
|
34
|
Therapeutic potential of histaminergic compounds in the treatment of addiction and drug-related cognitive disorders. Behav Brain Res 2013; 237:357-68. [DOI: 10.1016/j.bbr.2012.09.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 09/13/2012] [Accepted: 09/16/2012] [Indexed: 12/21/2022]
|
35
|
|
36
|
Rodríguez-Martínez G, Velasco I, García-López G, Solís K, Flores-Herrera H, Díaz N, Molina-Hernández A. Histamine is required during neural stem cell proliferation to increase neuron differentiation. Neuroscience 2012; 216:10-7. [DOI: 10.1016/j.neuroscience.2012.04.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 04/17/2012] [Accepted: 04/19/2012] [Indexed: 01/05/2023]
|
37
|
Ferreira R, Santos T, Gonçalves J, Baltazar G, Ferreira L, Agasse F, Bernardino L. Histamine modulates microglia function. J Neuroinflammation 2012; 9:90. [PMID: 22569158 PMCID: PMC3583187 DOI: 10.1186/1742-2094-9-90] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/08/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Histamine is commonly acknowledged as an inflammatory mediator in peripheral tissues, leaving its role in brain immune responses scarcely studied. Therefore, our aim was to uncover the cellular and molecular mechanisms elicited by this molecule and its receptors in microglia-induced inflammation by evaluating cell migration and inflammatory mediator release. METHODS Firstly, we detected the expression of all known histamine receptor subtypes (H1R, H2R, H3R and H4R), using a murine microglial cell line and primary microglia cell cultures from rat cortex, by real-time PCR analysis, immunocytochemistry and Western blotting. Then, we evaluated the role of histamine in microglial cell motility by performing scratch wound assays. Results were further confirmed using murine cortex explants. Finally, interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) levels were evaluated by ELISA measurements to determine the role of histamine on the release of these inflammatory mediators. RESULTS After 12 h of treatment, 100 μM histamine and 10 μg/ml histamine-loaded poly (lactic-co-glycolic acid) microparticles significantly stimulated microglia motility via H4R activation. In addition, migration involves α5β1 integrins, and p38 and Akt signaling pathways. Migration of microglial cells was also enhanced in the presence of lipopolysaccharide (LPS, 100 ng/ml), used as a positive control. Importantly, histamine inhibited LPS-stimulated migration via H4R activation. Histamine or H4R agonist also inhibited LPS-induced IL-1β release in both N9 microglia cell line and hippocampal organotypic slice cultures. CONCLUSIONS To our knowledge, we are the first to show a dual role of histamine in the modulation of microglial inflammatory responses. Altogether, our data suggest that histamine per se triggers microglia motility, whereas histamine impedes LPS-induced microglia migration and IL-1β release. This last datum assigns a new putative anti-inflammatory role for histamine, acting via H4R to restrain exacerbated microglial responses under inflammatory challenge, which could have strong repercussions in the treatment of CNS disorders accompanied by microglia-derived inflammation.
Collapse
Affiliation(s)
- Raquel Ferreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
38
|
Santos T, Maia J, Agasse F, Xapelli S, Ferreira L, Bernardino L. Nanomedicine boosts neurogenesis: new strategies for brain repair. Integr Biol (Camb) 2012; 4:973-81. [DOI: 10.1039/c2ib20129a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|