1
|
Xiao Y, Jin W, Qian K, Ju L, Wang G, Wu K, Cao R, Chang L, Xu Z, Luo J, Shan L, Yu F, Chen X, Liu D, Cao H, Wang Y, Cao X, Zhou W, Cui D, Tian Y, Ji C, Luo Y, Hong X, Chen F, Peng M, Zhang Y, Wang X. Integrative Single Cell Atlas Revealed Intratumoral Heterogeneity Generation from an Adaptive Epigenetic Cell State in Human Bladder Urothelial Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308438. [PMID: 38582099 PMCID: PMC11200000 DOI: 10.1002/advs.202308438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/22/2024] [Indexed: 04/08/2024]
Abstract
Intratumor heterogeneity (ITH) of bladder cancer (BLCA) contributes to therapy resistance and immune evasion affecting clinical prognosis. The molecular and cellular mechanisms contributing to BLCA ITH generation remain elusive. It is found that a TM4SF1-positive cancer subpopulation (TPCS) can generate ITH in BLCA, evidenced by integrative single cell atlas analysis. Extensive profiling of the epigenome and transcriptome of all stages of BLCA revealed their evolutionary trajectories. Distinct ancestor cells gave rise to low-grade noninvasive and high-grade invasive BLCA. Epigenome reprograming led to transcriptional heterogeneity in BLCA. During early oncogenesis, epithelial-to-mesenchymal transition generated TPCS. TPCS has stem-cell-like properties and exhibited transcriptional plasticity, priming the development of transcriptionally heterogeneous descendent cell lineages. Moreover, TPCS prevalence in tumor is associated with advanced stage cancer and poor prognosis. The results of this study suggested that bladder cancer interacts with its environment by acquiring a stem cell-like epigenomic landscape, which might generate ITH without additional genetic diversification.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Wan Jin
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
- Euler TechnologyBeijing102206China
| | - Kaiyu Qian
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Lingao Ju
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Gang Wang
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Kai Wu
- Euler TechnologyBeijing102206China
| | - Rui Cao
- Department of UrologyBeijing Friendship HospitalCapital Medical UniversityBeijing100050China
| | | | - Zilin Xu
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Jun Luo
- Department of PathologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | | | - Fang Yu
- Department of PathologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | | | | | - Hong Cao
- Department of PathologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Yejinpeng Wang
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Xinyue Cao
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
- Clinical Trial CenterZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Wei Zhou
- Hubei Key Laboratory of Medical Technology on TransplantationInstitute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan UniversityWuhan430071China
| | - Diansheng Cui
- Department of UrologyHubei Cancer HospitalWuhan430079China
| | - Ye Tian
- Department of UrologyBeijing Friendship HospitalCapital Medical UniversityBeijing100050China
| | - Chundong Ji
- Department of UrologyThe Affiliated Hospital of Panzhihua UniversityPanzhihua617099China
| | - Yongwen Luo
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Xin Hong
- Department of UrologyPeking University International HospitalBeijing102206China
| | - Fangjin Chen
- Center for Quantitative BiologySchool of Life SciencesPeking UniversityBeijing100091China
| | - Minsheng Peng
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunming650201China
- Kunming College of Life ScienceUniversity of Academy of SciencesKunming650201China
| | - Yi Zhang
- Euler TechnologyBeijing102206China
| | - Xinghuan Wang
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
- Medical Research InstituteWuhan UniversityWuhan430071China
| |
Collapse
|
2
|
Dyrskjøt L, Hansel DE, Efstathiou JA, Knowles MA, Galsky MD, Teoh J, Theodorescu D. Bladder cancer. Nat Rev Dis Primers 2023; 9:58. [PMID: 37884563 PMCID: PMC11218610 DOI: 10.1038/s41572-023-00468-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
Bladder cancer is a global health issue with sex differences in incidence and prognosis. Bladder cancer has distinct molecular subtypes with multiple pathogenic pathways depending on whether the disease is non-muscle invasive or muscle invasive. The mutational burden is higher in muscle-invasive than in non-muscle-invasive disease. Commonly mutated genes include TERT, FGFR3, TP53, PIK3CA, STAG2 and genes involved in chromatin modification. Subtyping of both forms of bladder cancer is likely to change considerably with the advent of single-cell analysis methods. Early detection signifies a better disease prognosis; thus, minimally invasive diagnostic options are needed to improve patient outcomes. Urine-based tests are available for disease diagnosis and surveillance, and analysis of blood-based cell-free DNA is a promising tool for the detection of minimal residual disease and metastatic relapse. Transurethral resection is the cornerstone treatment for non-muscle-invasive bladder cancer and intravesical therapy can further improve oncological outcomes. For muscle-invasive bladder cancer, radical cystectomy with neoadjuvant chemotherapy is the standard of care with evidence supporting trimodality therapy. Immune-checkpoint inhibitors have demonstrated benefit in non-muscle-invasive, muscle-invasive and metastatic bladder cancer. Effective management requires a multidisciplinary approach that considers patient characteristics and molecular disease characteristics.
Collapse
Affiliation(s)
- Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Donna E Hansel
- Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason A Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Margaret A Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Matthew D Galsky
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeremy Teoh
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Dan Theodorescu
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Matar M, Prince G, Hamati I, Baalbaky M, Fares J, Aoude M, Matar C, Kourie HR. Implication of KDM6A in bladder cancer. Pharmacogenomics 2023; 24:509-522. [PMID: 37458596 DOI: 10.2217/pgs-2023-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Background: Bladder cancer is a common urogenital malignancy characterized by frequent genetic alterations. Histone demethylase gene KDM6A is commonly mutated in bladder cancer. Aim: To review the characteristics of KDM6A and its mutation consequences, and to introduce a potential KDM6A-targeted treatment. Methods: We conducted a comprehensive literature search using two electronic databases, MEDLINE and Cochrane Library, to retrieve topic-related articles from July 2013 to July 2022 using keywords 'KDM6A', 'bladder cancer', 'UTX', 'treatment' and 'mutation'. Five reviewers independently screened literature search results and abstracted data from included studies. Descriptive analysis was conducted and 30 articles were retained. Main Results: A total of 30 articles were retrieved. Experimental and clinical data were collected and grouped by theme. Therapeutic strategies are depicted and organized by tables for a better understanding. Conclusion: This review demonstrates that KDM6A has crucial implications in bladder cancer pathogenesis and treatment.
Collapse
Affiliation(s)
- Marianne Matar
- Hematology-Oncology Department, Hotel Dieu De France Hospital, Saint Joseph University of Beirut, Riad El Solh, Lebanon
| | - Gilles Prince
- Hematology-Oncology Department, Hotel Dieu De France Hospital, Saint Joseph University of Beirut, Riad El Solh, Lebanon
| | - Ibrahim Hamati
- Hematology-Oncology Department, Hotel Dieu De France Hospital, Saint Joseph University of Beirut, Riad El Solh, Lebanon
| | - Maria Baalbaky
- Hematology-Oncology Department, Hotel Dieu De France Hospital, Saint Joseph University of Beirut, Riad El Solh, Lebanon
| | - Jonas Fares
- Hematology-Oncology Department, Hotel Dieu De France Hospital, Saint Joseph University of Beirut, Riad El Solh, Lebanon
| | - Marc Aoude
- Hematology-Oncology Department, Hotel Dieu De France Hospital, Saint Joseph University of Beirut, Riad El Solh, Lebanon
| | - Charbel Matar
- Division of Hematology-Oncology, Internal Medicine Department, George Washington University Hospital, 20037, Washington DC, USA
| | - Hampig Raphael Kourie
- Hematology-Oncology Department, Hotel Dieu De France Hospital, Saint Joseph University of Beirut, Riad El Solh, Lebanon
| |
Collapse
|
4
|
Mehus AA, Jones M, Trahan M, Kinnunen K, Berwald K, Lindner B, Al-Marsoummi S, Zhou XD, Garrett SH, Sens DA, Sens MA, Somji S. Pevonedistat Inhibits SOX2 Expression and Sphere Formation but Also Drives the Induction of Terminal Differentiation Markers and Apoptosis within Arsenite-Transformed Urothelial Cells. Int J Mol Sci 2023; 24:9149. [PMID: 37298099 PMCID: PMC10252886 DOI: 10.3390/ijms24119149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Urothelial cancer (UC) is a common malignancy and its development is associated with arsenic exposure. Around 25% of diagnosed UC cases are muscle invasive (MIUC) and are frequently associated with squamous differentiation. These patients commonly develop cisplatin (CIS) resistance and have poor prognosis. SOX2 expression is correlated to reduced overall and disease-free survival in UC. SOX2 drives malignant stemness and proliferation in UC cells and is associated with development of CIS resistance. Using quantitative proteomics, we identified that SOX2 was overexpressed in three arsenite (As3+)-transformed UROtsa cell lines. We hypothesized that inhibition of SOX2 would reduce stemness and increase sensitivity to CIS in the As3+-transformed cells. Pevonedistat (PVD) is a neddylation inhibitor and is a potent inhibitor of SOX2. We treated non-transformed parent and As3+-transformed cells with PVD, CIS, or in combination and monitored cell growth, sphere forming abilities, apoptosis, and gene/protein expression. PVD treatment alone caused morphological changes, reduced cell growth, attenuated sphere formation, induced apoptosis, and elevated the expression of terminal differentiation markers. However, the combined treatment of PVD with CIS significantly elevated the expression of terminal differentiation markers and eventually led to more cell death than either solo treatment. Aside from a reduced proliferation rate, these effects were not seen in the parent. Further research is needed to explore the potential use of PVD with CIS as a differentiation therapy or alternative treatment for MIUC tumors that may have become resistant to CIS.
