1
|
Kotsaris G, Qazi TH, Bucher CH, Zahid H, Pöhle-Kronawitter S, Ugorets V, Jarassier W, Börno S, Timmermann B, Giesecke-Thiel C, Economides AN, Le Grand F, Vallecillo-García P, Knaus P, Geissler S, Stricker S. Odd skipped-related 1 controls the pro-regenerative response of fibro-adipogenic progenitors. NPJ Regen Med 2023; 8:19. [PMID: 37019910 PMCID: PMC10076435 DOI: 10.1038/s41536-023-00291-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
Skeletal muscle regeneration requires the coordinated interplay of diverse tissue-resident- and infiltrating cells. Fibro-adipogenic progenitors (FAPs) are an interstitial cell population that provides a beneficial microenvironment for muscle stem cells (MuSCs) during muscle regeneration. Here we show that the transcription factor Osr1 is essential for FAPs to communicate with MuSCs and infiltrating macrophages, thus coordinating muscle regeneration. Conditional inactivation of Osr1 impaired muscle regeneration with reduced myofiber growth and formation of excessive fibrotic tissue with reduced stiffness. Osr1-deficient FAPs acquired a fibrogenic identity with altered matrix secretion and cytokine expression resulting in impaired MuSC viability, expansion and differentiation. Immune cell profiling suggested a novel role for Osr1-FAPs in macrophage polarization. In vitro analysis suggested that increased TGFβ signaling and altered matrix deposition by Osr1-deficient FAPs actively suppressed regenerative myogenesis. In conclusion, we show that Osr1 is central to FAP function orchestrating key regenerative events such as inflammation, matrix secretion and myogenesis.
Collapse
Affiliation(s)
- Georgios Kotsaris
- Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Taimoor H Qazi
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Julius Wolff Institute, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Bioengineering, University of Pennsylvania, 19104, Philadelphia, USA
- Weldon School of Biomedical Engineering, Purdue University, 47907, West Lafayette, IN, USA
| | - Christian H Bucher
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Julius Wolff Institute, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117, Berlin, Germany
| | - Hafsa Zahid
- Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
- International Max Planck Research School for Biology and Computing IMPRS-BAC, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195, Berlin, Germany
| | - Sophie Pöhle-Kronawitter
- Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Vladimir Ugorets
- Institute of Chemistry and Biochemistry, Cell Signaling Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - William Jarassier
- Institut NeuroMyoGène, CNRS UMR 5261, Inserm U1315, Université Claude Bernard Lyon 1, 69008, Lyon, France
| | - Stefan Börno
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195, Berlin, Germany
| | - Bernd Timmermann
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195, Berlin, Germany
| | | | | | - Fabien Le Grand
- Institut NeuroMyoGène, CNRS UMR 5261, Inserm U1315, Université Claude Bernard Lyon 1, 69008, Lyon, France
| | - Pedro Vallecillo-García
- Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Petra Knaus
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Institute of Chemistry and Biochemistry, Cell Signaling Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Sven Geissler
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Julius Wolff Institute, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117, Berlin, Germany
- Berlin Center for Advanced Therapies (BECAT), Charité Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, Germany
| | - Sigmar Stricker
- Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany.
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
| |
Collapse
|
2
|
Stearns-Reider KM, Hicks MR, Hammond KG, Reynolds JC, Maity A, Kurmangaliyev YZ, Chin J, Stieg AZ, Geisse NA, Hohlbauch S, Kaemmer S, Schmitt LR, Pham TT, Yamauchi K, Novitch BG, Wollman R, Hansen KC, Pyle AD, Crosbie RH. Myoscaffolds reveal laminin scarring is detrimental for stem cell function while sarcospan induces compensatory fibrosis. NPJ Regen Med 2023; 8:16. [PMID: 36922514 PMCID: PMC10017766 DOI: 10.1038/s41536-023-00287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
We developed an on-slide decellularization approach to generate acellular extracellular matrix (ECM) myoscaffolds that can be repopulated with various cell types to interrogate cell-ECM interactions. Using this platform, we investigated whether fibrotic ECM scarring affected human skeletal muscle progenitor cell (SMPC) functions that are essential for myoregeneration. SMPCs exhibited robust adhesion, motility, and differentiation on healthy muscle-derived myoscaffolds. All SPMC interactions with fibrotic myoscaffolds from dystrophic muscle were severely blunted including reduced motility rate and migration. Furthermore, SMPCs were unable to remodel laminin dense fibrotic scars within diseased myoscaffolds. Proteomics and structural analysis revealed that excessive collagen deposition alone is not pathological, and can be compensatory, as revealed by overexpression of sarcospan and its associated ECM receptors in dystrophic muscle. Our in vivo data also supported that ECM remodeling is important for SMPC engraftment and that fibrotic scars may represent one barrier to efficient cell therapy.
Collapse
Affiliation(s)
- Kristen M Stearns-Reider
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Michael R Hicks
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Katherine G Hammond
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Joseph C Reynolds
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Alok Maity
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Institute for Quantitative and Computational Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yerbol Z Kurmangaliyev
- Institute for Quantitative and Computational Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jesse Chin
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Adam Z Stieg
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Sophia Hohlbauch
- Asylum Research, An Oxford Instruments Company, Santa Barbara, CA, 93117, USA
| | - Stefan Kaemmer
- Park Systems, 3040 Olcott St, Santa Clara, CA, 95054, USA
| | - Lauren R Schmitt
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver, Aurora, CO, 80045, USA
| | - Thanh T Pham
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver, Aurora, CO, 80045, USA
| | - Ken Yamauchi
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Bennett G Novitch
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Roy Wollman
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Institute for Quantitative and Computational Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver, Aurora, CO, 80045, USA
| | - April D Pyle
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Ganassi M, Muntoni F, Zammit PS. Defining and identifying satellite cell-opathies within muscular dystrophies and myopathies. Exp Cell Res 2022; 411:112906. [PMID: 34740639 PMCID: PMC8784828 DOI: 10.1016/j.yexcr.2021.112906] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/12/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022]
Abstract
Muscular dystrophies and congenital myopathies arise from specific genetic mutations causing skeletal muscle weakness that reduces quality of life. Muscle health relies on resident muscle stem cells called satellite cells, which enable life-course muscle growth, maintenance, repair and regeneration. Such tuned plasticity gradually diminishes in muscle diseases, suggesting compromised satellite cell function. A central issue however, is whether the pathogenic mutation perturbs satellite cell function directly and/or indirectly via an increasingly hostile microenvironment as disease progresses. Here, we explore the effects on satellite cell function of pathogenic mutations in genes (myopathogenes) that associate with muscle disorders, to evaluate clinical and muscle pathological hallmarks that define dysfunctional satellite cells. We deploy transcriptomic analysis and comparison between muscular dystrophies and myopathies to determine the contribution of satellite cell dysfunction using literature, expression dynamics of myopathogenes and their response to the satellite cell regulator PAX7. Our multimodal approach extends current pathological classifications to define Satellite Cell-opathies: muscle disorders in which satellite cell dysfunction contributes to pathology. Primary Satellite Cell-opathies are conditions where mutations in a myopathogene directly affect satellite cell function, such as in Progressive Congenital Myopathy with Scoliosis (MYOSCO) and Carey-Fineman-Ziter Syndrome (CFZS). Primary satellite cell-opathies are generally characterised as being congenital with general hypotonia, and specific involvement of respiratory, trunk and facial muscles, although serum CK levels are usually within the normal range. Secondary Satellite Cell-opathies have mutations in myopathogenes that affect both satellite cells and muscle fibres. Such classification aids diagnosis and predicting probable disease course, as well as informing on treatment and therapeutic development.
Collapse
Affiliation(s)
- Massimo Ganassi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom; NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
4
|
Kanagawa M. Dystroglycanopathy: From Elucidation of Molecular and Pathological Mechanisms to Development of Treatment Methods. Int J Mol Sci 2021; 22:ijms222313162. [PMID: 34884967 PMCID: PMC8658603 DOI: 10.3390/ijms222313162] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/13/2023] Open
Abstract
Dystroglycanopathy is a collective term referring to muscular dystrophies with abnormal glycosylation of dystroglycan. At least 18 causative genes of dystroglycanopathy have been identified, and its clinical symptoms are diverse, ranging from severe congenital to adult-onset limb-girdle types. Moreover, some cases are associated with symptoms involving the central nervous system. In the 2010s, the structure of sugar chains involved in the onset of dystroglycanopathy and the functions of its causative gene products began to be identified as if they were filling the missing pieces of a jigsaw puzzle. In parallel with these discoveries, various dystroglycanopathy model mice had been created, which led to the elucidation of its pathological mechanisms. Then, treatment strategies based on the molecular basis of glycosylation began to be proposed after the latter half of the 2010s. This review briefly explains the sugar chain structure of dystroglycan and the functions of the causative gene products of dystroglycanopathy, followed by introducing the pathological mechanisms involved as revealed from analyses of dystroglycanopathy model mice. Finally, potential therapeutic approaches based on the pathological mechanisms involved are discussed.
