1
|
Iida J, Kotani K, Murata K, Hakamada K, Maihemuti W, Mandai Y, Hiraoka Y, Minatoya K, Masumoto H. Retention of locally injected human iPS cell-derived cardiomyocytes into the myocardium using hydrolyzed gelatin. Sci Rep 2025; 15:4635. [PMID: 39920228 PMCID: PMC11806045 DOI: 10.1038/s41598-025-87885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025] Open
Abstract
This study explored the impact of hydrolyzed gelatin (HG) concentration on the retention and therapeutic efficacy of human iPS cell-derived cardiomyocytes (hiPSC-CMs) when injected into the myocardium. The solubility of HG allows precise control over its concentration, influencing the distribution and leakage of injected solutions, which may affect therapeutic outcomes. Using both ex vivo and in vivo rat models, we investigated how varying HG concentrations affect the retention of solution and diffusion within the myocardium. In ex vivo static rat hearts, 10% HG minimized leakage but allowed significant diffusion. However, in pulsating in vivo hearts, 20% HG provided the best retention. In a rat myocardial infarction model, hiPSC-CMs suspended in 20% HG resulted in the highest cell retention. Echocardiogram showed a significant increase in the ejection fraction two weeks after transplantation compared to before transplantation. Additionally, cardiac magnetic resonance imaging (MRI) revealed that the ejection fraction was significantly higher than that of the sham group four weeks after transplantation. These findings suggest that optimizing HG concentration is crucial for enhancing the retention and therapeutic efficacy of hiPSC-CM transplants in treating heart disease.
Collapse
Affiliation(s)
- Jun Iida
- Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojimaminami-cho, Chuo-ku, Kobe, 650-0047, Japan
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuki Kotani
- Biomedical Department, R&D Center, Nitta Gelatin Inc, Yao, Japan
| | - Kozue Murata
- Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojimaminami-cho, Chuo-ku, Kobe, 650-0047, Japan
| | - Keisuke Hakamada
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Wusiman Maihemuti
- Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojimaminami-cho, Chuo-ku, Kobe, 650-0047, Japan
| | - Yoshinobu Mandai
- Biomedical Department, R&D Center, Nitta Gelatin Inc, Yao, Japan
| | - Yosuke Hiraoka
- Biomedical Department, R&D Center, Nitta Gelatin Inc, Yao, Japan
| | - Kenji Minatoya
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidetoshi Masumoto
- Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojimaminami-cho, Chuo-ku, Kobe, 650-0047, Japan.
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
2
|
Ding JY, Meng TT, Du RL, Song XB, Li YX, Gao J, Ji R, He QY. Bibliometrics of trends in global research on the roles of stem cells in myocardial fibrosis therapy. World J Stem Cells 2024; 16:1086-1105. [PMID: 39734477 PMCID: PMC11669986 DOI: 10.4252/wjsc.v16.i12.1086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/05/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Myocardial fibrosis, a condition linked to several cardiovascular diseases, is associated with a poor prognosis. Stem cell therapy has emerged as a potential treatment option and the application of stem cell therapy has been studied extensively. However, a comprehensive bibliometric analysis of these studies has yet to be conducted. AIM To map thematic trends, analyze research hotspots, and project future directions of stem cell-based myocardial fibrosis therapy. METHODS We conducted a bibliometric and visual analysis of studies in the Web of Science Core Collection using VOSviewer and Microsoft Excel. The dataset included 1510 articles published between 2001 and 2024. Countries, organizations, authors, references, keywords, and co-citation networks were examined to identify evolving research trends. RESULTS Our findings revealed a steady increase in the number of publications, with a projected increase to over 200 publications annually by 2030. Initial research focused on stem cell-based therapy, particularly for myocardial infarction and heart failure. More recently, there has been a shift toward cell-free therapy, involving extracellular vesicles, exosomes, and microRNAs. Key research topics include angiogenesis, inflammation, apoptosis, autophagy, and oxidative stress. CONCLUSION This analysis highlights the evolution of stem cell therapies for myocardial fibrosis, with emerging interest in cell-free approaches. These results are expected to guide future scientific exploration and decision-making.
Collapse
Affiliation(s)
- Jing-Yi Ding
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Tian-Tian Meng
- Department of Rehabilitation, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100071, China
| | - Ruo-Lin Du
- Department of Emergency Medicine, South Branch of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xin-Bin Song
- Department of Intensive Care Unit, Zhumadian Hospital of Traditional Chinese Medicine, Zhumadian 463000, Henan Province, China
| | - Yi-Xiang Li
- Department of Chinese Medicine, The Third People's Hospital of Henan Province, Zhengzhou 450000 Henan Province, China
| | - Jing Gao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ran Ji
- Department of Intensive Care Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qing-Yong He
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
3
|
Yahyazadeh R, Baradaran Rahimi V, Askari VR. Stem cell and exosome therapies for regenerating damaged myocardium in heart failure. Life Sci 2024; 351:122858. [PMID: 38909681 DOI: 10.1016/j.lfs.2024.122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Finding novel treatments for cardiovascular diseases (CVDs) is a hot topic in medicine; cell-based therapies have reported promising news for controlling dangerous complications of heart disease such as myocardial infarction (MI) and heart failure (HF). Various progenitor/stem cells were tested in various in-vivo, in-vitro, and clinical studies for regeneration or repairing the injured tissue in the myocardial to accelerate the healing. Fetal, adult, embryonic, and induced pluripotent stem cells (iPSC) have revealed the proper potency for cardiac tissue repair. As an essential communicator among cells, exosomes with specific contacts (proteins, lncRNAs, and miRNAs) greatly promote cardiac rehabilitation. Interestingly, stem cell-derived exosomes have more efficiency than stem cell transplantation. Therefore, stem cells induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), cardiac stem cells (CDC), and skeletal myoblasts) and their-derived exosomes will probably be considered an alternative therapy for CVDs remedy. In addition, stem cell-derived exosomes have been used in the diagnosis/prognosis of heart diseases. In this review, we explained the advances of stem cells/exosome-based treatment, their beneficial effects, and underlying mechanisms, which will present new insights in the clinical field in the future.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Bernava G, Iop L. Advances in the design, generation, and application of tissue-engineered myocardial equivalents. Front Bioeng Biotechnol 2023; 11:1247572. [PMID: 37811368 PMCID: PMC10559975 DOI: 10.3389/fbioe.2023.1247572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Due to the limited regenerative ability of cardiomyocytes, the disabling irreversible condition of myocardial failure can only be treated with conservative and temporary therapeutic approaches, not able to repair the damage directly, or with organ transplantation. Among the regenerative strategies, intramyocardial cell injection or intravascular cell infusion should attenuate damage to the myocardium and reduce the risk of heart failure. However, these cell delivery-based therapies suffer from significant drawbacks and have a low success rate. Indeed, cardiac tissue engineering efforts are directed to repair, replace, and regenerate native myocardial tissue function. In a regenerative strategy, biomaterials and biomimetic stimuli play a key role in promoting cell adhesion, proliferation, differentiation, and neo-tissue formation. Thus, appropriate biochemical and biophysical cues should be combined with scaffolds emulating extracellular matrix in order to support cell growth and prompt favorable cardiac microenvironment and tissue regeneration. In this review, we provide an overview of recent developments that occurred in the biomimetic design and fabrication of cardiac scaffolds and patches. Furthermore, we sift in vitro and in situ strategies in several preclinical and clinical applications. Finally, we evaluate the possible use of bioengineered cardiac tissue equivalents as in vitro models for disease studies and drug tests.
Collapse
Affiliation(s)
| | - Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, Padua Medical School, University of Padua, Padua, Italy
| |
Collapse
|
5
|
Tanaka Y, Kadota S, Zhao J, Kobayashi H, Okano S, Izumi M, Honda Y, Ichimura H, Shiba N, Uemura T, Wada Y, Chuma S, Nakada T, Tohyama S, Fukuda K, Yamada M, Seto T, Kuwahara K, Shiba Y. Mature human induced pluripotent stem cell-derived cardiomyocytes promote angiogenesis through alpha-B crystallin. Stem Cell Res Ther 2023; 14:240. [PMID: 37679796 PMCID: PMC10486094 DOI: 10.1186/s13287-023-03468-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) can be used to treat heart diseases; however, the optimal maturity of hiPSC-CMs for effective regenerative medicine remains unclear. We aimed to investigate the benefits of long-term cultured mature hiPSC-CMs in injured rat hearts. METHODS Cardiomyocytes were differentiated from hiPSCs via monolayer culturing, and the cells were harvested on day 28 or 56 (D28-CMs or D56-CMs, respectively) after differentiation. We transplanted D28-CMs or D56-CMs into the hearts of rat myocardial infarction models and examined cell retention and engraftment via in vivo bioluminescence imaging and histological analysis. We performed transcriptomic sequencing analysis to elucidate the genetic profiles before and after hiPSC-CM transplantation. RESULTS Upregulated expression of mature sarcomere genes in vitro was observed in D56-CMs compared with D28-CMs. In vivo bioluminescence imaging studies revealed increased bioluminescence intensity of D56-CMs at 8 and 12 weeks post-transplantation. Histological and immunohistochemical analyses showed that D56-CMs promoted engraftment and maturation in the graft area at 12 weeks post-transplantation. Notably, D56-CMs consistently promoted microvessel formation in the graft area from 1 to 12 weeks post-transplantation. Transcriptomic sequencing analysis revealed that compared with the engrafted D28-CMs, the engrafted D56-CMs enriched genes related to blood vessel regulation at 12 weeks post-transplantation. As shown by transcriptomic and western blot analyses, the expression of a small heat shock protein, alpha-B crystallin (CRYAB), was significantly upregulated in D56-CMs compared with D28-CMs. Endothelial cell migration was inhibited by small interfering RNA-mediated knockdown of CRYAB when co-cultured with D56-CMs in vitro. Furthermore, CRYAB overexpression enhanced angiogenesis in the D28-CM grafts at 4 weeks post-transplantation. CONCLUSIONS Long-term cultured mature hiPSC-CMs promoted engraftment, maturation and angiogenesis post-transplantation in infarcted rat hearts. CRYAB, which was highly expressed in D56-CMs, was identified as an angiogenic factor from mature hiPSC-CMs. This study revealed the benefits of long-term culture, which may enhance the therapeutic potential of hiPSC-CMs.