Collapse
Affiliation(s)
- Aaron A. Mehus
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (M.J.); (M.T.); (K.K.); (K.B.); (B.L.); (S.A.-M.); (X.D.Z.); (S.H.G.); (D.A.S.); (M.A.S.); (S.S.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Park S, Rong L, Owczarek TB, Bernardo MD, Shoulson RL, Chua CW, Kim JY, Lankarani A, Chakrapani P, Syed T, McKiernan JM, Solit DB, Shen MM, Al-Ahmadie HA, Abate-Shen C. Novel Mouse Models of Bladder Cancer Identify a Prognostic Signature Associated with Risk of Disease Progression. Cancer Res 2021; 81:5161-5175. [PMID: 34470779 PMCID: PMC8609963 DOI: 10.1158/0008-5472.can-21-1254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/11/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022]
Abstract
To study the progression of bladder cancer from non-muscle-invasive to muscle-invasive disease, we have developed a novel toolkit that uses complementary approaches to achieve gene recombination in specific cell populations in the bladder urothelium in vivo, thereby allowing us to generate a new series of genetically engineered mouse models (GEMM) of bladder cancer. One method is based on the delivery of adenoviruses that express Cre recombinase in selected cell types in the urothelium, and a second uses transgenic drivers in which activation of inducible Cre alleles can be limited to the bladder urothelium by intravesicular delivery of tamoxifen. Using both approaches, targeted deletion of the Pten and p53 tumor suppressor genes specifically in basal urothelial cells gave rise to muscle-invasive bladder tumors. Furthermore, preinvasive lesions arising in basal cells displayed upregulation of molecular pathways related to bladder tumorigenesis, including proinflammatory pathways. Cross-species analyses comparing a mouse gene signature of early bladder cancer with a human signature of bladder cancer progression identified a conserved 28-gene signature of early bladder cancer that is associated with poor prognosis for human bladder cancer and that outperforms comparable gene signatures. These findings demonstrate the relevance of these GEMMs for studying the biology of human bladder cancer and introduce a prognostic gene signature that may help to stratify patients at risk for progression to potentially lethal muscle-invasive disease. SIGNIFICANCE: Analyses of bladder cancer progression in a new series of genetically engineered mouse models has identified a gene signature of poor prognosis in human bladder cancer.
Collapse
Affiliation(s)
- Soonbum Park
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
| | - Lijie Rong
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
| | - Tomasz B Owczarek
- Department of Urology, Columbia University Irving Medical Center, New York, New York
| | - Matteo Di Bernardo
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
| | - Rivka L Shoulson
- Institute of Comparative Medicine, Columbia University, New York, New York
| | - Chee-Wai Chua
- Department of Urology, Columbia University Irving Medical Center, New York, New York
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, New York
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York
| | - Jaime Y Kim
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
| | - Amir Lankarani
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
| | - Prithi Chakrapani
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
| | - Talal Syed
- Department of Urology, Columbia University Irving Medical Center, New York, New York
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, New York
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York
- Department of Biological Sciences, Columbia University, New York, New York
| | - James M McKiernan
- Department of Urology, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - David B Solit
- Departments of Human Oncology and Pathogenesis and Medicine, Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
- Weill Medical College, Cornell University, New York, New York
| | - Michael M Shen
- Department of Urology, Columbia University Irving Medical Center, New York, New York
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, New York
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Hikmat A Al-Ahmadie
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Cory Abate-Shen
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York.
- Department of Urology, Columbia University Irving Medical Center, New York, New York
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
6
|
Chung WM, Molony RD, Lee YF. Non-stem bladder cancer cell-derived extracellular vesicles promote cancer stem cell survival in response to chemotherapy. Stem Cell Res Ther 2021; 12:533. [PMID: 34627375 PMCID: PMC8502272 DOI: 10.1186/s13287-021-02600-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Chemosenstive non-stem cancer cells (NSCCs) constitute the bulk of tumors and are considered as part of the cancer stem cell (CSC) niche in the tumor microenvironment (TME). Tumor-derived extracellular vesicles (EVs) mediate the communication between tumors and the TME. In this study, we sought to investigate the impacts of EVs released by NSCCs on the maintenance of CSC properties and chemoresistance. METHODS We employed murine MB49 bladder cancer (BC) sub-lines representing CSCs and NSCCs as a model system. Chemotherapy drugs were used to treat NSCCs in order to collect conditioned EVs. The impacts of NSCC-derived EVs on CSC progression were evaluated through sphere formation, cytotoxicity, migration, and invasion assays, and by analyzing surface marker expression on these BC cells. Differential proteomic analyses were conducted to identify cargo protein candidates involved in the EV-mediated communication between NSCCs and CSCs. RESULTS NSCC-derived EVs contained cargo proteins enriched in proteostasis-related functions, and significantly altered the development of CSCs such that they were more intrinsically chemoresistant, aggressive, and better able to undergo self-renewal. CONCLUSIONS We thus identified a novel communication mechanism whereby NSCC-EVs can alter the relative fitness of CSCs to promote disease progression and the acquisition of chemoresistance.
Collapse
Affiliation(s)
- Wei-Min Chung
- Department of Urology, University of Rochester Medical Center, 601 Elmwood Ave, Box 656, Rochester, NY, 14642, USA
| | - Ryan D Molony
- Department of Urology, University of Rochester Medical Center, 601 Elmwood Ave, Box 656, Rochester, NY, 14642, USA
| | - Yi-Fen Lee
- Department of Urology, University of Rochester Medical Center, 601 Elmwood Ave, Box 656, Rochester, NY, 14642, USA.
- Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
7
|
Yuan L, Li D, Mu D, Zhang X, Kong W, Cheng L, Shu X, Zhang B, Wang Z. Combined T2 SPAIR, Dynamic Enhancement and DW Imaging Reliably Detect T Staging and Grading of Bladder Cancer With 3.0T MRI. Front Oncol 2020; 10:582532. [PMID: 33244456 PMCID: PMC7683786 DOI: 10.3389/fonc.2020.582532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/12/2020] [Indexed: 01/03/2023] Open
Abstract
Objectives To evaluate bladder cancer by integrating multiple imaging features acquired using multimodal 3.0T magnetic resonance imaging (MRI). Methods We prospectively enrolled 163 consecutive patients including 142 men (mean age, 65.2 years) and 21 women (mean age, 65.8 years). We evaluated the efficiency and reliability of the multiple imaging modalities including T2-weighted spectral attenuated inversion recovery (SPAIR) imaging, dynamic contrast-enhanced (DCE) imaging and diffusion-weighted (DW) imaging, and the imaging feature, apparent diffusion coefficient (ADC) in the identification of the T staging and grading. We compared our imaging findings with the results of histological examination using McNemar’s test. We reported the results under the significance of p < 0.05. Approval for the study was obtained from the local institutional review board. Results The sensitivity and specificity using T2 SPAIR plus DW imaging (sensitivity: 85.2%; specificity: 93.2%), DCE plus DW imaging (sensitivity: 92.4%; specificity: 96.8%), and all the three imaging modalities combined, i.e., T2 SPAIR plus DCE plus DW imaging (sensitivity: 92.5%; specificity: 97.4%), were significantly greater than using T2 SPAIR imaging alone (sensitivity: 74.1%; specificity: 72.2%). One hundred six (93.0%) lesions showed a thin, pedicle arch-like shape and thus primarily demonstrated to be in Ta stage; by contrast, a large number of lesions (137 [85.6%]) were sessile and were found to be in T1 stage. The differences in the ADC were significant between low-grade (877.57 ± 24.15) and high-grade (699.54 ± 23.82) lesions (P < .01). Conclusions T2 SPAIR and DCE plus DW imaging provided useful information for evaluating T staging and grading in bladder cancer. Those imaging features to distinguish Ta stage from T1 stage were presented.