Collapse
Affiliation(s)
- Motoi Kanagawa
- Department of Cell Biology and Molecular Medicine, Graduate School of Medicine, Ehime University, 454 Shitsukawa, Toon 791-0295, Ehime, Japan
| |
Collapse
|
5
|
Theret M, Rossi FMV, Contreras O. Evolving Roles of Muscle-Resident Fibro-Adipogenic Progenitors in Health, Regeneration, Neuromuscular Disorders, and Aging. Front Physiol 2021; 12:673404. [PMID: 33959042 PMCID: PMC8093402 DOI: 10.3389/fphys.2021.673404] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Normal skeletal muscle functions are affected following trauma, chronic diseases, inherited neuromuscular disorders, aging, and cachexia, hampering the daily activities and quality of life of the affected patients. The maladaptive accumulation of fibrous intramuscular connective tissue and fat are hallmarks of multiple pathologies where chronic damage and inflammation are not resolved, leading to progressive muscle replacement and tissue degeneration. Muscle-resident fibro-adipogenic progenitors are adaptable stromal cells with multilineage potential. They are required for muscle homeostasis, neuromuscular integrity, and tissue regeneration. Fibro-adipogenic progenitors actively regulate and shape the extracellular matrix and exert immunomodulatory functions via cross-talk with multiple other residents and non-resident muscle cells. Remarkably, cumulative evidence shows that a significant proportion of activated fibroblasts, adipocytes, and bone-cartilage cells, found after muscle trauma and disease, descend from these enigmatic interstitial progenitors. Despite the profound impact of muscle disease on human health, the fibrous, fatty, and ectopic bone tissues' origins are poorly understood. Here, we review the current knowledge of fibro-adipogenic progenitor function on muscle homeostatic integrity, regeneration, repair, and aging. We also discuss how scar-forming pathologies and disorders lead to dysregulations in their behavior and plasticity and how these stromal cells can control the onset and severity of muscle loss in disease. We finally explore the rationale of improving muscle regeneration by understanding and modulating fibro-adipogenic progenitors' fate and behavior.
Collapse
Affiliation(s)
- Marine Theret
- Biomedical Research Centre, Department of Medical Genetics, School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Fabio M. V. Rossi
- Biomedical Research Centre, Department of Medical Genetics, School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Osvaldo Contreras
- Departamento de Biología Celular y Molecular, Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| |
Collapse
|
6
|
F Almeida C, Bitoun M, Vainzof M. Satellite cells deficiency and defective regeneration in dynamin 2-related centronuclear myopathy. FASEB J 2021; 35:e21346. [PMID: 33715228 DOI: 10.1096/fj.202001313rrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/23/2020] [Accepted: 12/21/2020] [Indexed: 11/11/2022]
Abstract
Dynamin 2 (DNM2) is a ubiquitously expressed protein involved in many functions related to trafficking and remodeling of membranes and cytoskeleton dynamics. Mutations in the DNM2 gene cause the autosomal dominant centronuclear myopathy (AD-CNM), characterized mainly by muscle weakness and central nuclei. Several defects have been identified in the KI-Dnm2R465W/+ mouse model of the disease to explain the muscle phenotype, including reduction of the satellite cell pool in muscle, but the functional consequences of this depletion have not been characterized until now. Satellite cells (SC) are the main source for muscle growth and regeneration of mature tissue. Here, we investigated muscle regeneration in the KI-Dnm2R465W/+ mouse model for AD-CNM. We found a reduced number of Pax7-positive SCs, which were also less activated after induced muscle injury. The muscles of the KI-Dnm2R465W/+ mouse regenerated more slowly and less efficiently than wild-type ones, formed fewer new myofibers, and did not recover its normal mass 15 days after injury. Altogether, our data provide evidence that the muscle regeneration is impaired in the KI-Dnm2R465W/+ mouse and contribute with one more layer to the comprehension of the disease, by identifying a new pathomechanism linked to DNM2 mutations which may be involved in the muscle-specific impact occurring in AD-CNM.
Collapse
Affiliation(s)
- Camila F Almeida
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil.,INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Sorbonne Université, Paris, France
| | - Marc Bitoun
- INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Sorbonne Université, Paris, France
| | - Mariz Vainzof
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Structure, function, and pathology of protein O-glucosyltransferases. Cell Death Dis 2021; 12:71. [PMID: 33436558 PMCID: PMC7803782 DOI: 10.1038/s41419-020-03314-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 01/29/2023]
Abstract
Protein O-glucosylation is a crucial form of O-glycosylation, which involves glucose (Glc) addition to a serine residue within a consensus sequence of epidermal growth factor epidermal growth factor (EGF)-like repeats found in several proteins, including Notch. Glc provides stability to EGF-like repeats, is required for S2 cleavage of Notch, and serves to regulate the trafficking of Notch, crumbs2, and Eyes shut proteins to the cell surface. Genetic and biochemical studies have shown a link between aberrant protein O-glucosylation and human diseases. The main players of protein O-glucosylation, protein O-glucosyltransferases (POGLUTs), use uridine diphosphate (UDP)-Glc as a substrate to modify EGF repeats and reside in the endoplasmic reticulum via C-terminal KDEL-like signals. In addition to O-glucosylation activity, POGLUTs can also perform protein O-xylosylation function, i.e., adding xylose (Xyl) from UDP-Xyl; however, both activities rely on residues of EGF repeats, active-site conformations of POGLUTs and sugar substrate concentrations in the ER. Impaired expression of POGLUTs has been associated with initiation and progression of human diseases such as limb-girdle muscular dystrophy, Dowling-Degos disease 4, acute myeloid leukemia, and hepatocytes and pancreatic dysfunction. POGLUTs have been found to alter the expression of cyclin-dependent kinase inhibitors (CDKIs), by affecting Notch or transforming growth factor-β1 signaling, and cause cell proliferation inhibition or induction depending on the particular cell types, which characterizes POGLUT's cell-dependent dual role. Except for a few downstream elements, the precise mechanisms whereby aberrant protein O-glucosylation causes diseases are largely unknown, leaving behind many questions that need to be addressed. This systemic review comprehensively covers literature to understand the O-glucosyltransferases with a focus on POGLUT1 structure and function, and their role in health and diseases. Moreover, this study also raises unanswered issues for future research in cancer biology, cell communications, muscular diseases, etc.
Collapse
|
8
|
Doreste B, Torelli S, Morgan J. Irradiation dependent inflammatory response may enhance satellite cell engraftment. Sci Rep 2020; 10:11119. [PMID: 32632224 PMCID: PMC7338540 DOI: 10.1038/s41598-020-68098-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/28/2020] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle stem (satellite) cells transplanted into host mouse muscles contribute to muscle regeneration. Irradiation of host muscle enhances donor stem cell engraftment by promoting the proliferation of transplanted donor cells. We hypothesised that, similar to other systems, cells damaged by radiation might be effecting this donor cell proliferation. But we found no difference in the percentage of dying (TUNEL+) cells in immunodeficient dystrophic mouse muscles at the times after the irradiation dose that enhances donor cell engraftment. Similarly, irradiation did not significantly increase the number of TUNEL+ cells in non-dystrophic immunodeficient mouse muscles and it only slightly enhanced donor satellite cell engraftment in this mouse strain, suggesting either that the effector cells are present in greater numbers within dystrophic muscle, or that an innate immune response is required for effective donor cell engraftment. Donor cell engraftment within non-irradiated dystrophic host mouse muscles was not enhanced if they were transplanted with either satellite cells, or myofibres, derived from irradiated dystrophic mouse muscle. But a mixture of cells from irradiated muscle transplanted with donor satellite cells promoted donor cell engraftment in a few instances, suggesting that a rare, yet to be identified, cell type within irradiated dystrophic muscle enhances the donor stem cell-mediated regeneration. The mechanism by which cells within irradiated host muscle promote donor cell engraftment remains elusive.