Collapse
Affiliation(s)
- Yuki Tanaka
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Shin Kadota
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, 390-8621, Japan.
| | - Jian Zhao
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Hideki Kobayashi
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Satomi Okano
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Department of Physical Therapy, Faculty of Health Sciences, Iryo Sosei University, Iwaki, 970-8551, Japan
| | - Masaki Izumi
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Yusuke Honda
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Hajime Ichimura
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Naoko Shiba
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Takeshi Uemura
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, 390-8621, Japan
- Division of Gene Research, Research Center for Advanced Science and Technology, Shinshu University, Matsumoto, 390-8621, Japan
| | - Yuko Wada
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Shinichiro Chuma
- Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Tsutomu Nakada
- Division of Instrumental Analysis, Research Center for Advanced Science and Technology, Shinshu University, Matsumoto, 390-8621, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Mitsuhiko Yamada
- Department of Molecular Pharmacology, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Tatsuichiro Seto
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Koichiro Kuwahara
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, 390-8621, Japan
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Yuji Shiba
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, 390-8621, Japan.
| |
Collapse
|
6
|
Lou X, Tang Y, Ye L, Pretorius D, Fast VG, Kahn-Krell AM, Zhang J, Zhang J, Qiao A, Qin G, Kamp T, Thomson JA, Zhang J. Cardiac muscle patches containing four types of cardiac cells derived from human pluripotent stem cells improve recovery from cardiac injury in mice. Cardiovasc Res 2023; 119:1062-1076. [PMID: 36647784 PMCID: PMC10153642 DOI: 10.1093/cvr/cvad004] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 01/18/2023] Open
Abstract
AIMS We have shown that human cardiac muscle patches (hCMPs) containing three different types of cardiac cells-cardiomyocytes (CMs), smooth muscle cells (SMCs), and endothelial cells (ECs), all of which were differentiated from human pluripotent stem cells (hPSCs)-significantly improved cardiac function, infarct size, and hypertrophy in a pig model of myocardial infarction (MI). However, hPSC-derived CMs (hPSC-CMs) are phenotypically immature, which may lead to arrhythmogenic concerns; thus, since hPSC-derived cardiac fibroblasts (hPSC-CFs) appear to enhance the maturity of hPSC-CMs, we compared hCMPs containing hPSC-CMs, -SMCs, -ECs, and -CFs (4TCC-hCMPs) with a second hCMP construct that lacked hPSC-CFs but was otherwise identical [hCMP containing hPSC-CMs, -AECs, and -SMCs (3TCC-hCMPs)]. METHODS AND RESULTS hCMPs were generated in a fibrin scaffold. MI was induced in severe combined immunodeficiency (SCID) mice through permanent coronary artery (left anterior descending) ligation, followed by treatment with cardiac muscle patches. Animal groups included: MI heart treated with 3TCC-hCMP; with 4TCC-hCMP; MI heart treated with no patch (MI group) and sham group. Cardiac function was evaluated using echocardiography, and cell engraftment rate and infarct size were evaluated histologically at 4 weeks after patch transplantation. The results from experiments in cultured hCMPs demonstrate that the inclusion of cardiac fibroblast in 4TCC-hCMPs had (i) better organized sarcomeres; (ii) abundant structural, metabolic, and ion-channel markers of CM maturation; and (iii) greater conduction velocities (31 ± 3.23 cm/s, P < 0.005) and action-potential durations (APD50 = 365 ms ± 2.649, P < 0.0001; APD = 408 ms ± 2.757, P < 0.0001) than those (velocity and APD time) in 3TCC-hCMPs. Furthermore, 4TCC-hCMPs transplantation resulted in better cardiac function [ejection fraction (EF) = 49.18% ± 0.86, P < 0.05], reduced infarct size (22.72% ± 0.98, P < 0.05), and better engraftment (15.99% ± 1.56, P < 0.05) when compared with 3TCC-hCMPs (EF = 41.55 ± 0.92%, infarct size = 39.23 ± 4.28%, and engraftment = 8.56 ± 1.79%, respectively). CONCLUSION Collectively, these observations suggest that the inclusion of hPSC-CFs during hCMP manufacture promotes hPSC-CM maturation and increases the potency of implanted hCMPs for improving cardiac recovery in mice model of MI.
Collapse
Affiliation(s)
- Xi Lou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Yawen Tang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Lei Ye
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Danielle Pretorius
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Vladimir G Fast
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Asher M Kahn-Krell
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Jue Zhang
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Jianhua Zhang
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Aijun Qiao
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Timothy Kamp
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - James A Thomson
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
7
|
Kishino Y, Tohyama S, Morita Y, Soma Y, Tani H, Okada M, Kanazawa H, Fukuda K. Cardiac Regenerative Therapy Using Human Pluripotent Stem Cells for Heart Failure: A State-of-the-Art Review. J Card Fail 2023; 29:503-513. [PMID: 37059512 DOI: 10.1016/j.cardfail.2022.10.433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 04/16/2023]
Abstract
Heart transplantation (HT) is the only definitive treatment available for patients with end-stage heart failure who are refractory to medical and device therapies. However, HT as a therapeutic option, is limited by a significant shortage of donors. To overcome this shortage, regenerative medicine using human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human-induced pluripotent stem cells (hiPSCs), has been considered an alternative to HT. Several issues, including the methods of large-scale culture and production of hPSCs and cardiomyocytes, the prevention of tumorigenesis secondary to contamination of undifferentiated stem cells and non-cardiomyocytes, and the establishment of an effective transplantation strategy in large-animal models, need to be addressed to fulfill this unmet need. Although post-transplantation arrhythmia and immune rejection remain problems, the ongoing rapid technological advances in hPSC research have been directed toward the clinical application of this technology. Cell therapy using hPSC-derived cardiomyocytes is expected to serve as an integral component of realistic medicine in the near future and is being potentially viewed as a treatment that would revolutionize the management of patients with severe heart failure.
Collapse
Affiliation(s)
- Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Yuika Morita
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Marina Okada
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Abdolahzadeh H, Rad NK, Shpichka A, Golroo R, Rahi K, Timashev P, Hassan M, Vosough M. Progress and promise of cell sheet assisted cardiac tissue engineering in regenerative medicine. Biomed Mater 2023; 18. [PMID: 36758240 DOI: 10.1088/1748-605x/acbad4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Cardiovascular diseases (CVDs) are the most common leading causes of premature deaths in all countries. To control the harmful side effects of CVDs on public health, it is necessary to understand the current and prospective strategies in prevention, management, and monitoring CVDs.In vitro,recapitulating of cardiac complex structure with its various cell types is a challenging topic in tissue engineering. Cardiac tissue engineering (CTE) is a multi-disciplinary strategy that has been considered as a novel alternative approach for cardiac regenerative medicine and replacement therapies. In this review, we overview various cell types and approaches in cardiac regenerative medicine. Then, the applications of cell-sheet-assisted CTE in cardiac diseases were discussed. Finally, we described how this technology can improve cardiac regeneration and function in preclinical and clinical models.
Collapse
Affiliation(s)
- Hadis Abdolahzadeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Khoshdel Rad
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Anastasia Shpichka
- World-Class Research Center 'Digital Biodesign and Personalized Healthcare', Sechenov University, Moscow, Russia.,Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Reihaneh Golroo
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Kosar Rahi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Peter Timashev
- World-Class Research Center 'Digital Biodesign and Personalized Healthcare', Sechenov University, Moscow, Russia.,Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.,Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
9
|
Qu X, Li J, Liu L, Zhang J, Hua Y, Suzuki K, Harada A, Ishida M, Yoshida N, Okuzaki D, Sakai Y, Sawa Y, Miyagawa S. ONO-1301 enhances post-transplantation survival of human induced pluripotent stem cell-derived cardiac tissue sheet by promoting angiogenesis. J Heart Lung Transplant 2023; 42:716-729. [PMID: 36964085 DOI: 10.1016/j.healun.2023.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/11/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Transplanting human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) tissue sheets effectively treat ischemic cardiomyopathy. Cardiac functional recovery relies on graft survival in which angiogenesis played an important part. ONO-1301 is a synthetic prostacyclin analog with proangiogenic effects. We hypothesized that transplantation of hiPSC-CM tissue sheets with slow-release ONO-1301 scaffold could promote hostgraft angiogenesis, enhance tissue survival and therapeutic effect. METHODS We developed hiPSC-CM tissue sheets with ONO-1301 slow-release scaffold and evaluated their morphology, gene expression, and effects on angiogenesis. Three tissue sheet layers were transplanted into a rat myocardial infarction (MI) model. Left ventricular ejection fraction, gene expression in the MI border zone, and angiogenesis effects were investigated 4 weeks after transplantation. RESULTS In vitro assessment confirmed the slow-release of ONO-1301, and its pro-angiogenesis effects. In addition, in vivo data demonstrated that ONO-1301 administration positively correlated with graft survival. Cardiac tissue as thick as ∼900 μm was retained in the ONO (+) treated group. Additionally, left ventricular ejection fraction of the ONO (+) group was significantly enhanced, compared to ONO (-) group. The ONO (+) group also showed significantly improved interstitial fibrosis, higher capillary density, increased number of mature blood vessels, along with an enhanced supply of oxygen, and nutrients. CONCLUSIONS Slow-release ONO-1301 scaffold provided an efficient delivery method for thick hiPSC-CM tissue. ONO-1301 promotes angiogenesis between the host and graft and improves nutritional and oxygen supply, thereby enhancing the survival of transplanted cells, effectively improving ejection fraction, and therapeutic effects.
Collapse
Affiliation(s)
- Xiang Qu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Junjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Li Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jingbo Zhang
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ying Hua
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kota Suzuki
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Akima Harada
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masako Ishida
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Noriko Yoshida
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Research Center, Osaka University, Osaka, Japan; Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoshiki Sakai
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| |
Collapse
|
10
|
Wang J, An M, Haubner BJ, Penninger JM. Cardiac regeneration: Options for repairing the injured heart. Front Cardiovasc Med 2023; 9:981982. [PMID: 36712238 PMCID: PMC9877631 DOI: 10.3389/fcvm.2022.981982] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
Cardiac regeneration is one of the grand challenges in repairing injured human hearts. Numerous studies of signaling pathways and metabolism on cardiac development and disease pave the way for endogenous cardiomyocyte regeneration. New drug delivery approaches, high-throughput screening, as well as novel therapeutic compounds combined with gene editing will facilitate the development of potential cell-free therapeutics. In parallel, progress has been made in the field of cell-based therapies. Transplantation of human pluripotent stem cell (hPSC)-derived cardiomyocytes (hPSC-CMs) can partially rescue the myocardial defects caused by cardiomyocyte loss in large animals. In this review, we summarize current cell-based and cell-free regenerative therapies, discuss the importance of cardiomyocyte maturation in cardiac regenerative medicine, and envision new ways of regeneration for the injured heart.