Collapse
Affiliation(s)
- Lihua Yuan
- Department of Radiology, Gulou Clinical College of Nanjing Medical University, Nanjing, China.,Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Danyan Li
- Department of Radiology, Gulou Clinical College of Nanjing Medical University, Nanjing, China
| | - Dan Mu
- Department of Radiology, Gulou Clinical College of Nanjing Medical University, Nanjing, China
| | - Xuebin Zhang
- Department of Radiology, Gulou Clinical College of Nanjing Medical University, Nanjing, China
| | - Weidong Kong
- Department of Radiology, Gulou Clinical College of Nanjing Medical University, Nanjing, China
| | - Le Cheng
- Department of Radiology, Gulou Clinical College of Nanjing Medical University, Nanjing, China
| | - Xin Shu
- Department of Radiology, Gulou Clinical College of Nanjing Medical University, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Gulou Clinical College of Nanjing Medical University, Nanjing, China
| | - Zhishun Wang
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
8
|
Zhang R, Xia J, Wang Y, Cao M, Jin D, Xue W, Huang Y, Chen H. Co-Expression of Stem Cell and Epithelial Mesenchymal Transition Markers in Circulating Tumor Cells of Bladder Cancer Patients. Onco Targets Ther 2020; 13:10739-10748. [PMID: 33122913 PMCID: PMC7588836 DOI: 10.2147/ott.s259240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022] Open
Abstract
Objective Cancer cells with stemness and epithelial-to-mesenchymal transition (EMT) features display enhanced malignant and metastatic potential. This study aimed to introduce a new methodology developed in order to investigate the co-expression of a stemness (OCT4) and EMT markers on single circulating tumor cells (CTCs) of patients with localized urinary bladder cancer and their potential prognostic prediction value. Methods and Materials Between April 2015 and July 2015, blood samples of 51 consecutive patients diagnosed with high risk bladder cancer (cT1-3N0M0) were prospectively investigated for CTCs. Peripheral blood (5 mL) was drawn before primary transurethral resection. Detection of CTCs was performed using the CanPatrolTM system. Nucleic acid probes were used to identify CTCs, and expression levels of epithelial and mesenchymal genes in CTCs were examined by situ hybridization assay. Results All patients received radical cystectomy with pelvic lymph nodes dissection. CTCs were detected in 44 of 51 (86.3%) patients, respectively. The overall mean number of CTCs was 6.1 (range: 0~29; median: 4). A total of 311 CTCs were detected in PB. High OCT4 expression (OCT4high) was detected more frequently in Epi−Mes+ cells (p=0.001). Patients with pathological confirmed muscle-invasive bladder cancer (MIBC) had higher Epi−Mes+ CTCs positive rates (p=0.001) and OCT4high CTCs positive rates (p=0.019) than pathological confirmed non muscle-invasive bladder cancer (NMIBC). Regarding co-expression of these markers, Epi−Mes+/OCT4high CTCs were more frequently evident in the MIBC setting (30.4% vs 3.6% of patients, p = 0.016). Conclusion A differential expression pattern for these markers was observed both in NMIBC and MIBC disease. A subgroup of CTCs showed a CTCs expressing high OCT4, along with Mes were more frequently detected in patients with MIBC, suggesting that these cells may prevail during tumor muscle invasion and disease progression.
Collapse
Affiliation(s)
- Ruiyun Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jun Xia
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yiqiu Wang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ming Cao
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Di Jin
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yiran Huang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Haige Chen
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Kobatake K, Ikeda KI, Nakata Y, Yamasaki N, Ueda T, Kanai A, Sentani K, Sera Y, Hayashi T, Koizumi M, Miyakawa Y, Inaba T, Sotomaru Y, Kaminuma O, Ichinohe T, Honda ZI, Yasui W, Horie S, Black PC, Matsubara A, Honda H. Kdm6a Deficiency Activates Inflammatory Pathways, Promotes M2 Macrophage Polarization, and Causes Bladder Cancer in Cooperation with p53 Dysfunction. Clin Cancer Res 2020; 26:2065-2079. [PMID: 32047002 DOI: 10.1158/1078-0432.ccr-19-2230] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/04/2019] [Accepted: 01/15/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Epigenetic deregulation is deeply implicated in the pathogenesis of bladder cancer. KDM6A (Lysine (K)-specific demethylase 6A) is a histone modifier frequently mutated in bladder cancer. However, the molecular mechanisms of how KDM6A deficiency contributes to bladder cancer development remains largely unknown. We hypothesized that clarification of the pathogenic mechanisms underlying KDM6A-mutated bladder cancer can help in designing new anticancer therapies. EXPERIMENTAL DESIGN We generated mice lacking Kdm6a in the urothelium and crossed them with mice heterozygous for p53, whose mutation/deletion significantly overlaps with the KDM6A mutation in muscle-invasive bladder cancer (MIBC). In addition, BBN (N-butyl-N-(4-hydroxybutyl) nitrosamine), a cigarette smoke-like mutagen, was used as a tumor-promoting agent. Isolated urothelia were subjected to phenotypic, pathologic, molecular, and cellular analyses. The clinical relevance of our findings was further analyzed using genomic and clinical data of patients with MIBC. RESULTS We found that Kdm6a deficiency activated cytokine and chemokine pathways, promoted M2 macrophage polarization, increased cancer stem cells and caused bladder cancer in cooperation with p53 haploinsufficiency. We also found that BBN treatment significantly enhanced the expression of proinflammatory molecules and accelerated disease development. Human bladder cancer samples with decreased KDM6A expression also showed activated proinflammatory pathways. Notably, dual inhibition of IL6 and chemokine (C-C motif) ligand 2, upregulated in response to Kdm6a deficiency, efficiently suppressed Kdm6a-deficient bladder cancer cell growth. CONCLUSIONS Our findings provide insights into multistep carcinogenic processes of bladder cancer and suggest molecular targeted therapeutic approaches for patients with bladder cancer with KDM6A dysfunction.
Collapse
Affiliation(s)
- Kohei Kobatake
- Department of Disease Models, Research Institute for Radiation Biology and Medicine, Hiroshima University, Minami-ku, Hiroshima, Japan.,Department of Urology, Institute of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Ken-Ichiro Ikeda
- Department of Urology, Institute of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan.,Department of Urologic Sciences, The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuichiro Nakata
- Department of Disease Models, Research Institute for Radiation Biology and Medicine, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Norimasa Yamasaki
- Department of Disease Models, Research Institute for Radiation Biology and Medicine, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Takeshi Ueda
- Department of Biochemistry, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Akinori Kanai
- Department of Molecular Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Yasuyuki Sera
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Tetsutaro Hayashi
- Department of Urology, Institute of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Miho Koizumi
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Yoshihiko Miyakawa
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Toshiya Inaba
- Department of Molecular Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Osamu Kaminuma
- Department of Disease Models, Research Institute for Radiation Biology and Medicine, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Zen-Ichiro Honda
- Health Care Center and Graduate School of Humanities and Sciences, Institute of Environmental Science for Human Life, Ochanomizu University, Tokyo, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Shigeo Horie
- Department of Urology, Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Peter C Black
- Department of Urologic Sciences, The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Akio Matsubara
- Department of Urology, Institute of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
10
|
Abugomaa A, Elbadawy M, Yamawaki H, Usui T, Sasaki K. Emerging Roles of Cancer Stem Cells in Bladder Cancer Progression, Tumorigenesis, and Resistance to Chemotherapy: A Potential Therapeutic Target for Bladder Cancer. Cells 2020; 9:E235. [PMID: 31963556 PMCID: PMC7016964 DOI: 10.3390/cells9010235] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 12/21/2022] Open
Abstract
Bladder cancer (BC) is a complex and highly heterogeneous stem cell disease associated with high morbidity and mortality rates if it is not treated properly. Early diagnosis with personalized therapy and regular follow-up are the keys to a successful outcome. Cancer stem cells (CSCs) are the leading power behind tumor growth, with the ability of self-renewal, metastasis, and resistance to conventional chemotherapy. The fast-developing CSC field with robust genome-wide screening methods has found a platform for establishing more reliable therapies to target tumor-initiating cell populations. However, the high heterogeneity of the CSCs in BC disease remains a large issue. Therefore, in the present review, we discuss the various types of bladder CSC heterogeneity, important regulatory pathways, roles in tumor progression and tumorigenesis, and the experimental culture models. Finally, we describe the current stem cell-based therapies for BC disease.