Collapse
Affiliation(s)
- Bruno Doreste
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London, WC1N 1EH, UK
| | - Silvia Torelli
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London, WC1N 1EH, UK
| | - Jennifer Morgan
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N1EH, UK.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
9
|
Yanay N, Rabie M, Nevo Y. Impaired Regeneration in Dystrophic Muscle-New Target for Therapy. Front Mol Neurosci 2020; 13:69. [PMID: 32523512 PMCID: PMC7261890 DOI: 10.3389/fnmol.2020.00069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Muscle stem cells (MuSCs), known as satellite cells (SCs) have an incredible ability to regenerate, which enables the maintenance and growth of muscle tissue. In response to damaging stimuli, SCs are activated, proliferate, differentiate, and fuse to repair or generate a new muscle fiber. However, dystrophic muscles are characterized by poor muscle regeneration along with chronic inflammation and fibrosis. Indications for SC involvement in muscular dystrophy pathologies are accumulating, but their contribution to muscle pathophysiology is not precisely understood. In congenital muscular dystrophy type 1A (LAMA2-CMD), mutations in Lama2 gene cause either complete or partial absence in laminin-211 protein. Laminin-211 functions as a link between muscle extracellular matrix (ECM) and two adhesion systems in the sarcolemma; one is the well-known dystrophin-glycoprotein complex (DGC), and the second is the integrin complex. Because of its protein interactions and location, laminin-211 has a crucial role in muscle function and survival by maintaining sarcolemma integrity. In addition, laminin-211 is expressed in SCs and suggested to have a role in SC proliferation and differentiation. Downstream to the primary defect in laminin-211, several secondary genes and pathways accelerate disease mechanism, while at the same time there are unsuccessful attempts to regenerate as compensation for the dystrophic process. Lately, next-generation sequencing platforms have advanced our knowledge about the secondary events occurring in various diseases, elucidate the pathophysiology, and characterize new essential targets for development of new treatment strategies. This review will mainly focus on SC contribution to impaired regeneration in muscular dystrophies and specifically new findings suggesting SC involvement in LAMA2-CMD pathology.
Collapse
Affiliation(s)
- Nurit Yanay
- Felsenstein Medical Research Center (FMRC), Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Malcolm Rabie
- Felsenstein Medical Research Center (FMRC), Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Yoram Nevo
- Felsenstein Medical Research Center (FMRC), Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
10
|
Barraza-Flores P, Bates CR, Oliveira-Santos A, Burkin DJ. Laminin and Integrin in LAMA2-Related Congenital Muscular Dystrophy: From Disease to Therapeutics. Front Mol Neurosci 2020; 13:1. [PMID: 32116540 PMCID: PMC7026472 DOI: 10.3389/fnmol.2020.00001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
Laminin-α2-related congenital muscular dystrophy (LAMA2-CMD) is a devastating neuromuscular disease caused by mutations in the LAMA2 gene. These mutations result in the complete absence or truncated expression of the laminin-α2 chain. The α2-chain is a major component of the laminin-211 and laminin-221 isoforms, the predominant laminin isoforms in healthy adult skeletal muscle. Mutations in this chain result in progressive skeletal muscle degeneration as early as neonatally. Laminin-211/221 is a ligand for muscle cell receptors integrin-α7β1 and α-dystroglycan. LAMA2 mutations are correlated with integrin-α7β1 disruption in skeletal muscle. In this review, we will summarize laminin-211/221 interactions with integrin-α7β1 in LAMA2-CMD muscle. Additionally, we will summarize recent developments using upregulation of laminin-111 in the sarcolemma of laminin-α2-deficient muscle. We will discuss potential mechanisms of action by which laminin-111 is able to prevent myopathy. These published studies demonstrate that laminin-111 is a disease modifier of LAMA2-CMD through different methods of delivery. Together, these studies show the potential for laminin-111 therapy as a novel paradigm for the treatment of LAMA2-CMD.
Collapse
Affiliation(s)
- Pamela Barraza-Flores
- Department of Pharmacology, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Christina R Bates
- Department of Pharmacology, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Ariany Oliveira-Santos
- Department of Pharmacology, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Dean J Burkin
- Department of Pharmacology, Reno School of Medicine, University of Nevada, Reno, NV, United States
| |
Collapse
|
11
|
Abstract
Skeletal muscle fibres are multinucleated cells that contain postmitotic nuclei (i.e. they are no longer able to divide) and perform muscle contraction. They are formed by fusion of muscle precursor cells, and grow into elongating myofibres by the addition of further precursor cells, called satellite cells, which are also responsible for regeneration following injury. Skeletal muscle regeneration occurs in most muscular dystrophies in response to necrosis of muscle fibres. However, the complex environment within dystrophic skeletal muscle, which includes inflammatory cells, fibroblasts and fibro-adipogenic cells, together with the genetic background of the in vivo model and the muscle being studied, complicates the interpretation of laboratory studies on muscular dystrophies. Many genes are expressed in satellite cells and in other tissues, which makes it difficult to determine the molecular cause of various types of muscular dystrophies. Here, and in the accompanying poster, we discuss our current knowledge of the cellular mechanisms that govern the growth and regeneration of skeletal muscle, and highlight the defects in satellite cell function that give rise to muscular dystrophies. Summary: The mechanisms of skeletal muscle development, growth and regeneration are described. We discuss whether these processes are dysregulated in inherited muscle diseases and identify pathways that may represent therapeutic targets.
Collapse
Affiliation(s)
- Jennifer Morgan
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK .,National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Terence Partridge
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.,National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK.,Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Ave NW, Washington, DC 20010, USA
| |
Collapse
|
12
|
Ross JA, Levy Y, Ripolone M, Kolb JS, Turmaine M, Holt M, Lindqvist J, Claeys KG, Weis J, Monforte M, Tasca G, Moggio M, Figeac N, Zammit PS, Jungbluth H, Fiorillo C, Vissing J, Witting N, Granzier H, Zanoteli E, Hardeman EC, Wallgren-Pettersson C, Ochala J. Impairments in contractility and cytoskeletal organisation cause nuclear defects in nemaline myopathy. Acta Neuropathol 2019; 138:477-495. [PMID: 31218456 PMCID: PMC6689292 DOI: 10.1007/s00401-019-02034-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
Nemaline myopathy (NM) is a skeletal muscle disorder caused by mutations in genes that are generally involved in muscle contraction, in particular those related to the structure and/or regulation of the thin filament. Many pathogenic aspects of this disease remain largely unclear. Here, we report novel pathological defects in skeletal muscle fibres of mouse models and patients with NM: irregular spacing and morphology of nuclei; disrupted nuclear envelope; altered chromatin arrangement; and disorganisation of the cortical cytoskeleton. Impairments in contractility are the primary cause of these nuclear defects. We also establish the role of microtubule organisation in determining nuclear morphology, a phenomenon which is likely to contribute to nuclear alterations in this disease. Our results overlap with findings in diseases caused directly by mutations in nuclear envelope or cytoskeletal proteins. Given the important role of nuclear shape and envelope in regulating gene expression, and the cytoskeleton in maintaining muscle fibre integrity, our findings are likely to explain some of the hallmarks of NM, including contractile filament disarray, altered mechanical properties and broad transcriptional alterations.
Collapse
|
13
|
Ribeiro AF, Souza LS, Almeida CF, Ishiba R, Fernandes SA, Guerrieri DA, Santos ALF, Onofre-Oliveira PCG, Vainzof M. Muscle satellite cells and impaired late stage regeneration in different murine models for muscular dystrophies. Sci Rep 2019; 9:11842. [PMID: 31413358 PMCID: PMC6694188 DOI: 10.1038/s41598-019-48156-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 07/18/2019] [Indexed: 01/20/2023] Open
Abstract
Satellite cells (SCs) are the main muscle stem cells responsible for its regenerative capacity. In muscular dystrophies, however, a failure of the regenerative process results in muscle degeneration and weakness. To analyze the effect of different degrees of muscle degeneration in SCs behavior, we studied adult muscle of the dystrophic strains: DMDmdx, Largemyd, DMDmdx/Largemyd, with variable histopathological alterations. Similar results were observed in the dystrophic models, which maintained normal levels of PAX7 expression, retained the Pax7-positive SCs pool, and their proliferation capacity. Moreover, elevated expression of MYOG, an important myogenic factor, was also observed. The ability to form new fibers was verified by the presence of dMyHC positive regenerating fibers. However, those fibers had incomplete maturation characteristics, such as small and homogenous fiber caliber, which could contribute to their dysfunction. We concluded that dystrophic muscles, independently of their degeneration degree, retain their SCs pool with proliferating and regenerative capacities. Nonetheless, the maturation of these new fibers is incomplete and do not prevent muscle degeneration. Taken together, these results suggest that the improvement of late muscle regeneration should better contribute to therapeutic approaches.