Collapse
Affiliation(s)
- Jun Wang
- Department of Medical Genetics, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Meilin An
- Department of Medical Genetics, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Bernhard Johannes Haubner
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Josef M. Penninger
- Department of Medical Genetics, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC – Vienna BioCenter, Vienna, Austria
| |
Collapse
|
11
|
Kałużna E, Nadel A, Zimna A, Rozwadowska N, Kolanowski T. Modeling the human heart ex vivo-current possibilities and strive for future applications. J Tissue Eng Regen Med 2022; 16:853-874. [PMID: 35748158 PMCID: PMC9796015 DOI: 10.1002/term.3335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/20/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The high organ specification of the human heart is inversely proportional to its functional recovery after damage. The discovery of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) has accelerated research in human heart regeneration and physiology. Nevertheless, due to the immaturity of iPSC-CMs, they are far from being an representative model of the adult heart physiology. Therefore, number of laboratories strive to obtain a heart tissues by engineering methods by structuring iPSC-CMs into complex and advanced platforms. By using the iPSC-CMs and arranging them in 3D cultures it is possible to obtain a human heart muscle with physiological capabilities potentially similar to the adult heart, while remaining in vitro. Here, we attempt to describe existing examples of heart muscle either in vitro or ex vivo models and discuss potential options for the further development of such structures. This will be a crucial step for ultimate derivation of complete heart tissue-mimicking organs and their future use in drug development, therapeutic approaches testing, pre-clinical studies, and clinical applications. This review particularly aims to compile available models of advanced human heart tissue for scientists considering which model would best fit their research needs.
Collapse
Affiliation(s)
- Ewelina Kałużna
- Institute of Human GeneticsPolish Academy of SciencesPoznanPoland
| | - Agnieszka Nadel
- Institute of Human GeneticsPolish Academy of SciencesPoznanPoland
| | - Agnieszka Zimna
- Institute of Human GeneticsPolish Academy of SciencesPoznanPoland
| | | | | |
Collapse
|
12
|
Munderere R, Kim SH, Kim C, Park SH. The Progress of Stem Cell Therapy in Myocardial-Infarcted Heart Regeneration: Cell Sheet Technology. Tissue Eng Regen Med 2022; 19:969-986. [PMID: 35857259 DOI: 10.1007/s13770-022-00467-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
Various tissues, including the heart, cornea, bone, esophagus, bladder and liver, have been vascularized using the cell sheet technique. It overcomes the limitations of existing techniques by allowing small layers of the cell sheet to generate capillaries on their own, and it can also be used to vascularize tissue-engineered transplants. Cell sheets eliminate the need for traditional tissue engineering procedures such as isolated cell injections and scaffold-based technologies, which have limited applicability. While cell sheet engineering can eliminate many of the drawbacks, there are still a few challenges that need to be addressed. The number of cell sheets that can be layered without triggering core ischemia or hypoxia is limited. Even when scaffold-based technologies are disregarded, strategies to tackle this problem remain a substantial impediment to the efficient regeneration of thick, living three-dimensional cell sheets. In this review, we summarize the cell sheet technology in myocardial infarcted tissue regeneration.
Collapse
Affiliation(s)
- Raissa Munderere
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea.,The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, Republic of Korea
| | - Seon-Hwa Kim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea.,The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, Republic of Korea
| | - Changsu Kim
- Department of Orthopedics Surgery, Kosin University Gospel Hospital, Busan, Republic of Korea
| | - Sang-Hyug Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea. .,The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, Republic of Korea. .,Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
13
|
Wearable and implantable devices for drug delivery: Applications and challenges. Biomaterials 2022; 283:121435. [DOI: 10.1016/j.biomaterials.2022.121435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022]
|
14
|
An Overview of the Molecular Mechanisms Associated with Myocardial Ischemic Injury: State of the Art and Translational Perspectives. Cells 2022; 11:cells11071165. [PMID: 35406729 PMCID: PMC8998015 DOI: 10.3390/cells11071165] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in western countries. Among cardiovascular diseases, myocardial infarction represents a life-threatening condition predisposing to the development of heart failure. In recent decades, much effort has been invested in studying the molecular mechanisms underlying the development and progression of ischemia/reperfusion (I/R) injury and post-ischemic cardiac remodeling. These mechanisms include metabolic alterations, ROS overproduction, inflammation, autophagy deregulation and mitochondrial dysfunction. This review article discusses the most recent evidence regarding the molecular basis of myocardial ischemic injury and the new potential therapeutic interventions for boosting cardioprotection and attenuating cardiac remodeling.
Collapse
|
15
|
Bioengineering approaches to treat the failing heart: from cell biology to 3D printing. Nat Rev Cardiol 2022; 19:83-99. [PMID: 34453134 DOI: 10.1038/s41569-021-00603-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 02/08/2023]
Abstract
Successfully engineering a functional, human, myocardial pump would represent a therapeutic alternative for the millions of patients with end-stage heart disease and provide an alternative to animal-based preclinical models. Although the field of cardiac tissue engineering has made tremendous advances, major challenges remain, which, if properly resolved, might allow the clinical implementation of engineered, functional, complex 3D structures in the future. In this Review, we provide an overview of state-of-the-art studies, challenges that have not yet been overcome and perspectives on cardiac tissue engineering. We begin with the most clinically relevant cell sources used in this field and discuss the use of topological, biophysical and metabolic stimuli to obtain mature phenotypes of cardiomyocytes, particularly in relation to organized cytoskeletal and contractile intracellular structures. We then move from the cellular level to engineering planar cardiac patches and discuss the need for proper vascularization and the main strategies for obtaining it. Finally, we provide an overview of several different approaches for the engineering of volumetric organs and organ parts - from whole-heart decellularization and recellularization to advanced 3D printing technologies.
Collapse
|
16
|
Martínez-Falguera D, Iborra-Egea O, Gálvez-Montón C. iPSC Therapy for Myocardial Infarction in Large Animal Models: Land of Hope and Dreams. Biomedicines 2021; 9:1836. [PMID: 34944652 PMCID: PMC8698445 DOI: 10.3390/biomedicines9121836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Myocardial infarction is the main driver of heart failure due to ischemia and subsequent cell death, and cell-based strategies have emerged as promising therapeutic methods to replace dead tissue in cardiovascular diseases. Research in this field has been dramatically advanced by the development of laboratory-induced pluripotent stem cells (iPSCs) that harbor the capability to become any cell type. Like other experimental strategies, stem cell therapy must meet multiple requirements before reaching the clinical trial phase, and in vivo models are indispensable for ensuring the safety of such novel therapies. Specifically, translational studies in large animal models are necessary to fully evaluate the therapeutic potential of this approach; to empirically determine the optimal combination of cell types, supplementary factors, and delivery methods to maximize efficacy; and to stringently assess safety. In the present review, we summarize the main strategies employed to generate iPSCs and differentiate them into cardiomyocytes in large animal species; the most critical differences between using small versus large animal models for cardiovascular studies; and the strategies that have been pursued regarding implanted cells' stage of differentiation, origin, and technical application.
Collapse
Affiliation(s)
- Daina Martínez-Falguera
- Faculty of Medicine, University of Barcelona (UB), 08036 Barcelona, Spain;
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
- Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| | - Oriol Iborra-Egea
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
- Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| | - Carolina Gálvez-Montón
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
- Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| |
Collapse
|
17
|
Osada H, Kawatou M, Fujita D, Tabata Y, Minatoya K, Yamashita JK, Masumoto H. Therapeutic potential of clinical-grade human induced pluripotent stem cell-derived cardiac tissues. JTCVS OPEN 2021; 8:359-374. [PMID: 36004071 PMCID: PMC9390608 DOI: 10.1016/j.xjon.2021.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/24/2021] [Indexed: 11/12/2022]
Abstract
Objectives To establish a protocol to prepare and transplant clinical-grade human induced pluripotent stem cell (hiPSC)-derived cardiac tissues (HiCTs) and to evaluate the therapeutic potential in an animal myocardial infarction (MI) model. Methods We simultaneously differentiated clinical-grade hiPSCs into cardiovascular cell lineages with or without the administration of canonical Wnt inhibitors, generated 5- layer cell sheets with insertion of gelatin hydrogel microspheres (GHMs) (HiCTs), and transplanted them onto an athymic rat MI model. Cardiac function was evaluated by echocardiography and cardiac magnetic resonance imaging and compared with that in animals with sham and transplantation of 5-layer cell sheets without GHMs. Graft survival, ventricular remodeling, and neovascularization were evaluated histopathologically. Results The administration of Wnt inhibitors significantly promoted cardiomyocyte (CM) (P < .0001) and vascular endothelial cell (EC) (P = .006) induction, which resulted in cellular components of 52.0 ± 6.1% CMs and 9.9 ± 3.0% ECs. Functional analyses revealed the significantly lowest left ventricular end-diastolic volume and highest ejection fraction in the HiCT group. Histopathologic evaluation revealed that the HiCT group had a significantly larger median engrafted area (4 weeks, GHM(-) vs HiCT: 0.4 [range, 0.2-0.7] mm2 vs 2.2 [range, 1.8-3.1] mm2; P = .005; 12 weeks, 0 [range, 0-0.2] mm2 vs 1.9 [range, 0.1-3.2] mm2; P = .026), accompanied by the smallest scar area and highest vascular density at the MI border zone. Conclusions Transplantation of HiCTs generated from clinical-grade hiPSCs exhibited a prominent therapeutic potential in a rat MI model and may provide a promising therapeutic strategy in cardiac regenerative medicine.
Collapse
|
18
|
Hunkler HJ, Groß S, Thum T, Bär C. Non-coding RNAs: key regulators of reprogramming, pluripotency, and cardiac cell specification with therapeutic perspective for heart regeneration. Cardiovasc Res 2021; 118:3071-3084. [PMID: 34718448 PMCID: PMC9732524 DOI: 10.1093/cvr/cvab335] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/27/2021] [Indexed: 01/01/2023] Open
Abstract
Myocardial infarction causes a massive loss of cardiomyocytes (CMs), which can lead to heart failure accompanied by fibrosis, stiffening of the heart, and loss of function. Heart failure causes high mortality rates and is a huge socioeconomic burden, which, based on diets and lifestyle in the developed world, is expected to increase further in the next years. At present, the only curative treatment for heart failure is heart transplantation associated with a number of limitations such as donor organ availability and transplant rejection among others. Thus, the development of cellular reprogramming and defined differentiation protocols provide exciting new possibilities for cell therapy approaches and which opened up a new era in regenerative medicine. Consequently, tremendous research efforts were undertaken to gain a detailed molecular understanding of the reprogramming processes and the in vitro differentiation of pluripotent stem cells into functional CMs for transplantation into the patient's injured heart. In the last decade, non-coding RNAs, particularly microRNAs, long non-coding RNAs, and circular RNAs emerged as critical regulators of gene expression that were shown to fine-tune cellular processes both on the transcriptional and the post-transcriptional level. Unsurprisingly, also cellular reprogramming, pluripotency, and cardiac differentiation and maturation are regulated by non-coding RNAs. In here, we review the current knowledge on non-coding RNAs in these processes and highlight how their modulation may enhance the quality and quantity of stem cells and their derivatives for safe and efficient clinical application in patients with heart failure. In addition, we summarize the clinical cell therapy efforts undertaken thus far.