Collapse
Affiliation(s)
- Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
- Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Dakahliya, Egypt
| | - Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Elqaliobiya, Egypt
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan;
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
| |
Collapse
|
11
|
Yang D, Qian H, Fang Z, Xu A, Zhao S, Liu B, Li D. Silencing circular RNA VANGL1 inhibits progression of bladder cancer by regulating miR-1184/IGFBP2 axis. Cancer Med 2019; 9:700-710. [PMID: 31758655 PMCID: PMC6970048 DOI: 10.1002/cam4.2650] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/10/2019] [Accepted: 10/10/2019] [Indexed: 12/30/2022] Open
Abstract
Circular RNA VANGL1 (circVANGL1) is generated from two exons of the Van Gogh‐like 1 (VANGL1) gene and serves as a tumor promoter by sponging certain microRNAs (miRNAs). However, the role of circVANGL1 in bladder cancer (BC) is still unclear. So, in order to investigate the role of circVANGL1 in BC, quantitative reverse transcription‐polymerase chain reaction (qRT‐PCR) was employed to evaluate the circVANGL1 expression in tumor tissues from BC patients and in BC cell lines. Small interfering RNA against circVANGL1 was constructed and stably transfected into human bladder epithelium immortalized cells (SV‐HUC). Cell invasion and migration were detected in Transwell chambers, cell proliferation was determined by CCK8 assays, and tumorigenesis in nude mice was examined to assess the effect of circVANGL1 in BC. Subcellular localization of circVANGL1 was confirmed by fluorescence in situ hybridization. The interactive relationships among circVANGL1, miRNA, and relative proteins were confirmed by luciferase reporter assays. The results showed that circVANGL1 was upregulated in both BC tissues and cell lines. Silencing the expression of circVANGL1 suppressed cell invasion, migration, and proliferation during in vitro experiments. Mechanistically, we demonstrated that circVANGL1 upregulated the expression of miR‐1184 target gene insulin‐like growth factor‐binding protein 2 (IGFBP2) by sponging miR‐1184, which promoted the aggressive biological behaviors of BC. Taken together, our results indicate that circVANGL1 acts as a tumor promoter through the novel circVANGL1/miR‐1184/IGFBP2 axis. Hopefully, our study will provide new ideas for the clinical treatment of BC.
Collapse
Affiliation(s)
- Dengke Yang
- Department of Urinary Surgery, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haining Qian
- Department of Urinary Surgery, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhen Fang
- Department of Urinary Surgery, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - An Xu
- Department of Urinary Surgery, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shutian Zhao
- Department of Urinary Surgery, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bingyan Liu
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Li
- Department of Urinary Surgery, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Contingencies of UTX/KDM6A Action in Urothelial Carcinoma. Cancers (Basel) 2019; 11:cancers11040481. [PMID: 30987376 PMCID: PMC6520694 DOI: 10.3390/cancers11040481] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 12/26/2022] Open
Abstract
The histone demethylase Ubiquitously Transcribed Tetratricopeptide Repeat Protein X-Linked (UTX/KDM6A) demethylates H3K27me2/3 at genes and enhancers and is often inactivated by mutations in urothelial carcinoma (UC). The consequences of its inactivation are however poorly understood. We have investigated the consequences of moderate UTX overexpression across a range of UC cell lines with or without mutations in KDM6A or its interaction partners and in a normal control cell line. Effects on cell proliferation, especially long-term, varied dramatically between the cell lines, ranging from deleterious to beneficial. Similarly, effects on global gene expression determined by RNA-Seq were variable with few overlapping up- or downregulated genes between the cell lines. Our data indicate that UTX does not act in a uniform fashion in UC. Rather, its effect depends on several contingencies including, prominently, the status of KMT2C and KMT2D which interact with UTX in the COMPASS complex. In particular, we provide evidence that these factors determine the amount of nuclear UTX.
Collapse
|
13
|
Abstract
Urothelial carcinoma is a tumor type featuring pronounced intertumoral heterogeneity and a high mutational and epigenetic load. The two major histopathological urothelial carcinoma types - the non-muscle-invasive and muscle-invasive urothelial carcinoma - markedly differ in terms of their respective typical mutational profiles and also by their probable cells of origin, that is, a urothelial basal cell for muscle-invasive carcinomas and a urothelial intermediate cell for at least a large part of non-muscle-invasive carcinomas. Both non-muscle-invasive and muscle-invasive urothelial carcinomas can be further classified into discrete intrinsic subtypes based on their typical transcriptomic profiles. Urothelial carcinogenesis shows a number of parallels to a urothelial regenerative response. Both of these processes seem to be dominated by specific stem cell populations. In the last years, the nature and location of urothelial stem cell(s) have been subject to many controversies, which now seem to be settled down, favoring the existence of a largely single urothelial stem cell type located among basal cells. Basal cell markers have also been amply used to identify urothelial carcinoma stem cells, especially in muscle-invasive disease, but they proved useful even in some non-muscle-invasive tumors. Analyses on molecular nature of urothelial carcinoma stem cells performed till now point to their great heterogeneity, both during the tumor development and upon intertumoral comparison, sexual dimorphism providing a special example of the latter. Moreover, urothelial cancer stem cells are endowed with intrinsic plasticity, whereby they can modulate their stemness in relation to other tumor-related traits, especially motility and invasiveness. Such transitional modulations suggest underlying epigenetic mechanisms and, even within this context, inter- and intratumoral heterogeneity becomes apparent. Multiple molecular aspects of urothelial cancer stem cell biology markedly influence therapeutic response, implying their knowledge as a prerequisite to improved therapies of this disease. At the same time, the notion of urothelial cancer stem cell heterogeneity implies that this therapeutic benefit would be most probably and most efficiently achieved within the context of individualized antitumor therapy.
Collapse
|
14
|
Shao IH, Chang YH, Pang ST. Recent advances in upper tract urothelial carcinomas: From bench to clinics. Int J Urol 2018; 26:148-159. [PMID: 30372791 DOI: 10.1111/iju.13826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022]
Abstract
Urothelial carcinoma in the upper tract is rare and often discussed separately. Many established risk factors were identified for the disease, including genetic and external risk factors. Radiographic survey, endoscopic examination and urine cytology remained the most important diagnostic modalities. In localized upper tract urothelial carcinomas, radical nephroureterectomy with bladder cuff excision are the gold standard for large, high-grade and suspected invasive tumors of the renal pelvis and proximal ureter, whereas kidney-sparing surgeries should be considered in patients with low-risk disease. Advances in technology have given endoscopic surgery an important role, not only in diagnosis, but also in treatment. Although platinum-based combination chemotherapy is efficacious in advanced or metastatic disease, current established chemotherapy regimens are toxic and lack a sustained response. Immune checkpoint inhibitors have led to a new era of treatment for advanced or metastatic urothelial carcinomas. The remarkable results achieved thus far show that immunotherapy will likely be the future treatment paradigm. The combination of immune checkpoint inhibitors and other agents is another inspiring avenue to explore that could benefit even more patients. With respect to the high incidence rate and different clinical appearance of upper tract urothelial carcinomas in Taiwan, a possible correlation exists between exposure to certain external risk factors, such as arsenic in drinking water and aristolochic acid in Chinese herbal medicine. As more gene sequencing differences between upper tract urothelial carcinomas and various disease causes are detailed, this has warranted the era of individualized screening and treatment for the disease.
Collapse
Affiliation(s)
- I-Hung Shao
- Division of Urology, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Hsu Chang
- Division of Urology, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - See-Tong Pang
- Division of Urology, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
15
|
Bellmunt J. Stem-Like Signature Predicting Disease Progression in Early Stage Bladder Cancer. The Role of E2F3 and SOX4. Biomedicines 2018; 6:biomedicines6030085. [PMID: 30072631 PMCID: PMC6164884 DOI: 10.3390/biomedicines6030085] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022] Open
Abstract
The rapid development of the cancer stem cells (CSC) field, together with powerful genome-wide screening techniques, have provided the basis for the development of future alternative and reliable therapies aimed at targeting tumor-initiating cell populations. Urothelial bladder cancer stem cells (BCSCs) that were identified for the first time in 2009 are heterogenous and originate from multiple cell types; including urothelial stem cells and differentiated cell types—basal, intermediate stratum and umbrella cells Some studies hypothesize that BCSCs do not necessarily arise from normal stem cells but might derive from differentiated progenies following mutational insults and acquisition of tumorigenic properties. Conversely, there is data that normal bladder tissues can generate CSCs through mutations. Prognostic risk stratification by identification of predictive markers is of major importance in the management of urothelial cell carcinoma (UCC) patients. Several stem cell markers have been linked to recurrence or progression. The CD44v8-10 to standard CD44-ratio (total ratio of all CD44 alternative splicing isoforms) in urothelial cancer has been shown to be closely associated with tumor progression and aggressiveness. ALDH1, has also been reported to be associated with BCSCs and a worse prognosis in a large number of studies. UCC include low-grade and high-grade non-muscle invasive bladder cancer (NMIBC) and high-grade muscle invasive bladder cancer (MIBC). Important genetic defects characterize the distinct pathways in each one of the stages and probably grades. As an example, amplification of chromosome 6p22 is one of the most frequent changes seen in MIBC and might act as an early event in tumor progression. Interestingly, among NMIBC there is a much higher rate of amplification in high-grade NMIBC compared to low grade NMIBC. CDKAL1, E2F3 and SOX4 are highly expressed in patients with the chromosomal 6p22 amplification aside from other six well known genes (ID4, MBOAT1, LINC00340, PRL, and HDGFL1). Based on that, SOX4, E2F3 or 6q22.3 amplifications might represent potential targets in this tumor type. Focusing more in SOX4, it seems to exert its critical regulatory functions upstream of the Snail, Zeb, and Twist family of transcriptional inducers of EMT (epithelial–mesenchymal transition), but without directly affecting their expression as seen in several cell lines of the Cancer Cell Line Encyclopedia (CCLE) project. SOX4 gene expression correlates with advanced cancer stages and poor survival rate in bladder cancer, supporting a potential role as a regulator of the bladder CSC properties. SOX4 might serve as a biomarker of the aggressive phenotype, also underlying progression from NMIBC to MIBC. The amplicon in chromosome 6 contains SOX4 and E2F3 and is frequently found amplified in bladder cancer. These genes/amplicons might be a potential target for therapy. As an existing hypothesis is that chromatin deregulation through enhancers or super-enhancers might be the underlying mechanism responsible of this deregulation, a potential way to target these transcription factors could be through epigenetic modifiers.