Collapse
Affiliation(s)
- Antonio F Ribeiro
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Lucas S Souza
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Camila F Almeida
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Renata Ishiba
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Stephanie A Fernandes
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Danielle A Guerrieri
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - André L F Santos
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Paula C G Onofre-Oliveira
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Mariz Vainzof
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil.
| |
Collapse
|
14
|
Morgan J, Butler-Browne G, Muntoni F, Patel K. 240th ENMC workshop: The involvement of skeletal muscle stem cells in the pathology of muscular dystrophies 25-27 January 2019, Hoofddorp, The Netherlands. Neuromuscul Disord 2019; 29:704-715. [PMID: 31447279 DOI: 10.1016/j.nmd.2019.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/14/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Jennifer Morgan
- University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, UK.
| | - Gillian Butler-Browne
- Center for Research in Myology, Association Institut de Myologie, Inserm, Sorbonne Université, 75013 Paris, France
| | - Francesco Muntoni
- University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, UK
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, RG6 6AS, UK.
| | | |
Collapse
|
15
|
Rayagiri SS, Ranaldi D, Raven A, Mohamad Azhar NIF, Lefebvre O, Zammit PS, Borycki AG. Basal lamina remodeling at the skeletal muscle stem cell niche mediates stem cell self-renewal. Nat Commun 2018. [PMID: 29540680 PMCID: PMC5852002 DOI: 10.1038/s41467-018-03425-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A central question in stem cell biology is the relationship between stem cells and their niche. Although previous reports have uncovered how signaling molecules released by niche cells support stem cell function, the role of the extra-cellular matrix (ECM) within the niche is unclear. Here, we show that upon activation, skeletal muscle stem cells (satellite cells) induce local remodeling of the ECM and the deposition of laminin-α1 and laminin-α5 into the basal lamina of the satellite cell niche. Genetic ablation of laminin-α1, disruption of integrin-α6 signaling or blocking matrix metalloproteinase activity impairs satellite cell expansion and self-renewal. Collectively, our findings establish that remodeling of the ECM is an integral process of stem cell activity to support propagation and self-renewal, and may explain the effect laminin-α1-containing supports have on embryonic and adult stem cells, as well as the regenerative activity of exogenous laminin-111 therapy. Extracellular matrix (ECM) remodelling is thought to have effects on muscle stem cells that support muscle homeostasis. Here the authors show ECM remodeling controls satellite cell self-renewal through deposition of laminin-α1 into the satellite cell niche.
Collapse
Affiliation(s)
- Shantisree Sandeepani Rayagiri
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.,Biotherapeutics Development Unit, Cancer Research UK, Clare Hall laboratories, Blanche Lane, South Mimms, Hertfordshire, EN6 3LD, UK
| | - Daniele Ranaldi
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Alexander Raven
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.,MRC Centre for Regenerative Medicine, SCRM Building, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Nur Izzah Farhana Mohamad Azhar
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.,Oxford Publishing (Malaysia), Shah Alam, 40150, Selangor Darul Ehsan, Malaysia
| | - Olivier Lefebvre
- Inserm U1109 MN3T, F-67200, Strasbourg, France.,Université de Strasbourg, F-67000, Strasbourg, France.,LabEx Medalis Université de Strasbourg, F-67000, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), F-67000, Strasbourg, France
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences & Medicine King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Anne-Gaëlle Borycki
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
16
|
Pini V, Morgan JE, Muntoni F, O’Neill HC. Genome Editing and Muscle Stem Cells as a Therapeutic Tool for Muscular Dystrophies. CURRENT STEM CELL REPORTS 2017; 3:137-148. [PMID: 28616376 PMCID: PMC5445179 DOI: 10.1007/s40778-017-0076-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Purpose of Review Muscular dystrophies are a group of severe degenerative disorders characterized by muscle fiber degeneration and death. Therapies designed to restore muscle homeostasis and to replace dying fibers are being experimented, but none of those in clinical trials are suitable to permanently address individual gene mutation. The purpose of this review is to discuss genome editing tools such as CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated), which enable direct sequence alteration and could potentially be adopted to correct the genetic defect leading to muscle impairment. Recent Findings Recent findings show that advances in gene therapy, when combined with traditional viral vector-based approaches, are bringing the field of regenerative medicine closer to precision-based medicine. Summary The use of such programmable nucleases is proving beneficial for the creation of more accurate in vitro and in vivo disease models. Several gene and cell-therapy studies have been performed on satellite cells, the primary skeletal muscle stem cells involved in muscle regeneration. However, these have mainly been based on artificial replacement or augmentation of the missing protein. Satellite cells are a particularly appealing target to address these innovative technologies for the treatment of muscular dystrophies.
Collapse
Affiliation(s)
- Veronica Pini
- Molecular and Developmental Neurosciences Program, The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Jennifer E. Morgan
- Molecular and Developmental Neurosciences Program, The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Francesco Muntoni
- Molecular and Developmental Neurosciences Program, The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Helen C. O’Neill
- Embryology, IVF and Reproductive Genetics Group, Institute for Women’s Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX UK
| |
Collapse
|
17
|
Dinulovic I, Furrer R, Beer M, Ferry A, Cardel B, Handschin C. Muscle PGC-1α modulates satellite cell number and proliferation by remodeling the stem cell niche. Skelet Muscle 2016; 6:39. [PMID: 27908291 PMCID: PMC5134094 DOI: 10.1186/s13395-016-0111-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/07/2016] [Indexed: 11/10/2022] Open
Abstract
Background The myogenic capacity of satellite cells (SCs), adult muscle stem cells, is influenced by aging, exercise, and other factors. In skeletal muscle, the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a key regulator of oxidative metabolism and endurance training adaptation. However, a link between PGC-1α and SC behavior remains unexplored. Methods We have now studied SC function in a PGC-1α fiber-specific gain-of-function animal model. Results In surprising contrast to bona fide exercise, muscle-specific PGC-1α transgenic mice have lower SC numbers. Nevertheless, SCs from these mice have a higher propensity for activation and proliferation. Intriguingly, muscle PGC-1α triggers a remodeling of the SC niche by altering the extracellular matrix composition, including the levels of fibronectin, which affects the proliferative output of SCs. Conclusions Taken together, PGC-1α indirectly affects SC plasticity in skeletal muscle and thereby might contribute to improved SC activation in exercise. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0111-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ivana Dinulovic
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Regula Furrer
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Markus Beer
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Arnaud Ferry
- Thérapie des maladies du muscle strié INSERM U974 - CNRS UMR7215 - UPMC UM76 - Institut de Myologie and University Rene Descartes, 47 bld de l'Hôpital, G.H. Pitié-Salpétrière, 75013, Paris, France
| | - Bettina Cardel
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Christoph Handschin
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland.
| |
Collapse
|
18
|
Servián-Morilla E, Takeuchi H, Lee TV, Clarimon J, Mavillard F, Area-Gómez E, Rivas E, Nieto-González JL, Rivero MC, Cabrera-Serrano M, Gómez-Sánchez L, Martínez-López JA, Estrada B, Márquez C, Morgado Y, Suárez-Calvet X, Pita G, Bigot A, Gallardo E, Fernández-Chacón R, Hirano M, Haltiwanger RS, Jafar-Nejad H, Paradas C. A POGLUT1 mutation causes a muscular dystrophy with reduced Notch signaling and satellite cell loss. EMBO Mol Med 2016; 8:1289-1309. [PMID: 27807076 PMCID: PMC5090660 DOI: 10.15252/emmm.201505815] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle regeneration by muscle satellite cells is a physiological mechanism activated upon muscle damage and regulated by Notch signaling. In a family with autosomal recessive limb‐girdle muscular dystrophy, we identified a missense mutation in POGLUT1 (protein O‐glucosyltransferase 1), an enzyme involved in Notch posttranslational modification and function. In vitro and in vivo experiments demonstrated that the mutation reduces O‐glucosyltransferase activity on Notch and impairs muscle development. Muscles from patients revealed decreased Notch signaling, dramatic reduction in satellite cell pool and a muscle‐specific α‐dystroglycan hypoglycosylation not present in patients' fibroblasts. Primary myoblasts from patients showed slow proliferation, facilitated differentiation, and a decreased pool of quiescent PAX7+ cells. A robust rescue of the myogenesis was demonstrated by increasing Notch signaling. None of these alterations were found in muscles from secondary dystroglycanopathy patients. These data suggest that a key pathomechanism for this novel form of muscular dystrophy is Notch‐dependent loss of satellite cells.