Collapse
Affiliation(s)
- Hannah J Hunkler
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Sonja Groß
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Thomas Thum
- Corresponding authors. Tel: +49 511 532 5272; fax: +49 511 532 5274, E-mail: (T.T.); Tel: +49 511 532 2883; fax: +49 511 532 5274, E-mail: (C.B.)
| | - Christian Bär
- Corresponding authors. Tel: +49 511 532 5272; fax: +49 511 532 5274, E-mail: (T.T.); Tel: +49 511 532 2883; fax: +49 511 532 5274, E-mail: (C.B.)
| |
Collapse
|
19
|
Arjmand B, Abedi M, Arabi M, Alavi-Moghadam S, Rezaei-Tavirani M, Hadavandkhani M, Tayanloo-Beik A, Kordi R, Roudsari PP, Larijani B. Regenerative Medicine for the Treatment of Ischemic Heart Disease; Status and Future Perspectives. Front Cell Dev Biol 2021; 9:704903. [PMID: 34568321 PMCID: PMC8461329 DOI: 10.3389/fcell.2021.704903] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular disease is now the leading cause of adult death in the world. According to new estimates from the World Health Organization, myocardial infarction (MI) is responsible for four out of every five deaths due to cardiovascular disease. Conventional treatments of MI are taking aspirin and nitroglycerin as intermediate treatments and injecting antithrombotic agents within the first 3 h after MI. Coronary artery bypass grafting and percutaneous coronary intervention are the most common long term treatments. Since none of these interventions will fully regenerate the infarcted myocardium, there is value in pursuing more innovative therapeutic approaches. Regenerative medicine is an innovative interdisciplinary method for rebuilding, replacing, or repairing the missed part of different organs in the body, as similar as possible to the primary structure. In recent years, regenerative medicine has been widely utilized as a treatment for ischemic heart disease (one of the most fatal factors around the world) to repair the lost part of the heart by using stem cells. Here, the development of mesenchymal stem cells causes a breakthrough in the treatment of different cardiovascular diseases. They are easily obtainable from different sources, and expanded and enriched easily, with no need for immunosuppressing agents before transplantation, and fewer possibilities of genetic abnormality accompany them through multiple passages. The production of new cardiomyocytes can result from the transplantation of different types of stem cells. Accordingly, due to its remarkable benefits, stem cell therapy has received attention in recent years as it provides a drug-free and surgical treatment for patients and encourages a more safe and feasible cardiac repair. Although different clinical trials have reported on the promising benefits of stem cell therapy, there is still uncertainty about its mechanism of action. It is important to conduct different preclinical and clinical studies to explore the exact mechanism of action of the cells. After reviewing the pathophysiology of MI, this study addresses the role of tissue regeneration using various materials, including different types of stem cells. It proves some appropriate data about the importance of ethical problems, which leads to future perspectives on this scientific method.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Abedi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Arabi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahdieh Hadavandkhani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Kordi
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Post AD, Buchan S, John M, Safavi-Naeini P, Cosgriff-Hernández E, Razavi M. Reconstituting electrical conduction in soft tissue: the path to replace the ablationist. Europace 2021; 23:1892-1902. [PMID: 34477862 DOI: 10.1093/europace/euab187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Cardiac arrhythmias are a leading cause of morbidity and mortality in the developed world. A common mechanism underlying many of these arrhythmias is re-entry, which may occur when native conduction pathways are disrupted, often by myocardial infarction. Presently, re-entrant arrhythmias are most commonly treated with antiarrhythmic drugs and myocardial ablation, although both treatment methods are associated with adverse side effects and limited efficacy. In recent years, significant advancements in the field of biomaterials science have spurred increased interest in the development of novel therapies that enable restoration of native conduction in damaged or diseased myocardium. In this review, we assess the current landscape of materials-based approaches to eliminating re-entrant arrhythmias. These approaches potentially pave the way for the eventual replacement of myocardial ablation as a preferred therapy for such pathologies.
Collapse
Affiliation(s)
- Allison D Post
- Electrophysiology Clinical Research and Innovations, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA
| | - Skylar Buchan
- Electrophysiology Clinical Research and Innovations, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA
| | - Mathews John
- Electrophysiology Clinical Research and Innovations, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA
| | - Payam Safavi-Naeini
- Electrophysiology Clinical Research and Innovations, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA
| | | | - Mehdi Razavi
- Electrophysiology Clinical Research and Innovations, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA.,Department of Cardiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
21
|
Chang D, Fan T, Gao S, Jin Y, Zhang M, Ono M. Application of mesenchymal stem cell sheet to treatment of ischemic heart disease. Stem Cell Res Ther 2021; 12:384. [PMID: 34233729 PMCID: PMC8261909 DOI: 10.1186/s13287-021-02451-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/07/2021] [Indexed: 12/29/2022] Open
Abstract
In recent years, mesenchymal stem cells (MSCs) have been used to improve cardiac function and attenuate adverse ventricular remodeling of the ischemic myocardium through paracrine effects and immunoregulation functions. In combination with cell sheet technology, MSCs could be more easily transplanted to the ischemic area. The long-term retention of MSCs in the affected area was realized and significantly improved the curative effect. In this review, we summarized the research and the applications of MSC sheets to the treatment of ischemic heart tissue. At present, many types of MSCs have been considered as multipotent cells in the treatment of heart failure, such as bone marrow-derived mesenchymal stem cells (BM-MSCs), adipose-derived mesenchymal stem cells (AD-MSCs), umbilical cord-derived mesenchymal stem cells (UC-MSCs), and skeletal myoblasts (SMs). Since UC-MSCs have few human leukocyte antigen-II and major histocompatibility complex class I molecules, and are easy to isolate and culture, UC-MSC sheets have been proposed as a candidate for clinical applications to ischemic heart disease.
Collapse
Affiliation(s)
- Dehua Chang
- Department of Cell Therapy in Regenerative Medicine, The University of Tokyo Hospital, 7-3-1 Honggo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Taibing Fan
- Children Heart Center, Fuwai Central China Cardiovascular Hospital, No.1 Fuwai Road, Zhengzhou, 450018, China
| | - Shuang Gao
- Research and Development Department, BOE Regenerative Medicine Technology Co., Ltd., NO.9 JiuXianQiao North Road, Beijing, 100015, China
| | - Yongqiang Jin
- Heart Center, First Hospital of Tsinghua University, NO.6 JiuXianQiao 1st Road, Beijing, 10016, China
| | - Mingkui Zhang
- Heart Center, First Hospital of Tsinghua University, NO.6 JiuXianQiao 1st Road, Beijing, 10016, China
| | - Minoru Ono
- Department of Cardiac Surgery, The University of Tokyo Hospital, 7-3-1 Honggo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
22
|
Gähwiler EKN, Motta SE, Martin M, Nugraha B, Hoerstrup SP, Emmert MY. Human iPSCs and Genome Editing Technologies for Precision Cardiovascular Tissue Engineering. Front Cell Dev Biol 2021; 9:639699. [PMID: 34262897 PMCID: PMC8273765 DOI: 10.3389/fcell.2021.639699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) originate from the reprogramming of adult somatic cells using four Yamanaka transcription factors. Since their discovery, the stem cell (SC) field achieved significant milestones and opened several gateways in the area of disease modeling, drug discovery, and regenerative medicine. In parallel, the emergence of clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) revolutionized the field of genome engineering, allowing the generation of genetically modified cell lines and achieving a precise genome recombination or random insertions/deletions, usefully translated for wider applications. Cardiovascular diseases represent a constantly increasing societal concern, with limited understanding of the underlying cellular and molecular mechanisms. The ability of iPSCs to differentiate into multiple cell types combined with CRISPR-Cas9 technology could enable the systematic investigation of pathophysiological mechanisms or drug screening for potential therapeutics. Furthermore, these technologies can provide a cellular platform for cardiovascular tissue engineering (TE) approaches by modulating the expression or inhibition of targeted proteins, thereby creating the possibility to engineer new cell lines and/or fine-tune biomimetic scaffolds. This review will focus on the application of iPSCs, CRISPR-Cas9, and a combination thereof to the field of cardiovascular TE. In particular, the clinical translatability of such technologies will be discussed ranging from disease modeling to drug screening and TE applications.
Collapse
Affiliation(s)
- Eric K. N. Gähwiler
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Sarah E. Motta
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Marcy Martin
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA, United States
| | - Bramasta Nugraha
- Molecular Parasitology Lab, Institute of Parasitology, University of Zurich, Zurich, Switzerland
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| |
Collapse
|
23
|
Guo R, Wan F, Morimatsu M, Xu Q, Feng T, Yang H, Gong Y, Ma S, Chang Y, Zhang S, Jiang Y, Wang H, Chang D, Zhang H, Ling Y, Lan F. Cell sheet formation enhances the therapeutic effects of human umbilical cord mesenchymal stem cells on myocardial infarction as a bioactive material. Bioact Mater 2021; 6:2999-3012. [PMID: 33732969 PMCID: PMC7941025 DOI: 10.1016/j.bioactmat.2021.01.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Stem cell-based therapy has been used to treat ischaemic heart diseases for two decades. However, optimal cell types and transplantation methods remain unclear. This study evaluated the therapeutic effects of human umbilical cord mesenchymal stem cell (hUCMSC) sheet on myocardial infarction (MI). Methods hUCMSCs expressing luciferase were generated by lentiviral transduction for in vivo bio-luminescent imaging tracking of cells. We applied a temperature-responsive cell culture surface-based method to form the hUCMSC sheet. Cell retention was evaluated using an in vivo bio-luminescent imaging tracking system. Unbiased transcriptional profiling of infarcted hearts and further immunohistochemical assessment of monocyte and macrophage subtypes were used to determine the mechanisms underlying the therapeutic effects of the hUCMSC sheet. Echocardiography and pathological analyses of heart sections were performed to evaluate cardiac function, angiogenesis and left ventricular remodelling. Results When transplanted to the infarcted mouse hearts, hUCMSC sheet significantly improved the retention and survival compared with cell suspension. At the early stage of MI, hUCMSC sheet modulated inflammation by decreasing Mcp1-positive monocytes and CD68-positive macrophages and increasing Cx3cr1-positive non-classical macrophages, preserving the cardiomyocytes from acute injury. Moreover, the extracellular matrix produced by hUCMSC sheet then served as bioactive scaffold for the host cells to graft and generate new epicardial tissue, providing mechanical support and routes for revascularsation. These effects of hUCMSC sheet treatment significantly improved the cardiac function at days 7 and 28 post-MI. Conclusions hUCMSC sheet formation dramatically improved the biological functions of hUCMSCs, mitigating adverse post-MI remodelling by modulating the inflammatory response and providing bioactive scaffold upon transplantation into the heart. Translational perspective Due to its excellent availability as well as superior local cellular retention and survival, allogenic transplantation of hUCMSC sheets can more effectively acquire the biological functions of hUCMSCs, such as modulating inflammation and enhancing angiogenesis. Moreover, the hUCMSC sheet method allows the transfer of an intact extracellular matrix without introducing exogenous or synthetic biomaterial, further improving its clinical applicability. Cell sheet formation of hUCMSCs dramatically improves post transplantation cell survival in the infarcted heart. hUCMSC sheet protects cardiomyocytes from infarction by alleviating acute inflammation. The ECM of cell sheet serves as bioactive scaffold to allow the host cells to integrate and form new epicardial tissue. The new epicardial tissue can provide mechanical support and new routes for revascularization.