Collapse
Affiliation(s)
- Joaquim Bellmunt
- Department of Medical Oncology, Hospital del Mar, IMIM (PSMAR-Hospital del Mar Research Institute), 08003 Barcelona, Spain.
- Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Jones RT, Theodorescu D. Two methods of prediction signatures. Nat Rev Urol 2018; 15:340-342. [DOI: 10.1038/s41585-018-0004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Detection of multiple mutations in urinary exfoliated cells from male bladder cancer patients at diagnosis and during follow-up. Oncotarget 2018; 7:67435-67448. [PMID: 27611947 PMCID: PMC5341887 DOI: 10.18632/oncotarget.11883] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/25/2016] [Indexed: 02/03/2023] Open
Abstract
Most bladder cancer (BC) patients need life-long, invasive and expensive monitoring and treatment, making it a serious burden on the health system. Thus, there is a pressing need for an accurate test to assist diagnosis and surveillance of BC as an alternative to cystoscopy. Mutations in human TERT, FGFR3, PIK3CA, and RAS genes have been proposed as potential molecular markers in bladder tumor. Their concomitant presence in urine samples has not been fully explored. We investigated a panel of mutations in DNA from exfoliated urinary cells of 255 BC patients at diagnosis. Forty-one mutations in TERT, FGFR3, PIK3CA, and RAS were analyzed by SNaPshot assay in relation to clinical outcome. In 81 of these patients under surveillance, the same set of mutations was screened in additional 324 samples prospectively collected. The most common mutations detected in urine at diagnosis were in the TERT promoter. In non-invasive BC, these mutations were related to high risk and grade (p<0.0001) as well as progression to muscle-invasive disease (p=0.01), whereas FGFR3 mutations were observed in low-grade BC (p=0.02) and patients with recurrences (p=0.05). Stronger associations were observed for combined TERT and FGFR3 mutations and number of recurrences (OR: 4.54 95% CI: 1.23-16.79, p=0.02). Analyses of the area under the curve for combinations of mutations detected at diagnosis and follow-up showed an accuracy of prediction of recurrence of 0.80 (95% CI: 0.71-0.89). Mutations in urine of BC patients may represent reliable biomarkers. In particular, TERT and FGFR3 mutations have a good accuracy of recurrence prediction.
Collapse
|
18
|
Mishra RR, Belder N, Ansari SA, Kayhan M, Bal H, Raza U, Ersan PG, Tokat ÜM, Eyüpoğlu E, Saatci Ö, Jandaghi P, Wiemann S, Üner A, Cekic C, Riazalhosseini Y, Şahin Ö. Reactivation of cAMP Pathway by PDE4D Inhibition Represents a Novel Druggable Axis for Overcoming Tamoxifen Resistance in ER-positive Breast Cancer. Clin Cancer Res 2018; 24:1987-2001. [PMID: 29386221 DOI: 10.1158/1078-0432.ccr-17-2776] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/06/2017] [Accepted: 01/25/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Tamoxifen remains an important hormonal therapy for ER-positive breast cancer; however, development of resistance is a major obstacle in clinics. Here, we aimed to identify novel mechanisms of tamoxifen resistance and provide actionable drug targets overcoming resistance.Experimental Design: Whole-transcriptome sequencing, downstream pathway analysis, and drug repositioning approaches were used to identify novel modulators [here: phosphodiesterase 4D (PDE4D)] of tamoxifen resistance. Clinical data involving tamoxifen-treated patients with ER-positive breast cancer were used to assess the impact of PDE4D in tamoxifen resistance. Tamoxifen sensitization role of PDE4D was tested in vitro and in vivo Cytobiology, biochemistry, and functional genomics tools were used to elucidate the mechanisms of PDE4D-mediated tamoxifen resistance.Results: PDE4D, which hydrolyzes cyclic AMP (cAMP), was significantly overexpressed in both MCF-7 and T47D tamoxifen-resistant (TamR) cells. Higher PDE4D expression predicted worse survival in tamoxifen-treated patients with breast cancer (n = 469, P = 0.0036 for DMFS; n = 561, P = 0.0229 for RFS) and remained an independent prognostic factor for RFS in multivariate analysis (n = 132, P = 0.049). Inhibition of PDE4D by either siRNAs or pharmacologic inhibitors (dipyridamole and Gebr-7b) restored tamoxifen sensitivity. Sensitization to tamoxifen is achieved via cAMP-mediated induction of unfolded protein response/ER stress pathway leading to activation of p38/JNK signaling and apoptosis. Remarkably, acetylsalicylic acid (aspirin) was predicted to be a tamoxifen sensitizer using a drug repositioning approach and was shown to reverse resistance by targeting PDE4D/cAMP/ER stress axis. Finally, combining PDE4D inhibitors and tamoxifen suppressed tumor growth better than individual groups in vivoConclusions: PDE4D plays a pivotal role in acquired tamoxifen resistance via blocking cAMP/ER stress/p38-JNK signaling and apoptosis. Clin Cancer Res; 24(8); 1987-2001. ©2018 AACR.
Collapse
Affiliation(s)
- Rasmi R Mishra
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Nevin Belder
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Suhail A Ansari
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Merve Kayhan
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Hilal Bal
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Umar Raza
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Pelin G Ersan
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Ünal M Tokat
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Erol Eyüpoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Özge Saatci
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Pouria Jandaghi
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ayşegül Üner
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Caglar Cekic
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Yasser Riazalhosseini
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Özgür Şahin
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey.
- National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey
| |
Collapse
|
19
|
Feng Z, Wang B. Long non-coding RNA HNF1A-AS1 promotes cell viability and migration in human bladder cancer. Oncol Lett 2018. [PMID: 29541223 DOI: 10.3892/ol.2018.7878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer is among the most frequent types of genitourinary malignancies and results in high morbidity and mortality. Despite considerable progress in methods of bladder cancer diagnosis and treatment, the detailed underlying molecular mechanisms of bladder cancer remain unclear, and the prognosis of patients remains poor. In the present study, the role of long non-coding (lnc)RNA hepatocyte nuclear factor 1A (HNF1A)-antisense RNA (AS)1 in bladder cancer progression was examined in vitro. HNF1A-AS1 was overexpressed in clinical bladder cancer tissues and cultured bladder cancer cells. Specific short hairpin RNAs against HNF1A-AS1 knocked down the expression of HNF1A-AS1, and thus suppressed the viability and migration/invasion abilities of the cells. Additionally, the depletion of HNF1A-AS1 in bladder cancer T24 and 5637 cell lines also induced cell accumulation in G0/G1 phase with the cell cycle analysis. Overall, these data suggest that lncRNA HNF1A-AS1 may be a potential regulator of bladder cancer tumorigenesis, and provide novel insight into the diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Zhihong Feng
- Urology Department, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Baolong Wang
- Urology Department, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
20
|
Hatina J, Parmar HS, Kripnerova M, Hepburn A, Heer R. Urothelial Carcinoma Stem Cells: Current Concepts, Controversies, and Methods. Methods Mol Biol 2018; 1655:121-136. [PMID: 28889382 DOI: 10.1007/978-1-4939-7234-0_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cancer stem cells are defined as a self-renewing and self-protecting subpopulation of cancer cells able to differentiate into morphologically and functionally diverse cancer cells with a limited lifespan. To purify cancer stem cells, two basic approaches can be applied, the marker-based approach employing various more of less-specific cell surface marker molecules and a marker-free approach largely based on various self-protection mechanisms. Within the context of urothelial carcinoma, both methods could find use. The cell surface markers have been mainly derived from the urothelial basal cell, a probable cell of origin of muscle-invasive urothelial carcinoma, with CD14, CD44, CD90, and 67LR representing successful examples of this strategy. The marker-free approaches involve side population sorting, for which a detailed protocol is provided, as well as the Aldefluor assay, which rely on a specific overexpression of efflux pumps or the detoxification enzyme aldehyde dehydrogenase, respectively, in stem cells. These assays have been applied to both non-muscle-invasive and muscle-invasive bladder cancer samples and cell lines. Urothelial carcinoma stem cells feature a pronounced heterogeneity as to their molecular stemness mechanisms. Several aspects of urothelial cancer stem cell biology could enter translational development rather soon, e.g., a specific CD44+-derived gene expression signature able to identify non-muscle-invasive bladder cancer patients with a high risk of progression, or deciphering a mechanism responsible for repopulating activity of urothelial carcinoma stem cells within the context of therapeutic resistance.