Collapse
Affiliation(s)
- Emilia Servián-Morilla
- Neuromuscular Disorders Unit, Department of Neurology, Instituto de Biomedicina de Sevilla, Hospital U. Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Hideyuki Takeuchi
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Tom V Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jordi Clarimon
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Memory Unit, Department of Neurology and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fabiola Mavillard
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla, Hospital U. Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Estela Area-Gómez
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Eloy Rivas
- Department of Pathology, Instituto de Biomedicina de Sevilla, Hospital U. Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Jose L Nieto-González
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla, Hospital U. Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Maria C Rivero
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla, Hospital U. Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Macarena Cabrera-Serrano
- Neuromuscular Disorders Unit, Department of Neurology, Instituto de Biomedicina de Sevilla, Hospital U. Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Leonardo Gómez-Sánchez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla, Hospital U. Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Jose A Martínez-López
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla, Hospital U. Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Beatriz Estrada
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo Olavide, Sevilla, Spain
| | - Celedonio Márquez
- Neuromuscular Disorders Unit, Department of Neurology, Instituto de Biomedicina de Sevilla, Hospital U. Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | | | - Xavier Suárez-Calvet
- Laboratori de Malalties Neuromusculars, Institut de Recerca de HSCSP, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Guillermo Pita
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre, Madrid, Spain
| | - Anne Bigot
- UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Sorbonne Universités, Paris, France
| | - Eduard Gallardo
- Laboratori de Malalties Neuromusculars, Institut de Recerca de HSCSP, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Rafael Fernández-Chacón
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla, Hospital U. Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Michio Hirano
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Hamed Jafar-Nejad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Carmen Paradas
- Neuromuscular Disorders Unit, Department of Neurology, Instituto de Biomedicina de Sevilla, Hospital U. Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neurology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
19
|
Brun CE, Dumont NA. [Cell-autonomous defects in satellite cells impair muscle regeneration in Duchenne muscular dystrophy]. Med Sci (Paris) 2016; 32:800-802. [PMID: 27758734 DOI: 10.1051/medsci/20163210003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Caroline E Brun
- Sprott center for stem cell research, Institut de recherche de l'hôpital d'Ottawa, Ottawa, ON, Canada - Université d'Ottawa, Ottawa, ON, Canada
| | - Nicolas A Dumont
- Centre de recherche du centre hospitalier universitaire Ste-Justine, Montréal, Québec, Canada - École de réadaptation, faculté de médecine, Université de Montréal, 7077 avenue du Parc, H3N 1X7 Montréal, Québec, Canada
| |
Collapse
|
20
|
Dumont NA, Rudnicki MA. Targeting muscle stem cell intrinsic defects to treat Duchenne muscular dystrophy. NPJ Regen Med 2016; 1. [PMID: 29188075 PMCID: PMC5703417 DOI: 10.1038/npjregenmed.2016.6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease characterised by skeletal muscle degeneration and progressive muscle wasting, which is caused by loss-of-function mutations in the DMD gene that encodes for the protein dystrophin. Dystrophin has critical roles in myofiber stability and integrity by connecting the actin cytoskeleton to the extracellular matrix. Absence of dystrophin leads to myofiber fragility and contributes to skeletal muscle degeneration in DMD patients, however, accumulating evidence also indicate that muscle stem cells (also known as satellite cells) are defective in dystrophic muscles, which leads to impaired muscle regeneration. Our recent work demonstrated that dystrophin is expressed in activated satellite cells, where it regulates the establishment of satellite cell polarity and asymmetric cell division. These findings indicate that dystrophin-deficient satellite cells have intrinsic dysfunctions that contribute to muscle wasting and progression of the disease. This discovery suggests that satellite cells could be targeted to treat DMD. Here we discuss how these new findings affect regenerative therapies for muscular dystrophies. Therapies targeting satellite cells hold great potential and could have long-term efficiency owing to the high self-renewal ability of these cells.
Collapse
Affiliation(s)
- Nicolas A Dumont
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael A Rudnicki
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
21
|
Foltz SJ, Luan J, Call JA, Patel A, Peissig KB, Fortunato MJ, Beedle AM. Four-week rapamycin treatment improves muscular dystrophy in a fukutin-deficient mouse model of dystroglycanopathy. Skelet Muscle 2016; 6:20. [PMID: 27257474 PMCID: PMC4890530 DOI: 10.1186/s13395-016-0091-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/04/2016] [Indexed: 12/13/2022] Open
Abstract
Background Secondary dystroglycanopathies are a subset of muscular dystrophy caused by abnormal glycosylation of α-dystroglycan (αDG). Loss of αDG functional glycosylation prevents it from binding to laminin and other extracellular matrix receptors, causing muscular dystrophy. Mutations in a number of genes, including FKTN (fukutin), disrupt αDG glycosylation. Methods We analyzed conditional Fktn knockout (Fktn KO) muscle for levels of mTOR signaling pathway proteins by Western blot. Two cohorts of Myf5-cre/Fktn KO mice were treated with the mammalian target of rapamycin (mTOR) inhibitor rapamycin (RAPA) for 4 weeks and evaluated for changes in functional and histopathological features. Results Muscle from 17- to 25-week-old fukutin-deficient mice has activated mTOR signaling. However, in tamoxifen-inducible Fktn KO mice, factors related to Akt/mTOR signaling were unchanged before the onset of dystrophic pathology, suggesting that Akt/mTOR signaling pathway abnormalities occur after the onset of disease pathology and are not causative in early dystroglycanopathy development. To determine any pharmacological benefit of targeting mTOR signaling, we administered RAPA daily for 4 weeks to Myf5/Fktn KO mice to inhibit mTORC1. RAPA treatment reduced fibrosis, inflammation, activity-induced damage, and central nucleation, and increased muscle fiber size in Myf5/Fktn KO mice compared to controls. RAPA-treated KO mice also produced significantly higher torque at the conclusion of dosing. Conclusions These findings validate a misregulation of mTOR signaling in dystrophic dystroglycanopathy skeletal muscle and suggest that such signaling molecules may be relevant targets to delay and/or reduce disease burden in dystrophic patients. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0091-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Steven J Foltz
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W. Green St., Athens, GA 30602 USA
| | - Junna Luan
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W. Green St., Athens, GA 30602 USA
| | - Jarrod A Call
- Department of Kinesiology, University of Georgia, Athens, GA 30602 USA ; Regenerative Bioscience Center, University of Georgia, Athens, GA 30602 USA
| | - Ankit Patel
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W. Green St., Athens, GA 30602 USA
| | - Kristen B Peissig
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W. Green St., Athens, GA 30602 USA
| | - Marisa J Fortunato
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W. Green St., Athens, GA 30602 USA
| | - Aaron M Beedle
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W. Green St., Athens, GA 30602 USA
| |
Collapse
|
22
|
Annese T, Corsi P, Ruggieri S, Tamma R, Marinaccio C, Picocci S, Errede M, Specchia G, De Luca A, Frassanito MA, Desantis V, Vacca A, Ribatti D, Nico B. Isolation and characterization of neural stem cells from dystrophic mdx mouse. Exp Cell Res 2016; 343:190-207. [DOI: 10.1016/j.yexcr.2016.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 10/22/2022]
|
23
|
Muscle Satellite Cells: Exploring the Basic Biology to Rule Them. Stem Cells Int 2016; 2016:1078686. [PMID: 27042182 PMCID: PMC4794588 DOI: 10.1155/2016/1078686] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/24/2016] [Indexed: 12/12/2022] Open
Abstract
Adult skeletal muscle is a postmitotic tissue with an enormous capacity to regenerate upon injury. This is accomplished by resident stem cells, named satellite cells, which were identified more than 50 years ago. Since their discovery, many researchers have been concentrating efforts to answer questions about their origin and role in muscle development, the way they contribute to muscle regeneration, and their potential to cell-based therapies. Satellite cells are maintained in a quiescent state and upon requirement are activated, proliferating, and fusing with other cells to form or repair myofibers. In addition, they are able to self-renew and replenish the stem pool. Every phase of satellite cell activity is highly regulated and orchestrated by many molecules and signaling pathways; the elucidation of players and mechanisms involved in satellite cell biology is of extreme importance, being the first step to expose the crucial points that could be modulated to extract the optimal response from these cells in therapeutic strategies. Here, we review the basic aspects about satellite cells biology and briefly discuss recent findings about therapeutic attempts, trying to raise questions about how basic biology could provide a solid scaffold to more successful use of these cells in clinics.