Collapse
Affiliation(s)
- Rui Guo
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China.,Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Feng Wan
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China.,Department of Cardiovascular Surgery, Tongji University East Hospital, Shanghai, 200120, China
| | - Masatoshi Morimatsu
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China.,Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Qing Xu
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Tian Feng
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China.,Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Hang Yang
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Yichen Gong
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Shuhong Ma
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yun Chang
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Siyao Zhang
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Youxu Jiang
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Heqing Wang
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China.,Department of Cardiovascular Surgery, Tongji University East Hospital, Shanghai, 200120, China
| | - Dehua Chang
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China.,Department of Cardiac Surgery, The University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Hongjia Zhang
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China.,Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yunpeng Ling
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Feng Lan
- Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.,Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| |
Collapse
|
24
|
Wang L, Serpooshan V, Zhang J. Engineering Human Cardiac Muscle Patch Constructs for Prevention of Post-infarction LV Remodeling. Front Cardiovasc Med 2021; 8:621781. [PMID: 33718449 PMCID: PMC7952323 DOI: 10.3389/fcvm.2021.621781] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering combines principles of engineering and biology to generate living tissue equivalents for drug testing, disease modeling, and regenerative medicine. As techniques for reprogramming human somatic cells into induced pluripotent stem cells (iPSCs) and subsequently differentiating them into cardiomyocytes and other cardiac cells have become increasingly efficient, progress toward the development of engineered human cardiac muscle patch (hCMP) and heart tissue analogs has accelerated. A few pilot clinical studies in patients with post-infarction LV remodeling have been already approved. Conventional methods for hCMP fabrication include suspending cells within scaffolds, consisting of biocompatible materials, or growing two-dimensional sheets that can be stacked to form multilayered constructs. More recently, advanced technologies, such as micropatterning and three-dimensional bioprinting, have enabled fabrication of hCMP architectures at unprecedented spatiotemporal resolution. However, the studies working on various hCMP-based strategies for in vivo tissue repair face several major obstacles, including the inadequate scalability for clinical applications, poor integration and engraftment rate, and the lack of functional vasculature. Here, we review many of the recent advancements and key concerns in cardiac tissue engineering, focusing primarily on the production of hCMPs at clinical/industrial scales that are suitable for administration to patients with myocardial disease. The wide variety of cardiac cell types and sources that are applicable to hCMP biomanufacturing are elaborated. Finally, some of the key challenges remaining in the field and potential future directions to address these obstacles are discussed.
Collapse
Affiliation(s)
- Lu Wang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
25
|
Li J, Liu L, Minami I, Miyagawa S, Sawa Y. Fabrication of Thick and Anisotropic Cardiac Tissue on Nanofibrous Substrate for Repairing Infarcted Myocardium. Methods Mol Biol 2021; 2320:65-73. [PMID: 34302648 DOI: 10.1007/978-1-0716-1484-6_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this chapter, we introduce the method for fabricating thick and anisotropic cardiac tissue for heart regeneration. Aligned and biodegradable nanofiber can be prepared by electrospinning Food and Drug Administration-approved poly (lactic-co-glycolic acid) on a rotating drum. After the nanofibers are transferred on to a polydimethylsiloxane frame, the cardiomyocytes could be plated on the nanofiber to form thick and anisotropic cardiac tissue rapidly. Cardiac tissue-like construct could be easily created by one-step method, and transplanted onto the hearts of myocardium infarction models and lead to their functional recovery.
Collapse
Affiliation(s)
- Junjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Design for Tissue Regeneration, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Li Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
- Department of Design for Tissue Regeneration, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Itsunari Minami
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Cell Design for Tissue Construction Faculty of Medicine, Osaka University, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Frontier Regenerative Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
26
|
Sougawa N, Miyagawa S, Sawa Y. Large-Scale Differentiation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes by Stirring-Type Suspension Culture. Methods Mol Biol 2021; 2320:23-27. [PMID: 34302644 DOI: 10.1007/978-1-0716-1484-6_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Regenerative medicine using human-induced pluripotent stem cells (hiPSCs) is a promising approach to treat heart failure. However, a large number of cells are required to achieve the desired therapeutic effect. The stirring-type suspension culture method allows a large-scale production of hiPSC-derived cardiomyocytes (more than 1 × 108 cells/100 mL), leading to a stable cell supply. Here, we describe a method to scale-up hiPSC-derived cardiomyocyte production with a high differentiation efficiency.
Collapse
Affiliation(s)
- Nagako Sougawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
27
|
Song Y, Wang H, Yue F, Lv Q, Cai B, Dong N, Wang Z, Wang L. Silk-Based Biomaterials for Cardiac Tissue Engineering. Adv Healthc Mater 2020; 9:e2000735. [PMID: 32939999 DOI: 10.1002/adhm.202000735] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/29/2020] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases are one of the leading causes of death globally. Among various cardiovascular diseases, myocardial infarction is an important one. Compared with conventional treatments, cardiac tissue engineering provides an alternative to repair and regenerate the injured tissue. Among various types of materials used for tissue engineering applications, silk biomaterials have been increasingly utilized due to their biocompatibility, biological functions, and many favorable physical/chemical properties. Silk biomaterials are often used alone or in combination with other materials in the forms of patches or hydrogels, and serve as promising delivery systems for bioactive compounds in tissue engineering repair scenarios. This review focuses primarily on the promising characteristics of silk biomaterials and their recent advances in cardiac tissue engineering.
Collapse
Affiliation(s)
- Yu Song
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huifang Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feifei Yue
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiying Lv
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo Cai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
28
|
Hypoxia as a Driving Force of Pluripotent Stem Cell Reprogramming and Differentiation to Endothelial Cells. Biomolecules 2020; 10:biom10121614. [PMID: 33260307 PMCID: PMC7759989 DOI: 10.3390/biom10121614] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Inadequate supply of oxygen (O2) is a hallmark of many diseases, in particular those related to the cardiovascular system. On the other hand, tissue hypoxia is an important factor regulating (normal) embryogenesis and differentiation of stem cells at the early stages of embryonic development. In culture, hypoxic conditions may facilitate the derivation of embryonic stem cells (ESCs) and the generation of induced pluripotent stem cells (iPSCs), which may serve as a valuable tool for disease modeling. Endothelial cells (ECs), multifunctional components of vascular structures, may be obtained from iPSCs and subsequently used in various (hypoxia-related) disease models to investigate vascular dysfunctions. Although iPSC-ECs demonstrated functionality in vitro and in vivo, ongoing studies are conducted to increase the efficiency of differentiation and to establish the most productive protocols for the application of patient-derived cells in clinics. In this review, we highlight recent discoveries on the role of hypoxia in the derivation of ESCs and the generation of iPSCs. We also summarize the existing protocols of hypoxia-driven differentiation of iPSCs toward ECs and discuss their possible applications in disease modeling and treatment of hypoxia-related disorders.
Collapse
|
29
|
Osada H, Ho WJ, Yamashita H, Yamazaki K, Ikeda T, Minatoya K, Masumoto H. Novel device prototyping for endoscopic cell sheet transplantation using a three-dimensional printed simulator. Regen Ther 2020; 15:258-264. [PMID: 33426227 PMCID: PMC7770426 DOI: 10.1016/j.reth.2020.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 12/28/2022] Open
Abstract
Introduction Considering higher risks of candidates for cardiac regenerative therapy with compromised cardiac function, it is anticipated to develop less invasive surgical procedures. In the present study, we aimed to develop a prototype of totally endoscopic cell sheet delivery device and evaluate the surgical technique for epicardial cell sheet placement using three-dimensional (3D) printed simulators based on human computed tomography data. Methods We designed an endoscopic cell sheet delivery device with outer and inner frame with self-expandable applicator which can be opened in thoracic cavity. We launched spout line to provide liquids on the applicator surface and tension line to gently bend the applicator dorsally. We prepared human mesenchymal stem cell (MSC) sheets and compared wet/dry conditions of 3D printed heart/porcine heart and applicator to identify suitable conditions for cell sheet transplantation. Finally we validated the feasibility of endoscopic transplantation to anterior and lateral wall of left ventricle using 3D printed simulators. Results Moist condition of both 3D printed heart/porcine heart surface and applicator at transplantation yielded highest successful rate (100%, p = 0.0197). For both endoscopic transplantation sites, MSC sheets were successfully deployed. The procedure duration was 157 ± 23 s for anterior wall and 123 ± 13 s for the lateral wall in average, respectively. Conclusions We developed a novel prototype of endoscopic cell sheet delivery device for minimally-invasive cardiac regenerative therapy utilizing a 3D printed simulator. The commercialization of the prototype may provide a safe minimally-invasive method to deliver potential cardiac regenerative therapy in the future. We invented a novel device for endoscopic cell sheet transplantation. We optimized the transplantation procedure using three-dimensional printed simulator. Commercialization of the device may provide standardized cardiac regenerative therapy.
Collapse
Affiliation(s)
- Hiroaki Osada
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Wen-Jin Ho
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hideki Yamashita
- Industrial Materials Technology Development Department, Ashimori Industry Co., Ltd., 7-11-61, Senrioka, Settsu, Osaka, 566-0001, Japan
| | - Kazuhiro Yamazaki
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tadashi Ikeda
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kenji Minatoya
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hidetoshi Masumoto
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.,Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojimaminami-cho, Chuo-ku, Kobe, 650-0047, Japan
| |
Collapse
|
30
|
He L, Chen X. Cardiomyocyte Induction and Regeneration for Myocardial Infarction Treatment: Cell Sources and Administration Strategies. Adv Healthc Mater 2020; 9:e2001175. [PMID: 33000909 DOI: 10.1002/adhm.202001175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Occlusion of coronary artery and subsequent damage or death of myocardium can lead to myocardial infarction (MI) and even heart failure-one of the leading causes of deaths world wide. Notably, myocardium has extremely limited regeneration potential due to the loss or death of cardiomyocytes (i.e., the cells of which the myocardium is comprised) upon MI. A variety of stem cells and stem cell-derived cardiovascular cells, in situ cardiac fibroblasts and endogenous proliferative epicardium, have been exploited to provide renewable cellular sources to treat injured myocardium. Also, different strategies, including direct injection of cell suspensions, bioactive molecules, or cell-incorporated biomaterials, and implantation of artificial cardiac scaffolds (e.g., cell sheets and cardiac patches), have been developed to deliver renewable cells and/or bioactive molecules to the MI site for the myocardium regeneration. This article briefly surveys cell sources and delivery strategies, along with biomaterials and their processing techniques, developed for MI treatment. Key issues and challenges, as well as recommendations for future research, are also discussed.