Collapse
Affiliation(s)
- Jiri Hatina
- Faculty of Medicine in Pilsen, Institute of Biology, Charles University in Prague, Plzen, Czech Republic.
| | - Hamendra Singh Parmar
- Faculty of Medicine in Pilsen, Institute of Biology, Charles University in Prague, Plzen, Czech Republic
| | - Michaela Kripnerova
- Faculty of Medicine in Pilsen, Institute of Biology, Charles University in Prague, Plzen, Czech Republic
| | - Anastasia Hepburn
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Rakesh Heer
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| |
Collapse
|
21
|
Ler LD, Ghosh S, Chai X, Thike AA, Heng HL, Siew EY, Dey S, Koh LK, Lim JQ, Lim WK, Myint SS, Loh JL, Ong P, Sam XX, Huang D, Lim T, Tan PH, Nagarajan S, Cheng CWS, Ho H, Ng LG, Yuen J, Lin PH, Chuang CK, Chang YH, Weng WH, Rozen SG, Tan P, Creasy CL, Pang ST, McCabe MT, Poon SL, Teh BT. Loss of tumor suppressor KDM6A amplifies PRC2-regulated transcriptional repression in bladder cancer and can be targeted through inhibition of EZH2. Sci Transl Med 2017; 9:9/378/eaai8312. [PMID: 28228601 DOI: 10.1126/scitranslmed.aai8312] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/02/2017] [Indexed: 12/12/2022]
Abstract
Trithorax-like group complex containing KDM6A acts antagonistically to Polycomb-repressive complex 2 (PRC2) containing EZH2 in maintaining the dynamics of the repression and activation of gene expression through H3K27 methylation. In urothelial bladder carcinoma, KDM6A (a H3K27 demethylase) is frequently mutated, but its functional consequences and therapeutic targetability remain unknown. About 70% of KDM6A mutations resulted in a total loss of expression and a consequent loss of demethylase function in this cancer type. Further transcriptome analysis found multiple deregulated pathways, especially PRC2/EZH2, in KDM6A-mutated urothelial bladder carcinoma. Chromatin immunoprecipitation sequencing analysis revealed enrichment of H3K27me3 at specific loci in KDM6A-null cells, including PRC2/EZH2 and their downstream targets. Consequently, we targeted EZH2 (an H3K27 methylase) and demonstrated that KDM6A-null urothelial bladder carcinoma cell lines were sensitive to EZH2 inhibition. Loss- and gain-of-function assays confirmed that cells with loss of KDM6A are vulnerable to EZH2. IGFBP3, a direct KDM6A/EZH2/H3K27me3 target, was up-regulated by EZH2 inhibition and contributed to the observed EZH2-dependent growth suppression in KDM6A-null cell lines. EZH2 inhibition delayed tumor onset in KDM6A-null cells and caused regression of KDM6A-null bladder tumors in both patient-derived and cell line xenograft models. In summary, our study demonstrates that inactivating mutations of KDM6A, which are common in urothelial bladder carcinoma, are potentially targetable by inhibiting EZH2.
Collapse
Affiliation(s)
- Lian Dee Ler
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, 28 Medical Drive, Singapore 117456, Singapore
| | - Sujoy Ghosh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore.,Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Xiaoran Chai
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Aye Aye Thike
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Hong Lee Heng
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Ee Yan Siew
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Sucharita Dey
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Life Sciences, Singapore 117456, Singapore
| | - Liang Kai Koh
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jing Quan Lim
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Weng Khong Lim
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Swe Swe Myint
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jia Liang Loh
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Pauline Ong
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Xin Xiu Sam
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Dachuan Huang
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Tony Lim
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Puay Hoon Tan
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Sanjanaa Nagarajan
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | | | - Henry Ho
- Department of Urology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Lay Guat Ng
- Department of Urology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - John Yuen
- Department of Urology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Po-Hung Lin
- Division of Urooncology, Department of Urology, Chang Gung University and Memorial Hospital at LinKou, TaoYuan, Taiwan
| | - Cheng-Keng Chuang
- Division of Urooncology, Department of Urology, Chang Gung University and Memorial Hospital at LinKou, TaoYuan, Taiwan
| | - Ying-Hsu Chang
- Division of Urooncology, Department of Urology, Chang Gung University and Memorial Hospital at LinKou, TaoYuan, Taiwan
| | - Wen-Hui Weng
- Department of Chemical Engineering and Biotechnology and Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Steven G Rozen
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.,Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Centre for Life Sciences, Singapore 117456, Singapore.,Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore 169610, Singapore.,Genome Institute of Singapore, 60 Biopolis Street Genome, Singapore 138672, Singapore
| | - Caretha L Creasy
- Cancer Epigenetics Discovery Performance Unit, Oncology R&D, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - See-Tong Pang
- Division of Urooncology, Department of Urology, Chang Gung University and Memorial Hospital at LinKou, TaoYuan, Taiwan.
| | - Michael T McCabe
- Cancer Epigenetics Discovery Performance Unit, Oncology R&D, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA.
| | - Song Ling Poon
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore. .,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Bin Tean Teh
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore. .,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Centre for Life Sciences, Singapore 117456, Singapore.,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, #07-18, Singapore 138673, Singapore
| |
Collapse
|
22
|
Ferreira-Teixeira M, Parada B, Rodrigues-Santos P, Alves V, Ramalho JS, Caramelo F, Sousa V, Reis F, Gomes CM. Functional and molecular characterization of cancer stem-like cells in bladder cancer: a potential signature for muscle-invasive tumors. Oncotarget 2016; 6:36185-201. [PMID: 26452033 PMCID: PMC4742170 DOI: 10.18632/oncotarget.5517] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/24/2015] [Indexed: 12/31/2022] Open
Abstract
Striking evidence associates cancer stem cells (CSCs) to the high recurrence rates and poor survival of patients with muscle-invasive bladder cancer (BC). However, the prognostic implication of those cells in risk stratification is not firmly established, mainly due to the functional and phenotypic heterogeneity of CSCs populations, as well as, to the conflicting data regarding their identification based on a single specific marker. This emphasizes the need to exploit putative CSC-related molecular markers with potential prognostic significance in BC patients. This study aimed to isolate and characterize bladder CSCs making use of different functional and molecular approaches. The data obtained provide strong evidence that muscle-invasive BC is enriched with a heterogeneous stem-like population characterized by enhanced chemoresistance and tumor initiating properties, able to recapitulate the heterogeneity of the original tumor. Additionally, a logistic regression analysis identified a 2-gene stem-like signature (SOX2 and ALDH2) that allows a 93% accurate discrimination between non-muscle-invasive and invasive tumors. Our findings suggest that a stemness-related gene signature, combined with a cluster of markers to more narrowly refine the CSC phenotype, could better identify BC patients that would benefit from a more aggressive therapeutic intervention targeting CSCs population.