Collapse
|
24
|
Kim J, Hopkinson M, Kavishwar M, Fernandez-Fuente M, Brown SC. Prenatal muscle development in a mouse model for the secondary dystroglycanopathies. Skelet Muscle 2016; 6:3. [PMID: 26900448 PMCID: PMC4759920 DOI: 10.1186/s13395-016-0073-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/05/2016] [Indexed: 12/17/2022] Open
Abstract
Background The defective glycosylation of α-dystroglycan is associated with a group of muscular dystrophies that are collectively referred to as the secondary dystroglycanopathies. Mutations in the gene encoding fukutin-related protein (FKRP) are one of the most common causes of secondary dystroglycanopathy in the UK and are associated with a wide spectrum of disease. Whilst central nervous system involvement has a prenatal onset, no studies have addressed prenatal muscle development in any of the mouse models for this group of diseases. In view of the pivotal role of α-dystroglycan in early basement membrane formation, we sought to determine if the muscle formation was altered in a mouse model of FKRP-related dystrophy. Results Mice with a knock-down in FKRP (FKRPKD) showed a marked reduction in α-dystroglycan glycosylation and reduction in laminin binding by embryonic day 15.5 (E15.5), relative to wild type controls. In addition, the total number of Pax7+ progenitor cells in the FKRPKD tibialis anterior at E15.5 was significantly reduced, and myotube cluster/myofibre size showed a significant reduction in size. Moreover, myoblasts isolated from the limb muscle of these mice at E15.5 showed a marked reduction in their ability to form myotubes in vitro. Conclusions These data identify an early reduction of laminin α2, reduction of myogenicity and depletion of Pax7+ progenitor cells which would be expected to compromise subsequent postnatal muscle growth and its ability to regenerate postnatally. These findings are of significance to the development of future therapies in this group of devastating conditions.
Collapse
Affiliation(s)
- Jihee Kim
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Mark Hopkinson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Manoli Kavishwar
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Marta Fernandez-Fuente
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Susan Carol Brown
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| |
Collapse
|
25
|
Dumont NA, Wang YX, von Maltzahn J, Pasut A, Bentzinger CF, Brun CE, Rudnicki MA. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med 2015; 21:1455-63. [PMID: 26569381 PMCID: PMC4839960 DOI: 10.1038/nm.3990] [Citation(s) in RCA: 386] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 10/13/2015] [Indexed: 12/12/2022]
Abstract
Dystrophin is expressed in differentiated myofibers, in which it is required for sarcolemmal integrity, and loss-of-function mutations in the gene that encodes it result in Duchenne muscular dystrophy (DMD), a disease characterized by progressive and severe skeletal muscle degeneration. Here we found that dystrophin is also highly expressed in activated muscle stem cells (also known as satellite cells), in which it associates with the serine-threonine kinase Mark2 (also known as Par1b), an important regulator of cell polarity. In the absence of dystrophin, expression of Mark2 protein is downregulated, resulting in the inability to localize the cell polarity regulator Pard3 to the opposite side of the cell. Consequently, the number of asymmetric divisions is strikingly reduced in dystrophin-deficient satellite cells, which also display a loss of polarity, abnormal division patterns (including centrosome amplification), impaired mitotic spindle orientation and prolonged cell divisions. Altogether, these intrinsic defects strongly reduce the generation of myogenic progenitors that are needed for proper muscle regeneration. Therefore, we conclude that dystrophin has an essential role in the regulation of satellite cell polarity and asymmetric division. Our findings indicate that muscle wasting in DMD not only is caused by myofiber fragility, but also is exacerbated by impaired regeneration owing to intrinsic satellite cell dysfunction.
Collapse
Affiliation(s)
- Nicolas A. Dumont
- Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yu Xin Wang
- Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Julia von Maltzahn
- Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alessandra Pasut
- Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - C. Florian Bentzinger
- Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Caroline E. Brun
- Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael A. Rudnicki
- Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
26
|
Milcheva R, Ivanov D, Iliev I, Russev R, Petkova S, Babal P. Increased sialylation as a phenomenon in accommodation of the parasitic nematode Trichinella spiralis (Owen, 1835) in skeletal muscle fibres. Folia Parasitol (Praha) 2015; 62. [PMID: 26373236 DOI: 10.14411/fp.2015.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/01/2015] [Indexed: 01/09/2023]
Abstract
The biology of sialic acids has been an object of interest in many models of acquired and inherited skeletal muscle pathology. The present study focuses on the sialylation changes in mouse skeletal muscle after invasion by the parasitic nematode Trichinella spiralis (Owen, 1835). Asynchronous infection with T. spiralis was induced in mice that were sacrificed at different time points of the muscle phase of the disease. The amounts of free sialic acid, sialylated glycoproteins and total sialyltransferase activity were quantified. Histochemistry with lectins specific for sialic acid was performed in order to localise distribution of sialylated glycoconjugates and to clarify the type of linkage of the sialic acid residues on the carbohydrate chains. Elevated intracellular accumulation of α-2,3- and α-2,6-sialylated glycoconjugates was found only within the affected sarcoplasm of muscle fibres invaded by the parasite. The levels of free and protein-bound sialic acid were increased and the total sialyltransferase activity was also elevated in the skeletal muscle tissue of animals with trichinellosis. We suggest that the biological significance of this phenomenon might be associated with securing integrity of the newly formed nurse cell within the surrounding healthy skeletal muscle tissue. The increased sialylation might inhibit the affected muscle cell contractility through decreased membrane ion gating, helping the parasite accommodation process.
Collapse
Affiliation(s)
- Rositsa Milcheva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria.,Department of Pathology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Dimitar Ivanov
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ivan Iliev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Russy Russev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Svetlozara Petkova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Pavel Babal
- Department of Pathology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
27
|
Meng J, Bencze M, Asfahani R, Muntoni F, Morgan JE. The effect of the muscle environment on the regenerative capacity of human skeletal muscle stem cells. Skelet Muscle 2015; 5:11. [PMID: 25949786 PMCID: PMC4422426 DOI: 10.1186/s13395-015-0036-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/12/2015] [Indexed: 12/31/2022] Open
Abstract
Background Muscle stem cell transplantation is a possible treatment for muscular dystrophy. In addition to the intrinsic properties of the stem cells, the local and systemic environment plays an important role in determining the fate of the grafted cells. We therefore investigated the effect of modulating the host muscle environment in different ways (irradiation or cryoinjury or a combination of irradiation and cryoinjury) in two immunodeficient mouse strains (mdx nude and recombinase-activating gene (Rag)2-/γ chain-/C5-) on the regenerative capacity of two types of human skeletal muscle-derived stem cell (pericytes and CD133+ cells). Methods Human skeletal muscle-derived pericytes or CD133+ cells were transplanted into muscles of either mdx nude or recombinase-activating gene (Rag)2-/γ chain-/C5- host mice. Host muscles were modulated prior to donor cell transplantation by either irradiation, or cryoinjury, or a combination of irradiation and cryoinjury. Muscles were analysed four weeks after transplantation, by staining transverse cryostat sections of grafted muscles with antibodies to human lamin A/C, human spectrin, laminin and Pax 7. The number of nuclei and muscle fibres of donor origin and the number of satellite cells of both host and donor origin were quantified. Results Within both host strains transplanted intra-muscularly with both donor cell types, there were significantly more nuclei and muscle fibres of donor origin in host muscles that had been modulated by cryoinjury, or irradiation+cryoinjury, than by irradiation alone. Irradiation has no additive effects in further enhancing the transplantation efficiency than cryodamage. Donor pericytes did not give rise to satellite cells. However, using CD133+ cells as donor cells, there were significantly more nuclei, muscle fibres, as well as satellite cells of donor origin in Rag2-/γ chain-/C5- mice than mdx nude mice, when the muscles were injured by either cryodamage or irradiation+cryodamage. Conclusions Rag2-/γ chain-/C5- mice are a better recipient mouse strain than mdx nude mice for human muscle stem cell transplantation. Cryodamage of host muscle is the most effective method to enhance the transplantation efficiency of human skeletal muscle stem cells. This study highlights the importance of modulating the muscle environment in preclinical studies to optimise the efficacy of transplanted stem cells. Electronic supplementary material The online version of this article (doi:10.1186/s13395-015-0036-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinhong Meng
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Maximilien Bencze
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Rowan Asfahani
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| |
Collapse
|
28
|
Awano H, Blaeser A, Wu B, Lu P, Keramaris-Vrantsis E, Lu Q. Dystroglycanopathy muscles lacking functional glycosylation of alpha-dystroglycan retain regeneration capacity. Neuromuscul Disord 2015; 25:474-84. [PMID: 25937147 DOI: 10.1016/j.nmd.2015.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/03/2015] [Accepted: 03/11/2015] [Indexed: 12/27/2022]
Abstract
In dystroglycanopathies, lack of glycosylated alpha-dystroglycan (α-DG) alters membrane fragility leading to fiber damage and repetitive cycles of muscle degeneration and regeneration. However the effect of the glycosylation of α-DG on muscle regeneration is not clearly understood. In this study, we examined the regenerative capacity of dystrophic muscles in vivo in FKRP mutant and LARGE(myd) mice with little and complete lack of functionally glycosylated α-DG (F-α-DG) respectively. The number of regenerating fibers expressing embryonic myosin heavy chain (eMyHC) in the diseased muscles up to the age of 10 months is higher than or at similar levels to wild type muscle after notexin and polyethyleminine insults. The process of fiber maturation is not significantly affected by the lack of F-α-DG assessed by size distribution. The earlier appearance of a larger number of regenerating fibers after injury is consistent with the observation that the populations of myogenic satellite cells are increased and being readily activated in the dystroglycanopathy muscles. F-α-DG is expressed at trace amounts in undifferentiated myoblasts, but increases in differentiated myotubes in vitro. We therefore conclude that muscle regeneration is not impaired in the early stage of the dystroglycanopathies, and F-α-DG does not play a significant role in myogenic cell proliferation and fiber formation and maturation.