Collapse
Affiliation(s)
- Lihong He
- Department of Cell Biology Medical College of Soochow University Suzhou 215123 China
| | - Xiongbiao Chen
- Department of Mechanical Engineering Division of Biomedical Engineering University of Saskatchewan Saskatoon S7N5A9 Canada
| |
Collapse
|
31
|
Jiang L, Liang J, Huang W, Wu Z, Paul C, Wang Y. Strategies and Challenges to Improve Cellular Programming-Based Approaches for Heart Regeneration Therapy. Int J Mol Sci 2020; 21:E7662. [PMID: 33081233 PMCID: PMC7589611 DOI: 10.3390/ijms21207662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
Limited adult cardiac cell proliferation after cardiovascular disease, such as heart failure, hampers regeneration, resulting in a major loss of cardiomyocytes (CMs) at the site of injury. Recent studies in cellular reprogramming approaches have provided the opportunity to improve upon previous techniques used to regenerate damaged heart. Using these approaches, new CMs can be regenerated from differentiation of iPSCs (similar to embryonic stem cells), the direct reprogramming of fibroblasts [induced cardiomyocytes (iCMs)], or induced cardiac progenitors. Although these CMs have been shown to functionally repair infarcted heart, advancements in technology are still in the early stages of development in research laboratories. In this review, reprogramming-based approaches for generating CMs are briefly introduced and reviewed, and the challenges (including low efficiency, functional maturity, and safety issues) that hinder further translation of these approaches into a clinical setting are discussed. The creative and combined optimal methods to address these challenges are also summarized, with optimism that further investigation into tissue engineering, cardiac development signaling, and epigenetic mechanisms will help to establish methods that improve cell-reprogramming approaches for heart regeneration.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| | - Jialiang Liang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| | - Zhichao Wu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0529, USA
| |
Collapse
|
32
|
Cardiomyocyte Transplantation after Myocardial Infarction Alters the Immune Response in the Heart. Cells 2020; 9:cells9081825. [PMID: 32756334 PMCID: PMC7465503 DOI: 10.3390/cells9081825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/24/2022] Open
Abstract
We investigated the influence of syngeneic cardiomyocyte transplantation after myocardial infarction (MI) on the immune response and cardiac function. Methods and Results: We show for the first time that the immune response is altered as a result of syngeneic neonatal cardiomyocyte transplantation after MI leading to improved cardiac pump function as observed by magnetic resonance imaging in C57BL/6J mice. Interestingly, there was no improvement in the capillary density as well as infarct area as observed by CD31 and Sirius Red staining, respectively. Flow cytometric analysis revealed a significantly different response of monocyte-derived macrophages and regulatory T cells after cell transplantation. Interestingly, the inhibition of monocyte infiltration accompanied by cardiomyocyte transplantation diminished the positive effect of cell transplantation alone. The number of CD68+ macrophages in the remote area of the heart observed after four weeks was also different between the groups. Transcriptome analysis showed several changes in the gene expression involving circadian regulation, mitochondrial metabolism and immune responses after cardiomyocyte transplantation. Conclusion: Our work shows that cardiomyocyte transplantation alters the immune response after myocardial infarction with the recruited monocytes playing a role in the beneficial effect of cell transplantation. It also paves the way for further optimization of the efficacy of cardiomyocyte transplantation and their successful translation in the clinic.
Collapse
|
33
|
Osada H, Kawatou M, Takeda M, Jo JI, Murakami T, Tabata Y, Minatoya K, Yamashita JK, Masumoto H. Accuracy of spiked cell counting methods for designing a pre-clinical tumorigenicity study model. Heliyon 2020; 6:e04423. [PMID: 32685738 PMCID: PMC7358391 DOI: 10.1016/j.heliyon.2020.e04423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/28/2020] [Accepted: 07/08/2020] [Indexed: 11/09/2022] Open
Abstract
Background Evaluations for the tumorigenicity of transplantation of stem cell products is mandatory for clinical application. It is of importance to establish a system to accurately quantify contaminated tumorigenic cells regardless of the format of stem cell product. In the present report, we aimed to examine the accuracy of the quantification of tumorigenic cell numbers with commonly used 2 methods, quantitative polymerase chain reaction (qPCR) and flow cytometry (FCM) using experimental models of stem cell products spiked with tumorigenic cells. Methods Human mesenchymal stem cells (hMSCs) and melanoma Mewo-Luc cells constitutively expressing luciferase were used. We stained Mewo-Luc cells with a cell linker then spiked onto hMSC suspensions and hMSC sheets. We validated the accuracy of 10-fold serial dilution technique for Mewo-Luc cell suspension using a Coulter counter. The samples spiked with Mewo-Luc cells were subjected to qPCR and FCM analyses, respectively for the quantification of Mewo-Luc cells. Results Ten-fold serial dilutions of Mewo-Luc cells were performed accurately with small deviation. In samples spiked with or less than 100 cells in hMSC suspensions, and samples spiked with or less than 1,000 cells in hMSC sheets showed significantly higher cell numbers in calculations by FCM, respectively (suspensions; qPCR vs FCM: 100 cells: 59 ± 25 vs 232 ± 35 cells, p = 0.022/10 cells: 21 ± 7 vs 114 ± 27 cells, p = 0.030, sheets; qPCR vs FCM: 1,000 cells: 1723 ± 258 vs 5810 ± 878 cells, p = 0.012/100 cells: 110 ± 18 vs 973 ± 232 cells, p = 0.012/10 cells: 20 ± 6 vs 141 ± 36 cells, p = 0.030). Conclusion Differences in accuracy between quantification methods should be considered in designing a tumorigenicity study model.
Collapse
Affiliation(s)
- Hiroaki Osada
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Masahide Kawatou
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Masafumi Takeda
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Jun-Ichiro Jo
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takashi Murakami
- Department of Microbiology, Saitama Medical University, Faculty of Medicine, Saitama, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kenji Minatoya
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun K Yamashita
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Hidetoshi Masumoto
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
34
|
Parrotta EI, Lucchino V, Scaramuzzino L, Scalise S, Cuda G. Modeling Cardiac Disease Mechanisms Using Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Progress, Promises and Challenges. Int J Mol Sci 2020; 21:E4354. [PMID: 32575374 PMCID: PMC7352327 DOI: 10.3390/ijms21124354] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a class of disorders affecting the heart or blood vessels. Despite progress in clinical research and therapy, CVDs still represent the leading cause of mortality and morbidity worldwide. The hallmarks of cardiac diseases include heart dysfunction and cardiomyocyte death, inflammation, fibrosis, scar tissue, hyperplasia, hypertrophy, and abnormal ventricular remodeling. The loss of cardiomyocytes is an irreversible process that leads to fibrosis and scar formation, which, in turn, induce heart failure with progressive and dramatic consequences. Both genetic and environmental factors pathologically contribute to the development of CVDs, but the precise causes that trigger cardiac diseases and their progression are still largely unknown. The lack of reliable human model systems for such diseases has hampered the unraveling of the underlying molecular mechanisms and cellular processes involved in heart diseases at their initial stage and during their progression. Over the past decade, significant scientific advances in the field of stem cell biology have literally revolutionized the study of human disease in vitro. Remarkably, the possibility to generate disease-relevant cell types from induced pluripotent stem cells (iPSCs) has developed into an unprecedented and powerful opportunity to achieve the long-standing ambition to investigate human diseases at a cellular level, uncovering their molecular mechanisms, and finally to translate bench discoveries into potential new therapeutic strategies. This review provides an update on previous and current research in the field of iPSC-driven cardiovascular disease modeling, with the aim of underlining the potential of stem-cell biology-based approaches in the elucidation of the pathophysiology of these life-threatening diseases.
Collapse
|
35
|
Talebi A, Labbaf S, Karimzadeh F, Masaeli E, Nasr Esfahani MH. Electroconductive Graphene-Containing Polymeric Patch: A Promising Platform for Future Cardiac Repair. ACS Biomater Sci Eng 2020; 6:4214-4224. [DOI: 10.1021/acsbiomaterials.0c00266] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Alireza Talebi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Fathallah Karimzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Elahe Masaeli
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad-Hossein Nasr Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
36
|
Hulot JS. Modeling Cardiac Arrhythmias With Organoids. J Am Coll Cardiol 2020; 73:2325-2327. [PMID: 31072577 DOI: 10.1016/j.jacc.2019.01.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/21/2022]
|
37
|
Mesenchymal Stromal Cells from Patients with Cyanotic Congenital Heart Disease are Optimal Candidate for Cardiac Tissue Engineering. Biomaterials 2020; 230:119574. [DOI: 10.1016/j.biomaterials.2019.119574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/12/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022]
|
38
|
Kishino Y, Fujita J, Tohyama S, Okada M, Tanosaki S, Someya S, Fukuda K. Toward the realization of cardiac regenerative medicine using pluripotent stem cells. Inflamm Regen 2020; 40:1. [PMID: 31938077 PMCID: PMC6956487 DOI: 10.1186/s41232-019-0110-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/19/2019] [Indexed: 01/08/2023] Open
Abstract
Heart transplantation (HT) is the only radical treatment available for patients with end-stage heart failure that is refractory to optimal medical treatment and device therapies. However, HT as a therapeutic option is limited by marked donor shortage. To overcome this difficulty, regenerative medicine using human-induced pluripotent stem cells (hiPSCs) has drawn increasing attention as an alternative to HT. Several issues including the preparation of clinical-grade hiPSCs, methods for large-scale culture and production of hiPSCs and cardiomyocytes, prevention of tumorigenesis secondary to contamination of undifferentiated stem cells and non-cardiomyocytes, and establishment of an effective transplantation strategy need to be addressed to fulfill this unmet medical need. The ongoing rapid technological advances in hiPSC research have been directed toward the clinical application of this technology, and currently, most issues have been satisfactorily addressed. Cell therapy using hiPSC-derived cardiomyocytes is expected to serve as an integral component of realistic medicine in the near future and is being potentially viewed as a treatment that would revolutionize the management of patients with severe heart failure.