Collapse
Affiliation(s)
- Margarida Ferreira-Teixeira
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Belmiro Parada
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Urology and Renal Transplantation Department, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Immunology and Oncology Laboratory, Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute of Immunology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Vera Alves
- Institute of Immunology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - José S Ramalho
- CEDOC, Faculty of Medical Sciences, New University of Lisbon, Lisbon, Portugal
| | - Francisco Caramelo
- Laboratory of Biostatistics and Medical Informatics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Vitor Sousa
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Service of Anatomical Pathology, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal
| | - Flávio Reis
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Célia M Gomes
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
23
|
Mutlu M, Saatci Ö, Ansari SA, Yurdusev E, Shehwana H, Konu Ö, Raza U, Şahin Ö. miR-564 acts as a dual inhibitor of PI3K and MAPK signaling networks and inhibits proliferation and invasion in breast cancer. Sci Rep 2016; 6:32541. [PMID: 27600857 PMCID: PMC5013276 DOI: 10.1038/srep32541] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/11/2016] [Indexed: 12/19/2022] Open
Abstract
Dysregulation of PI3K and MAPK pathways promotes uncontrolled cell proliferation, apoptotic inhibition and metastasis. Individual targeting of these pathways using kinase inhibitors has largely been insufficient due to the existence of cross-talks between these parallel cascades. MicroRNAs are small non-coding RNAs targeting several genes simultaneously and controlling cancer-related processes. To identify miRNAs repressing both PI3K and MAPK pathways in breast cancer, we re-analyzed our previous miRNA mimic screen data with reverse phase protein array (RPPA) output, and identified miR-564 inhibiting both PI3K and MAPK pathways causing markedly decreased cell proliferation through G1 arrest. Moreover, ectopic expression of miR-564 blocks epithelial-mesenchymal transition (EMT) and reduces migration and invasion of aggressive breast cancer cells. Mechanistically, miR-564 directly targets a network of genes comprising AKT2, GNA12, GYS1 and SRF, thereby facilitating simultaneous repression of PI3K and MAPK pathways. Notably, combinatorial knockdown of these target genes using a cocktail of siRNAs mimics the phenotypes exerted upon miR-564 expression. Importantly, high miR-564 expression or low expression of target genes in combination is significantly correlated with better distant relapse-free survival of patients. Overall, miR-564 is a potential dual inhibitor of PI3K and MAPK pathways, and may be an attractive target and prognostic marker for breast cancer.
Collapse
Affiliation(s)
- Merve Mutlu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Özge Saatci
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Suhail A Ansari
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Emre Yurdusev
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Huma Shehwana
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Özlen Konu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Umar Raza
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Özgür Şahin
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
24
|
Garg M. Epithelial plasticity in urothelial carcinoma: Current advancements and future challenges. World J Stem Cells 2016. [PMID: 27621760 DOI: 10.4252/wjsc.v8.i8.00] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Urothelial carcinoma (UC) of the bladder is characterized by high recurrence rate where a subset of these cells undergoes transition to deadly muscle invasive disease and later metastasizes. Urothelial cancer stem cells (UroCSCs), a tumor subpopulation derived from transformation of urothelial stem cells, are responsible for heterogeneous tumor formation and resistance to systemic treatment in UC of the bladder. Although the precise reason for pathophysiologic spread of tumor is not clear, transcriptome analysis of microdissected cancer cells expressing multiple progenitor/stem cell markers validates the upregulation of genes that derive epithelial-to-mesenchymal transition. Experimental studies on human bladder cancer xenografts describe the mechanistic functions and regulation of epithelial plasticity for its cancer-restraining effects. It has been further examined to be associated with the recruitment of a pool of UroCSCs into cell division in response to damages induced by adjuvant therapies. This paper also discusses the various probable therapeutic approaches to attenuate the progressive manifestation of chemoresistance by co-administration of inhibitors of epithelial plasticity and chemotherapeutic drugs by abrogating the early tumor repopulation as well as killing differentiated cancer cells.
Collapse
Affiliation(s)
- Minal Garg
- Minal Garg, Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| |
Collapse
|
25
|
Garg M. Epithelial plasticity in urothelial carcinoma: Current advancements and future challenges. World J Stem Cells 2016; 8:260-267. [PMID: 27621760 PMCID: PMC4999653 DOI: 10.4252/wjsc.v8.i8.260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/25/2016] [Accepted: 06/29/2016] [Indexed: 02/06/2023] Open
Abstract
Urothelial carcinoma (UC) of the bladder is characterized by high recurrence rate where a subset of these cells undergoes transition to deadly muscle invasive disease and later metastasizes. Urothelial cancer stem cells (UroCSCs), a tumor subpopulation derived from transformation of urothelial stem cells, are responsible for heterogeneous tumor formation and resistance to systemic treatment in UC of the bladder. Although the precise reason for pathophysiologic spread of tumor is not clear, transcriptome analysis of microdissected cancer cells expressing multiple progenitor/stem cell markers validates the upregulation of genes that derive epithelial-to-mesenchymal transition. Experimental studies on human bladder cancer xenografts describe the mechanistic functions and regulation of epithelial plasticity for its cancer-restraining effects. It has been further examined to be associated with the recruitment of a pool of UroCSCs into cell division in response to damages induced by adjuvant therapies. This paper also discusses the various probable therapeutic approaches to attenuate the progressive manifestation of chemoresistance by co-administration of inhibitors of epithelial plasticity and chemotherapeutic drugs by abrogating the early tumor repopulation as well as killing differentiated cancer cells.
Collapse
|
26
|
Liu Q, Yuan W, Tong D, Liu G, Lan W, Zhang D, Xiao H, Zhang Y, Huang Z, Yang J, Zhang J, Jiang J. Metformin represses bladder cancer progression by inhibiting stem cell repopulation via COX2/PGE2/STAT3 axis. Oncotarget 2016; 7:28235-46. [PMID: 27058422 PMCID: PMC5053723 DOI: 10.18632/oncotarget.8595] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 03/28/2016] [Indexed: 01/05/2023] Open
Abstract
Cancer stem cells (CSCs) are a sub-population of tumor cells playing essential roles in initiation, differentiation, recurrence, metastasis and development of drug resistance of various cancers, including bladder cancer. Although multiple lines of evidence suggest that metformin is capable of repressing CSC repopulation in different cancers, the effect of metformin on bladder cancer CSCs remains largely unknown. Using the N-methyl-N-nitrosourea (MNU)-induced rat orthotropic bladder cancer model, we demonstrated that metformin is capable of repressing bladder cancer progression from both mild to moderate/severe dysplasia lesions and from carcinoma in situ (CIS) to invasive lesions. Metformin also can arrest bladder cancer cells in G1/S phases, which subsequently leads to apoptosis. And also metformin represses bladder cancer CSC repopulation evidenced by reducing cytokeratin 14 (CK14+) and octamer-binding transcription factor 3/4 (OCT3/4+) cells in both animal and cellular models. More importantly, we found that metformin exerts these anticancer effects by inhibiting COX2, subsequently PGE2 as well as the activation of STAT3. In conclusion, we are the first to systemically demonstrate in both animal and cell models that metformin inhibits bladder cancer progression by inhibiting stem cell repopulation through the COX2/PGE2/STAT3 axis.
Collapse
Affiliation(s)
- Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Wenqiang Yuan
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Dali Tong
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Gaolei Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Weihua Lan
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, 19131, USA
| | - Hualiang Xiao
- Department of Pathology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Yao Zhang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Zaoming Huang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Junjie Yang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Jun Zhang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| |
Collapse
|
27
|
Zhang M, Li H, Zou D, Gao J. Ruguo key genes and tumor driving factors identification of bladder cancer based on the RNA-seq profile. Onco Targets Ther 2016; 9:2717-23. [PMID: 27217782 PMCID: PMC4863592 DOI: 10.2147/ott.s92529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Aim This study aimed to select several signature genes associated with bladder cancer, thus to investigate the possible mechanism in bladder cancer. Methods The mRNA expression profile data of GSE31614, including ten bladder tissues and ten control samples, was downloaded from the Gene Expression Omnibus. The differentially expressed genes (DEGs) in bladder cancer samples compared with the control samples were screened using the Student’s t-test method. Functional analysis for the DEGs was analyzed using the Database for Annotation, Visualization, and Integrated Discovery from the Gene Ontology database, followed by the transcription function annotation of DEGs from Tumor-Associated Gene database. Motifs of genes that had transcription functions in promoter region were analyzed using the Seqpos. Results A total of 1,571 upregulated and 1,507 downregulated DEGs in the bladder cancer samples were screened. ELF3 and MYBL2 involved in cell cycle and DNA replication were tumor suppressors. MEG3, APEX1, and EZH2 were related with the cell epigenetic regulation in bladder cancer. Moreover, HOXB9 and EN1 that have their own motif were the transcription factors. Conclusion Our study has identified several key genes involved in bladder cancer. ELF3 and MYBL2 are tumor suppressers, HOXB9 and EN1 are the main regulators, while MEG3, APEX1, and EZH2 are driving factors for bladder cancer progression.