Collapse
Affiliation(s)
- Hiroyuki Awano
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, 1000 Blythe Blvd, Charlotte, NC 28203, USA
| | - Anthony Blaeser
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, 1000 Blythe Blvd, Charlotte, NC 28203, USA
| | - Bo Wu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, 1000 Blythe Blvd, Charlotte, NC 28203, USA
| | - Pei Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, 1000 Blythe Blvd, Charlotte, NC 28203, USA
| | - Elizabeth Keramaris-Vrantsis
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, 1000 Blythe Blvd, Charlotte, NC 28203, USA
| | - Qi Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, 1000 Blythe Blvd, Charlotte, NC 28203, USA.
| |
Collapse
|
29
|
Parker MH. The altered fate of aging satellite cells is determined by signaling and epigenetic changes. Front Genet 2015; 6:59. [PMID: 25750654 PMCID: PMC4335604 DOI: 10.3389/fgene.2015.00059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/07/2015] [Indexed: 01/11/2023] Open
Abstract
Skeletal muscle is a striated tissue composed of multinucleated fibers that contract under the control of the somatic nervous system to direct movement. The stem cells of skeletal muscle, known as satellite cells, are responsible for muscle fiber growth, turnover, and regeneration. Satellite cells are activated and proliferate in response to stimuli, and simplistically, have two main fates—to repopulate the satellite cell niche, or differentiate to regenerate or repair muscle fibers. However, the ability to regenerate muscle and replace lost myofibers declines with age. This loss of function may be a result of extrinsic changes in the niche, such as alterations in signaling or modifications to the extracellular matrix. However, intrinsic epigenetic changes within satellite cells may also affect cell fate and cause a decline in regenerative capacity. This review will describe the mechanisms that regulate cell fate decisions in adult skeletal muscle, and how changes during aging affect muscle fiber turnover and regeneration.
Collapse
Affiliation(s)
- Maura H Parker
- Clinical Research Division, Fred Hutchinson Cancer Research Center , Seattle, WA, USA
| |
Collapse
|
30
|
Rahman MM, Ghosh M, Subramani J, Fong GH, Carlson ME, Shapiro LH. CD13 regulates anchorage and differentiation of the skeletal muscle satellite stem cell population in ischemic injury. Stem Cells 2015; 32:1564-77. [PMID: 24307555 DOI: 10.1002/stem.1610] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 01/03/2023]
Abstract
CD13 is a multifunctional cell surface molecule that regulates inflammatory and angiogenic mechanisms in vitro, but its contribution to these processes in vivo or potential roles in stem cell biology remains unexplored. We investigated the impact of loss of CD13 on a model of ischemic skeletal muscle injury that involves angiogenesis, inflammation, and stem cell mobilization. Consistent with its role as an inflammatory adhesion molecule, lack of CD13 altered myeloid trafficking in the injured muscle, resulting in cytokine profiles skewed toward a prohealing environment. Despite this healing-favorable context, CD13(KO) animals showed significantly impaired limb perfusion with increased necrosis, fibrosis, and lipid accumulation. Capillary density was correspondingly decreased, implicating CD13 in skeletal muscle angiogenesis. The number of CD45-/Sca1-/α7-integrin+/β1-integrin+ satellite cells was markedly diminished in injured CD13(KO) muscles and adhesion of isolated CD13(KO) satellite cells was impaired while their differentiation was accelerated. Bone marrow transplantation studies showed contributions from both host and donor cells to wound healing. Importantly, CD13 was coexpressed with Pax7 on isolated muscle-resident satellite cells. Finally, phosphorylated-focal adhesion kinase and ERK levels were reduced in injured CD13(KO) muscles, consistent with CD13 regulating satellite cell adhesion, potentially contributing to the maintenance and renewal of the satellite stem cell pool and facilitating skeletal muscle regeneration.
Collapse
Affiliation(s)
- M Mamunur Rahman
- Center for Vascular Biology and University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | | | | | | | | |
Collapse
|
31
|
Boldrin L, Zammit PS, Morgan JE. Satellite cells from dystrophic muscle retain regenerative capacity. Stem Cell Res 2014; 14:20-9. [PMID: 25460248 PMCID: PMC4305370 DOI: 10.1016/j.scr.2014.10.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/10/2014] [Accepted: 10/23/2014] [Indexed: 12/17/2022] Open
Abstract
Duchenne muscular dystrophy is an inherited disorder that is characterized by progressive skeletal muscle weakness and wasting, with a failure of muscle maintenance/repair mediated by satellite cells (muscle stem cells). The function of skeletal muscle stem cells resident in dystrophic muscle may be perturbed by being in an increasing pathogenic environment, coupled with constant demands for repairing muscle. To investigate the contribution of satellite cell exhaustion to this process, we tested the functionality of satellite cells isolated from the mdx mouse model of Duchenne muscular dystrophy. We found that satellite cells derived from young mdx mice contributed efficiently to muscle regeneration within our in vivo mouse model. To then test the effects of long-term residence in a dystrophic environment, satellite cells were isolated from aged mdx muscle. Surprisingly, they were as functional as those derived from young or aged wild type donors. Removing satellite cells from a dystrophic milieu reveals that their regenerative capacity remains both intact and similar to satellite cells derived from healthy muscle, indicating that the host environment is critical for controlling satellite cell function. Grafted mdx satellite cells regenerate muscle as well as wild-type satellite cells. Aged mdx myofibers bear more satellite cells than aged wild type fibers. mdx satellite cells retain their ability to activate. Aged mdx satellite cells are robustly regenerative in vivo.