Collapse
Affiliation(s)
- Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582 Japan
| | - Jun Fujita
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582 Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582 Japan
| | - Marina Okada
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582 Japan
| | - Sho Tanosaki
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582 Japan
| | - Shota Someya
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582 Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582 Japan
| |
Collapse
|
39
|
Stem cell-derived cell sheet transplantation for heart tissue repair in myocardial infarction. Stem Cell Res Ther 2020; 11:19. [PMID: 31915074 PMCID: PMC6950817 DOI: 10.1186/s13287-019-1536-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/30/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Stem cell-derived sheet engineering has been developed as the next-generation treatment for myocardial infarction (MI) and offers attractive advantages in comparison with direct stem cell transplantation and scaffold tissue engineering. Furthermore, induced pluripotent stem cell-derived cell sheets have been indicated to possess higher potential for MI therapy than other stem cell-derived sheets because of their capacity to form vascularized networks for fabricating thickened human cardiac tissue and their long-term therapeutic effects after transplantation in MI. To date, stem cell sheet transplantation has exhibited a dramatic role in attenuating cardiac dysfunction and improving clinical manifestations of heart failure in MI. In this review, we retrospectively summarized the current applications and strategy of stem cell-derived cell sheet technology for heart tissue repair in MI.
Collapse
|
40
|
Song SY, Kim H, Yoo J, Kwon SP, Park BW, Kim JJ, Ban K, Char K, Park HJ, Kim BS. Prevascularized, multiple-layered cell sheets of direct cardiac reprogrammed cells for cardiac repair. Biomater Sci 2020; 8:4508-4520. [DOI: 10.1039/d0bm00701c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We developed cardiac-reprogrammed cell sheets via cardiac-mimetic cell culture system with biodegradable PLGA membrane. The prevascularized, multiple-layered cell sheets prevented heart failure after myocardial infarction.
Collapse
Affiliation(s)
- Seuk Young Song
- School of Chemical and Biological Engineering
- Seoul National University
- Seoul
- Republic of Korea
| | - Hyeok Kim
- Department of Medical Life Science
- College of Medicine
- The Catholic University of Korea
- Seoul
- Republic of Korea
| | - Jin Yoo
- School of Chemical and Biological Engineering
- Seoul National University
- Seoul
- Republic of Korea
| | - Sung Pil Kwon
- School of Chemical and Biological Engineering
- Seoul National University
- Seoul
- Republic of Korea
| | - Bong Woo Park
- Department of Medical Life Science
- College of Medicine
- The Catholic University of Korea
- Seoul
- Republic of Korea
| | - Jin-ju Kim
- Department of Medical Life Science
- College of Medicine
- The Catholic University of Korea
- Seoul
- Republic of Korea
| | - Kiwon Ban
- Department of Biomedical Sciences
- City University of Hong Kong
- Kowloon Tong
- Hong Kong
| | - Kookheon Char
- School of Chemical and Biological Engineering
- Seoul National University
- Seoul
- Republic of Korea
| | - Hun-Jun Park
- Department of Medical Life Science
- College of Medicine
- The Catholic University of Korea
- Seoul
- Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering
- Seoul National University
- Seoul
- Republic of Korea
- Institute of Chemical Processes
| |
Collapse
|
41
|
Broughton KM, Sussman MA. Cardiac tissue engineering therapeutic products to enhance myocardial contractility. J Muscle Res Cell Motil 2019; 41:363-373. [PMID: 31863324 DOI: 10.1007/s10974-019-09570-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022]
Abstract
Researchers continue to develop therapeutic products for the repair and replacement of myocardial tissue that demonstrates contractility equivalent to normal physiologic states. As clinical trials focused on pure adult stem cell populations undergo meta-analysis for preclinical through clinical design, the field of tissue engineering is emerging as a new clinical frontier to repair the myocardium and improve cardiac output. This review will first discuss the three primary tissue engineering product themes that are advancing in preclinical to clinical models: (1) cell-free scaffolds, (2) scaffold-free cellular, and (3) hybrid cell and scaffold products. The review will then focus on the products that have advanced from preclinical models to clinical trials. In advancing the cardiac regenerative medicine field, long-term gains towards discovering an optimal product to generate functional myocardial tissue and eliminate heart failure may be achieved.
Collapse
Affiliation(s)
- Kathleen M Broughton
- Department of Biology and Heart Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Mark A Sussman
- Department of Biology and Heart Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA.
| |
Collapse
|
42
|
Samak M, Hinkel R. Stem Cells in Cardiovascular Medicine: Historical Overview and Future Prospects. Cells 2019; 8:cells8121530. [PMID: 31783680 PMCID: PMC6952821 DOI: 10.3390/cells8121530] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/19/2019] [Accepted: 11/23/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases remain the leading cause of death in the developed world, accounting for more than 30% of all deaths. In a large proportion of these patients, acute myocardial infarction is usually the first manifestation, which might further progress to heart failure. In addition, the human heart displays a low regenerative capacity, leading to a loss of cardiomyocytes and persistent tissue scaring, which entails a morbid pathologic sequela. Novel therapeutic approaches are urgently needed. Stem cells, such as induced pluripotent stem cells or embryonic stem cells, exhibit great potential for cell-replacement therapy and an excellent tool for disease modeling, as well as pharmaceutical screening of novel drugs and their cardiac side effects. This review article covers not only the origin of stem cells but tries to summarize their translational potential, as well as potential risks and clinical translation.
Collapse
Affiliation(s)
- Mostafa Samak
- Department of Laboratory Animal Science, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Rabea Hinkel
- Department of Laboratory Animal Science, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
43
|
Wang Z, Mithieux SM, Weiss AS. Fabrication Techniques for Vascular and Vascularized Tissue Engineering. Adv Healthc Mater 2019; 8:e1900742. [PMID: 31402593 DOI: 10.1002/adhm.201900742] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/12/2019] [Indexed: 12/19/2022]
Abstract
Impaired or damaged blood vessels can occur at all levels in the hierarchy of vascular systems from large vasculatures such as arteries and veins to meso- and microvasculatures such as arterioles, venules, and capillary networks. Vascular tissue engineering has become a promising approach for fabricating small-diameter vascular grafts for occlusive arteries. Vascularized tissue engineering aims to fabricate meso- and microvasculatures for the prevascularization of engineered tissues and organs. The ideal small-diameter vascular graft is biocompatible, bridgeable, and mechanically robust to maintain patency while promoting tissue remodeling. The desirable fabricated meso- and microvasculatures should rapidly integrate with the host blood vessels and allow nutrient and waste exchange throughout the construct after implantation. A number of techniques used, including engineering-based and cell-based approaches, to fabricate these synthetic vasculatures are herein explored, as well as the techniques developed to fabricate hierarchical structures that comprise multiple levels of vasculature.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life and Environmental Sciences University of Sydney NSW 2006 Australia
- Charles Perkins Centre University of Sydney NSW 2006 Australia
| | - Suzanne M. Mithieux
- School of Life and Environmental Sciences University of Sydney NSW 2006 Australia
- Charles Perkins Centre University of Sydney NSW 2006 Australia
| | - Anthony S. Weiss
- School of Life and Environmental Sciences University of Sydney NSW 2006 Australia
- Charles Perkins Centre University of Sydney NSW 2006 Australia
- Bosch Institute University of Sydney NSW 2006 Australia
- Sydney Nano Institute University of Sydney NSW 2006 Australia
| |
Collapse
|
44
|
Basic fibroblast growth factor attenuates left-ventricular remodeling following surgical ventricular restoration in a rat ischemic cardiomyopathy model. Gen Thorac Cardiovasc Surg 2019; 68:311-318. [PMID: 31410725 DOI: 10.1007/s11748-019-01187-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/04/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Although surgical ventricular restoration for ischemic cardiomyopathy is expected as an alternative or bridge to heart transplantation, post-operative remodeling of left ventricle (LV) needs to be addressed. This study aimed to examine the effect of basic fibroblast growth factor (bFGF), which induces angiogenesis and tissue regeneration in ischemic myocardium, to prevent remodeling after surgical ventricular restoration (SVR) using a rat ischemic cardiomyopathy model. METHODS Four weeks after coronary artery ligation, rats were divided into two groups: rats treated with SVR alone (SVR; n = 21), and rats treated with SVR and local sustained release of bFGF using gelatin hydrogel sheet (SVR + bFGF; n = 22). Cardiac function was assessed by serial echocardiography and cardiac catheterization. Cardiac tissue sections were histologically examined for vascular density and fibrosis. RESULTS Higher systolic function and lower LV end-diastolic pressure (LVEDP) were observed in rats treated with SVR + bFGF (SVR vs SVR + bFGF; Ees: 0.22 ± 0.11 vs 0.33 ± 0.22 mmHg/μL, p = 0.0328; LVEDP: 12.7 ± 7.0 vs 8.5 ± 4.3 mmHg, p = 0.0230). LV area tended to be lower in rats treated with SVR + bFGF compared to rats treated with SVR alone (left-ventricular end-diastolic area: 0.66 ± 0.07 vs 0.62 ± 0.07 cm2, p = 0.071). Vascular density tended to be higher in rats treated with SVR + bFGF than those without bFGF (23.3 ± 8.1 vs 28.8 ± 9.5/mm2, p = 0.0509). CONCLUSIONS BFGF induced angiogenesis and attenuated remodeling after SVR which secured the efficacy of SVR in a rat ischemic cardiomyopathy model.
Collapse
|
45
|
Kobayashi K, Ichihara Y, Sato N, Umeda N, Fields L, Fukumitsu M, Tago Y, Ito T, Kainuma S, Podaru M, Lewis-McDougall F, Yamahara K, Uppal R, Suzuki K. On-site fabrication of Bi-layered adhesive mesenchymal stromal cell-dressings for the treatment of heart failure. Biomaterials 2019; 209:41-53. [PMID: 31026610 PMCID: PMC6527869 DOI: 10.1016/j.biomaterials.2019.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal/stem cell (MSC)-based therapy is a promising approach for the treatment of heart failure. However, current MSC-delivery methods result in poor donor cell engraftment, limiting the therapeutic efficacy. To address this issue, we introduce here a novel technique, epicardial placement of bi-layered, adhesive dressings incorporating MSCs (MSC-dressing), which can be easily fabricated from a fibrin sealant film and MSC suspension at the site of treatment. The inner layer of the MSC dressing, an MSC-fibrin complex, promptly and firmly adheres to the heart surface without sutures or extra glues. We revealed that fibrin improves the potential of integrated MSCs through amplifying their tissue-repair abilities and activating the Akt/PI3K self-protection pathway. Outer collagen-sheets protect the MSC-fibrin complex from abrasion by surrounding tissues and also facilitates easy handling. As such, the MSC-dressing technique not only improves initial retention and subsequent maintenance of donor MSCs but also augment MSC's reparative functions. As a result, this technique results in enhanced cardiac function recovery with improved myocardial tissue repair in a rat ischemic cardiomyopathy model, compared to the current method. Dose-dependent therapeutic effects by this therapy is also exhibited. This user-friendly, highly-effective bioengineering technique will contribute to future success of MSC-based therapy.
Collapse
Affiliation(s)
- Kazuya Kobayashi
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
| | - Yuki Ichihara
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
| | - Nobuhiko Sato
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom; Kaneka Corporation, Osaka, Japan
| | | | - Laura Fields
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
| | - Masafumi Fukumitsu
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
| | | | - Tomoya Ito
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
| | - Satoshi Kainuma
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
| | - Mihai Podaru
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
| | - Fiona Lewis-McDougall
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
| | - Kenichi Yamahara
- Transfusion Medicine and Cellular Therapy, Hyogo College of Medicine, Japan
| | - Rakesh Uppal
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
| | - Ken Suzuki
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom.
| |
Collapse
|
46
|
Ohashi F, Miyagawa S, Yasuda S, Miura T, Kuroda T, Itoh M, Kawaji H, Ito E, Yoshida S, Saito A, Sameshima T, Kawai J, Sawa Y, Sato Y. CXCL4/PF4 is a predictive biomarker of cardiac differentiation potential of human induced pluripotent stem cells. Sci Rep 2019; 9:4638. [PMID: 30874579 PMCID: PMC6420577 DOI: 10.1038/s41598-019-40915-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/21/2019] [Indexed: 12/23/2022] Open
Abstract
Selection of human induced pluripotent stem cell (hiPSC) lines with high cardiac differentiation potential is important for regenerative therapy and drug screening. We aimed to identify biomarkers for predicting cardiac differentiation potential of hiPSC lines by comparing the gene expression profiles of six undifferentiated hiPSC lines with different cardiac differentiation capabilities. We used three platforms of gene expression analysis, namely, cap analysis of gene expression (CAGE), mRNA array, and microRNA array to efficiently screen biomarkers related to cardiac differentiation of hiPSCs. Statistical analysis revealed candidate biomarker genes with significant correlation between the gene expression levels in the undifferentiated hiPSCs and their cardiac differentiation potential. Of the candidate genes, PF4 was validated as a biomarker expressed in undifferentiated hiPSCs with high potential for cardiac differentiation in 13 additional hiPSC lines. Our observations suggest that PF4 may be a useful biomarker for selecting hiPSC lines appropriate for the generation of cardiomyocytes.
Collapse
Affiliation(s)
- Fumiya Ohashi
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.,Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.,Department of Cellular & Gene Therapy Products, Osaka University Graduate School of Pharmaceutical Sciences, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa, 259-0151, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Yasuda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Takumi Miura
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Takuya Kuroda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Masayoshi Itoh
- Preventive Medicine and Diagnosis Innovation Program, RIKEN Center, 1-7-22, Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Hideya Kawaji
- Preventive Medicine and Diagnosis Innovation Program, RIKEN Center, 1-7-22, Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.,Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Emiko Ito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shohei Yoshida
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Atsuhiro Saito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Tadashi Sameshima
- Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa, 259-0151, Japan
| | - Jun Kawai
- Preventive Medicine and Diagnosis Innovation Program, RIKEN Center, 1-7-22, Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan. .,Department of Cellular & Gene Therapy Products, Osaka University Graduate School of Pharmaceutical Sciences, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Department of Quality Assurance Science for Pharmaceuticals, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan. .,Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan. .,LiSE Laboratory, Kanagawa Institute of Industrial Science and Technology, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan.
| |
Collapse
|
47
|
Madonna R, Van Laake LW, Botker HE, Davidson SM, De Caterina R, Engel FB, Eschenhagen T, Fernandez-Aviles F, Hausenloy DJ, Hulot JS, Lecour S, Leor J, Menasché P, Pesce M, Perrino C, Prunier F, Van Linthout S, Ytrehus K, Zimmermann WH, Ferdinandy P, Sluijter JPG. ESC Working Group on Cellular Biology of the Heart: position paper for Cardiovascular Research: tissue engineering strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart failure. Cardiovasc Res 2019; 115:488-500. [PMID: 30657875 PMCID: PMC6383054 DOI: 10.1093/cvr/cvz010] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022] Open
Abstract
Morbidity and mortality from ischaemic heart disease (IHD) and heart failure (HF) remain significant in Europe and are increasing worldwide. Patients with IHD or HF might benefit from novel therapeutic strategies, such as cell-based therapies. We recently discussed the therapeutic potential of cell-based therapies and provided recommendations on how to improve the therapeutic translation of these novel strategies for effective cardiac regeneration and repair. Despite major advances in optimizing these strategies with respect to cell source and delivery method, the clinical outcome of cell-based therapy remains unsatisfactory. Major obstacles are the low engraftment and survival rate of transplanted cells in the harmful microenvironment of the host tissue, and the paucity or even lack of endogenous cells with repair capacity. Therefore, new ways of delivering cells and their derivatives are required in order to empower cell-based cardiac repair and regeneration in patients with IHD or HF. Strategies using tissue engineering (TE) combine cells with matrix materials to enhance cell retention or cell delivery in the transplanted area, and have recently received much attention for this purpose. Here, we summarize knowledge on novel approaches emerging from the TE scenario. In particular, we will discuss how combinations of cell/bio-materials (e.g. hydrogels, cell sheets, prefabricated matrices, microspheres, and injectable matrices) combinations might enhance cell retention or cell delivery in the transplantation areas, thereby increase the success rate of cell therapies for IHD and HF. We will not focus on the use of classical engineering approaches, employing fully synthetic materials, because of their unsatisfactory material properties which render them not clinically applicable. The overall aim of this Position Paper from the ESC Working Group Cellular Biology of the Heart is to provide recommendations on how to proceed in research with these novel TE strategies combined with cell-based therapies to boost cardiac repair in the clinical settings of IHD and HF.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Institute of Cardiology and Center of Excellence on Aging, “G. d’Annunzio” University—Chieti, Italy
- University of Texas Medical School in Houston, USA
| | - Linda W Van Laake
- Cardiology and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, The Netherlands
| | - Hans Erik Botker
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Raffaele De Caterina
- Institute of Cardiology and Center of Excellence on Aging, “G. d’Annunzio” University—Chieti, Italy
- University of Texas Medical School in Houston, USA
- University of Pisa, Pisa University Hospital, Pisa, Italy
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Muscle Research Center Erlangen, MURCE
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Francesco Fernandez-Aviles
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain
- CIBERCV, ISCIII, Madrid, Spain
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, UK
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, London, UK
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
| | - Jean-Sebastien Hulot
- Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
- Paris Cardiovascular Research Center (PARCC), INSERM UMRS 970, Paris, France
- Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Sandrine Lecour
- Hatter Cardiovascular Research Institute, University of Cape Town, South Africa
| | - Jonathan Leor
- Tamman and Neufeld Cardiovascular Research Institutes, Sackler Faculty of Medicine, Tel-Aviv University and Sheba Medical Center, Tel-Hashomer, Israel
| | - Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Paris, France
- Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
- INSERM UMRS 970, Paris, France
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Fabrice Prunier
- Institut Mitovasc, INSERM, CNRS, Université d’Angers, Service de Cardiologie, CHU Angers, Angers, France
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
- Department of Cardiology, Charité, University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Kirsti Ytrehus
- Department of Medical Biology, UiT, The Arctic University of Norway, Norway
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, III-V Floor, H-1089 Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Joost P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, CX Utrecht, the Netherlands
| |
Collapse
|
48
|
Amniotic membrane as novel scaffold for human iPSC-derived cardiomyogenesis. In Vitro Cell Dev Biol Anim 2019; 55:272-284. [PMID: 30798515 DOI: 10.1007/s11626-019-00321-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/08/2019] [Indexed: 12/17/2022]
Abstract
Recent approaches of using decellularized organ matrices for cardiac tissue engineering prompted us to culture human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) on the human amniotic membrane (hAM). Since hAM has been used lately to patch diseased hearts in patients and has shown anti-inflammatory and anti-fibrotic benefits, it qualifies as a cardiac compatible and clinically relevant heart tissue scaffold. The aim of this study was to test the ability of the hAM to support attachment, differentiation, and maturation of hiPSC-derived CMs in vitro. hAMs were prepared from term placenta. An in-house generated hiPSC line was used for CM derivation. hiPSC-derived cardiac progenitors were cultured on the surface of cryopreserved hAMs and in the presence of cytokines promoting cardiac differentiation. CMs grown on hAM and popular basement membrane matrix (BMM) Matrigel™ were compared for the following aspects of cardiac development: the morphology of cardiomyocytes with respect to shape and cellular alignments, levels of cardiac-related gene transcript expression, functionality in terms of spontaneous calcium fluxes and mitochondrial densities and distributions. hAM is biocompatible with hiPSC-derived CMs. hAM increased cardiac transcription regulator and myofibril protein transcript expression, accelerated intracellular calcium transients, and enhanced cellular mitochondrial complexity of its cardiomyocytes in comparison to cardiomyocytes differentiated on Matrigel™. Our data suggests that hAM supports differentiation and improves cardiomyogenesis in comparison to Matrigel™. hAMs are natural, easily and largely available. The method of preparing hAM cardiac sheets described here is simple with potential for clinical transplantation. Graphical abstract A An outline of the differentiation protocol with stage-specific growth factors and culture media used. B Cell fates from pluripotent stem cells to cardiomyocytes during differentiation on the amniotic membrane. C-FPhotomicrographs of cells at various stages of differentiation. Scale bars represent 100 μm.
Collapse
|
49
|
Cell sheet technology: a promising strategy in regenerative medicine. Cytotherapy 2019; 21:3-16. [DOI: 10.1016/j.jcyt.2018.10.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/30/2018] [Accepted: 10/24/2018] [Indexed: 12/31/2022]
|
50
|
Masuda S, Matsuura K, Shimizu T. Preparation of iPS cell-derived CD31 + endothelial cells using three-dimensional suspension culture. Regen Ther 2018; 9:1-9. [PMID: 30525069 PMCID: PMC6222294 DOI: 10.1016/j.reth.2018.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/24/2018] [Accepted: 06/22/2018] [Indexed: 12/03/2022] Open
Abstract
A well-organised vascular network is essential for metabolic exchange to maintain homoeostasis in the body. Therefore, for progress in regenerative medicine, it is particularly important to establish methods of vascularization in bioengineered three-dimensional (3D) functional tissues. In addition, it is necessary to develop methods to supply a large number of iPS cell-derived endothelial cells for fabricating the vascular network structure. There are already many reports on the method of inducing the differentiation of endothelial cells from iPS cells using 2D culture. However, there are few reports on methods for preparing a large number of iPS cell-derived endothelial cells. Therefore, we developed methods for inducing vascular endothelial cells from human inducible pluripotent stem (hiPS) cells using 3D suspension culture. hiPS cell-derived CD31+ cells expressed several endothelial marker genes and formed endothelial cell network structures, similar to human umbilical vein endothelial cells. These results indicate that hiPS cell-derived CD31+ cells may be a useful cell source for pre-vascularised network structures in 3D functional tissues, and it is important to develop 3D mass culture system for preparing a large number of cells to fabricate bioengineered tissues.
Collapse
Affiliation(s)
- Shinako Masuda
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Katsuhisa Matsuura
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
- Department of Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| |
Collapse
|