Collapse
MESH Headings
- Aging
- Animals
- Cells, Cultured
- Disease Models, Animal
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mice, Nude
- Muscles/pathology
- Muscles/physiology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Regeneration
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/transplantation
Collapse
Affiliation(s)
- Luisa Boldrin
- University College London, Institute of Child Health, The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, 30 Guilford Street, London WC1N 1EH, United Kingdom.
| | - Peter S Zammit
- King's College London, The Randall Division of Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Jennifer E Morgan
- University College London, Institute of Child Health, The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, 30 Guilford Street, London WC1N 1EH, United Kingdom.
| |
Collapse
|
32
|
Bobadilla M, Sáinz N, Rodriguez JA, Abizanda G, Orbe J, de Martino A, García Verdugo JM, Páramo JA, Prósper F, Pérez-Ruiz A. MMP-10 is required for efficient muscle regeneration in mouse models of injury and muscular dystrophy. Stem Cells 2014; 32:447-61. [PMID: 24123596 DOI: 10.1002/stem.1553] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/20/2013] [Accepted: 08/23/2013] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs), a family of endopeptidases that are involved in the degradation of extracellular matrix components, have been implicated in skeletal muscle regeneration. Among the MMPs, MMP-2 and MMP-9 are upregulated in Duchenne muscular dystrophy (DMD), a fatal X-linked muscle disorder. However, inhibition or overexpression of specific MMPs in a mouse model of DMD (mdx) has yielded mixed results regarding disease progression, depending on the MMP studied. Here, we have examined the role of MMP-10 in muscle regeneration during injury and muscular dystrophy. We found that skeletal muscle increases MMP-10 protein expression in response to damage (notexin) or disease (mdx mice), suggesting its role in muscle regeneration. In addition, we found that MMP-10-deficient muscles displayed impaired recruitment of endothelial cells, reduced levels of extracellular matrix proteins, diminished collagen deposition, and decreased fiber size, which collectively contributed to delayed muscle regeneration after injury. Also, MMP-10 knockout in mdx mice led to a deteriorated dystrophic phenotype. Moreover, MMP-10 mRNA silencing in injured muscles (wild-type and mdx) reduced muscle regeneration, while addition of recombinant human MMP-10 accelerated muscle repair, suggesting that MMP-10 is required for efficient muscle regeneration. Furthermore, our data suggest that MMP-10-mediated muscle repair is associated with VEGF/Akt signaling. Thus, our findings indicate that MMP-10 is critical for skeletal muscle maintenance and regeneration during injury and disease.
Collapse
Affiliation(s)
- Míriam Bobadilla
- Cell Therapy Area, Division of Cancer, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dysregulation of matricellular proteins is an early signature of pathology in laminin-deficient muscular dystrophy. Skelet Muscle 2014; 4:14. [PMID: 25075272 PMCID: PMC4114446 DOI: 10.1186/2044-5040-4-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 06/02/2014] [Indexed: 12/21/2022] Open
Abstract
Background MDC1A is a congenital neuromuscular disorder with developmentally complex and progressive pathologies that results from a deficiency in the protein laminin α2. MDC1A is associated with a multitude of pathologies, including increased apoptosis, inflammation and fibrosis. In order to assess and treat a complicated disease such as MDC1A, we must understand the natural history of the disease so that we can identify early disease drivers and pinpoint critical time periods for implementing potential therapies. Results We found that DyW mice show significantly impaired myogenesis and high levels of apoptosis as early as postnatal week 1. We also saw a surge of inflammatory response at the first week, marked by high levels of infiltrating macrophages, nuclear factor κB activation, osteopontin expression and overexpression of inflammatory cytokines. Fibrosis markers and related pathways were also observed to be elevated throughout early postnatal development in these mice, including periostin, collagen and fibronectin gene expression, as well as transforming growth factor β signaling. Interestingly, fibronectin was found to be the predominant fibrous protein of the extracellular matrix in early postnatal development. Lastly, we observed upregulation in various genes related to angiotensin signaling. Methods We sought out to examine the dysregulation of various pathways throughout early development (postnatal weeks 1-4) in the DyW mouse, the most commonly used mouse model of laminin-deficient muscular dystrophy. Muscle function tests (stand-ups and retractions) as well as gene (qRT-PCR) and protein levels (western blot, ELISA), histology (H&E, picrosirius red staining) and immunohistochemistry (fibronectin, TUNEL assay) were used to assess dysregulation of matricelluar protieins. Conclusions Our results implicate the involvement of multiple signaling pathways in driving the earliest stages of pathology in DyW mice. As opposed to classical dystrophies, such as Duchenne muscular dystrophy, the dysregulation of various matricellular proteins appears to be a distinct feature of the early progression of DyW pathology. On the basis of our results, we believe that therapies that may reduce apoptosis and stabilize the homeostasis of extracellular matrix proteins may have increased efficacy if started at a very early age.
Collapse
|
34
|
Kanagawa M, Yu CC, Ito C, Fukada SI, Hozoji-Inada M, Chiyo T, Kuga A, Matsuo M, Sato K, Yamaguchi M, Ito T, Ohtsuka Y, Katanosaka Y, Miyagoe-Suzuki Y, Naruse K, Kobayashi K, Okada T, Takeda S, Toda T. Impaired viability of muscle precursor cells in muscular dystrophy with glycosylation defects and amelioration of its severe phenotype by limited gene expression. Hum Mol Genet 2013; 22:3003-15. [PMID: 23562821 DOI: 10.1093/hmg/ddt157] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A group of muscular dystrophies, dystroglycanopathy is caused by abnormalities in post-translational modifications of dystroglycan (DG). To understand better the pathophysiological roles of DG modification and to establish effective clinical treatment for dystroglycanopathy, we here generated two distinct conditional knock-out (cKO) mice for fukutin, the first dystroglycanopathy gene identified for Fukuyama congenital muscular dystrophy. The first dystroglycanopathy model-myofiber-selective fukutin-cKO [muscle creatine kinase (MCK)-fukutin-cKO] mice-showed mild muscular dystrophy. Forced exercise experiments in presymptomatic MCK-fukutin-cKO mice revealed that myofiber membrane fragility triggered disease manifestation. The second dystroglycanopathy model-muscle precursor cell (MPC)-selective cKO (Myf5-fukutin-cKO) mice-exhibited more severe phenotypes of muscular dystrophy. Using an isolated MPC culture system, we demonstrated, for the first time, that defects in the fukutin-dependent modification of DG lead to impairment of MPC proliferation, differentiation and muscle regeneration. These results suggest that impaired MPC viability contributes to the pathology of dystroglycanopathy. Since our data suggested that frequent cycles of myofiber degeneration/regeneration accelerate substantial and/or functional loss of MPC, we expected that protection from disease-triggering myofiber degeneration provides therapeutic effects even in mouse models with MPC defects; therefore, we restored fukutin expression in myofibers. Adeno-associated virus (AAV)-mediated rescue of fukutin expression that was limited in myofibers successfully ameliorated the severe pathology even after disease progression. In addition, compared with other gene therapy studies, considerably low AAV titers were associated with therapeutic effects. Together, our findings indicated that fukutin-deficient dystroglycanopathy is a regeneration-defective disorder, and gene therapy is a feasible treatment for the wide range of dystroglycanopathy even after disease progression.
Collapse
Affiliation(s)
- Motoi Kanagawa
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lund DK, Cornelison DDW. Enter the matrix: shape, signal and superhighway. FEBS J 2013; 280:4089-99. [PMID: 23374506 DOI: 10.1111/febs.12171] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 12/20/2022]
Abstract
Mammalian skeletal muscle is notable for both its highly ordered biophysical structure and its regenerative capacity following trauma. Critical to both of these features is the specialized muscle extracellular matrix, comprising both the multiple concentric sheaths of connective tissue surrounding structural units from single myofibers to whole muscles and the dense interstitial matrix that occupies the space between them. Extracellular matrix-dependent interactions affect all activities of the resident muscle stem cell population (the satellite cells), from maintenance of quiescence and stem cell potential to the regulation of proliferation and differentiation. This review focuses on the role of the extracellular matrix in muscle regeneration, with a particular emphasis on regulation of satellite-cell activity.
Collapse
Affiliation(s)
- Dane K Lund
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
36
|
Dubinska-Magiera M, Zaremba-Czogalla M, Rzepecki R. Muscle development, regeneration and laminopathies: how lamins or lamina-associated proteins can contribute to muscle development, regeneration and disease. Cell Mol Life Sci 2012; 70:2713-41. [PMID: 23138638 PMCID: PMC3708280 DOI: 10.1007/s00018-012-1190-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 09/28/2012] [Accepted: 10/03/2012] [Indexed: 12/22/2022]
Abstract
The aim of this review article is to evaluate the current knowledge on associations between muscle formation and regeneration and components of the nuclear lamina. Lamins and their partners have become particularly intriguing objects of scientific interest since it has been observed that mutations in genes coding for these proteins lead to a wide range of diseases called laminopathies. For over the last 10 years, various laboratories worldwide have tried to explain the pathogenesis of these rare disorders. Analyses of the distinct aspects of laminopathies resulted in formulation of different hypotheses regarding the mechanisms of the development of these diseases. In the light of recent discoveries, A-type lamins—the main building blocks of the nuclear lamina—together with other key elements, such as emerin, LAP2α and nesprins, seem to be of great importance in the modulation of various signaling pathways responsible for cellular differentiation and proliferation.
Collapse
Affiliation(s)
- Magda Dubinska-Magiera
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335, Wroclaw, Poland
| | | | | |
Collapse
|