Collapse
Affiliation(s)
- Minglei Zhang
- Department of Orthopedics, Division of Tumor and Trauma Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Hongyan Li
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Di Zou
- Department of Nephrology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, People's Republic of China
| | - Ji Gao
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
28
|
|
29
|
Bryan RT. Cell adhesion and urothelial bladder cancer: the role of cadherin switching and related phenomena. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140042. [PMID: 25533099 DOI: 10.1098/rstb.2014.0042] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cadherins are mediators of cell-cell adhesion in epithelial tissues. E-cadherin is a known tumour suppressor and plays a central role in suppressing the invasive phenotype of cancer cells. However, the abnormal expression of N- and P-cadherin ('cadherin switching', CS) has been shown to promote a more invasive and m̀alignant phenotype of cancer, with P-cadherin possibly acting as a key mediator of invasion and metastasis in bladder cancer. Cadherins are also implicated in numerous signalling events related to embryonic development, tissue morphogenesis and homeostasis. It is these wide ranging effects and the serious implications of CS that make the cadherin cell adhesion molecules and their related pathways strong candidate targets for the inhibition of cancer progression, including bladder cancer. This review focuses on CS in the context of bladder cancer and in particular the switch to P-cadherin expression, and discusses other related molecules and phenomena, including EpCAM and the development of the cancer stem cell phenotype.
Collapse
Affiliation(s)
- Richard T Bryan
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
30
|
Skowron MA, Niegisch G, Fritz G, Arent T, van Roermund JGH, Romano A, Albers P, Schulz WA, Hoffmann MJ. Phenotype plasticity rather than repopulation from CD90/CK14+ cancer stem cells leads to cisplatin resistance of urothelial carcinoma cell lines. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:144. [PMID: 26606927 PMCID: PMC4660687 DOI: 10.1186/s13046-015-0259-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/14/2015] [Indexed: 02/12/2023]
Abstract
BACKGROUND Tumour heterogeneity and resistance to systemic treatment in urothelial carcinoma (UC) may arise from cancer stem cells (CSC). A recent model describes cellular differentiation states within UC based on corresponding expression of surface markers (CD) and cytokeratins (CK) with CD90 and CK14 positive cells representing the least differentiated and most tumourigenic population. Based on the fact that this population is postulated to constitute CSCs and the origin of cisplatin resistance, we enriched urothelial carcinoma cell lines (UCCs) for CD90 and studied the tumour-initiating potential of these separated cells in vitro. METHODS Magnetic- and fluorescence-activated- cell sorting were used for separation of CD90(+) and CD90(-) UCCs. Distribution of cell surface markers CD90, CD44, and CD49f and cytokeratins CK14, CK5, and CK20 as well as the effects of short- and long-term treatment with cisplatin were assessed in vitro and measured by qRT-PCR, immunocytochemistry, reporter assay and flow cytometry in 11 UCCs. RESULTS We observed cell populations with surface markers according to those reported in tumour xenografts. However, expression of cytokeratins did not concord regularly with that of the surface markers. In particular, expression of CD90 and CK14 diverged during enrichment of CD90(+) cells by immunomagnetic sorting or following cisplatin treatment. Enriched CD90(+) cells did not exhibit CSC-like characteristics like enhanced clonogenicity and cisplatin resistance. Moreover, selection of cisplatin-resistant sublines by long-term drug treatment did not result in enrichment of CD90(+) cells. Rather, these sublines displayed significant phenotypic plasticity expressing EMT markers, an altered pattern of CKs, and WNT-pathway target genes. CONCLUSIONS Our findings indicate that the correspondence between CD surface markers and cytokeratins reported in xenografts is not maintained in commonly used UCCs and that CD90 may not be a stable marker of CSC in UC. Moreover, UCCs cells are capable of substantial phenotypic plasticity that may significantly contribute to the emergence of cisplatin resistance.
Collapse
Affiliation(s)
- Margaretha A Skowron
- Department of Urology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Düsseldorf, Germany.
| | - Günter Niegisch
- Department of Urology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Düsseldorf, Germany.
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Düsseldorf, Germany.
| | - Tanja Arent
- Department of Forensic Medicine, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - Joep G H van Roermund
- Department of Urology, Maastricht University Medical Centre, P. Debyelaan 25, 6202, AZ, Maastricht, The Netherlands.
| | - Andrea Romano
- Department of Obstetrics and Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, P. Debyelaan 25, 6202, AZ, Maastricht, The Netherlands.
| | - Peter Albers
- Department of Urology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Düsseldorf, Germany.
| | - Wolfgang A Schulz
- Department of Urology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Düsseldorf, Germany.
| | - Michèle J Hoffmann
- Department of Urology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
31
|
Kiselyov A, Bunimovich-Mendrazitsky S, Startsev V. Key signaling pathways in the muscle-invasive bladder carcinoma: Clinical markers for disease modeling and optimized treatment. Int J Cancer 2015; 138:2562-9. [PMID: 26547270 DOI: 10.1002/ijc.29918] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/03/2015] [Accepted: 11/04/2015] [Indexed: 02/01/2023]
Abstract
In this review, we evaluate key molecular pathways and markers of muscle-invasive bladder cancer (MIBC). Overexpression and activation of EGFR, p63, and EMT genes are suggestive of basal MIBC subtype generally responsive to chemotherapy. Alterations in PPARγ, ERBB2/3, and FGFR3 gene products and their signaling along with deregulated p53, cytokeratins KRT5/6/14 in combination with the cellular proliferation (Ki-67), and cell cycle markers (p16) indicate the need for more radical treatment protocols. Similarly, the "bell-shape" dynamics of Shh expression levels may suggest aggressive MIBC. A panel of diverse biological markers may be suitable for simulation studies of MIBC and development of an optimized treatment protocol. We conducted a critical evaluation of PubMed/Medline and SciFinder databases related to MIBC covering the period 2009-2015. The free-text search was extended by adding the following keywords and phrases: bladder cancer, metastatic, muscle-invasive, basal, luminal, epithelial-to-mesenchymal transition, cancer stem cell, mutations, immune response, signaling, biological markers, molecular markers, mathematical models, simulation, epigenetics, transmembrane, transcription factor, kinase, predictor, prognosis. The resulting selection of ca 500 abstracts was further analyzed in order to select the latest publications relevant to MIBC molecular markers of immediate clinical significance.
Collapse
Affiliation(s)
- Alex Kiselyov
- NBIC, Moscow Institute of Physics and Technology (MIPT), 9 Institutsky per, Dolgoprudny, Moscow Region, 141700, Russia
| | | | - Vladimir Startsev
- Department of Oncology, State Pediatric Medical University, St.-Petersburg, 194100, Russia
| |
Collapse
|
32
|
Nickerson ML, Dancik GM, Im KM, Edwards MG, Turan S, Brown J, Ruiz-Rodriguez C, Owens C, Costello JC, Guo G, Tsang SX, Li Y, Zhou Q, Cai Z, Moore LE, Lucia MS, Dean M, Theodorescu D. Concurrent alterations in TERT, KDM6A, and the BRCA pathway in bladder cancer. Clin Cancer Res 2015; 20:4935-48. [PMID: 25225064 DOI: 10.1158/1078-0432.ccr-14-0330] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Genetic analysis of bladder cancer has revealed a number of frequently altered genes, including frequent alterations of the telomerase (TERT) gene promoter, although few altered genes have been functionally evaluated. Our objective is to characterize alterations observed by exome sequencing and sequencing of the TERT promoter, and to examine the functional relevance of histone lysine (K)-specific demethylase 6A (KDM6A/UTX), a frequently mutated histone demethylase, in bladder cancer. EXPERIMENTAL DESIGN We analyzed bladder cancer samples from 54 U.S. patients by exome and targeted sequencing and confirmed somatic variants using normal tissue from the same patient. We examined the biologic function of KDM6A using in vivo and in vitro assays. RESULTS We observed frequent somatic alterations in BRCA1 associated protein-1 (BAP1) in 15% of tumors, including deleterious alterations to the deubiquitinase active site and the nuclear localization signal. BAP1 mutations contribute to a high frequency of tumors with breast cancer (BRCA) DNA repair pathway alterations and were significantly associated with papillary histologic features in tumors. BAP1 and KDM6A mutations significantly co-occurred in tumors. Somatic variants altering the TERT promoter were found in 69% of tumors but were not correlated with alterations in other bladder cancer genes. We examined the function of KDM6A, altered in 24% of tumors, and show depletion in human bladder cancer cells, enhanced in vitro proliferation, in vivo tumor growth, and cell migration. CONCLUSIONS This study is the first to identify frequent BAP1 and BRCA pathway alterations in bladder cancer, show TERT promoter alterations are independent of other bladder cancer gene alterations, and show KDM6A loss is a driver of the bladder cancer phenotype.
Collapse
Affiliation(s)
- Michael L Nickerson
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | | | - Kate M Im
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Michael G Edwards
- Division of Pulmonary Sciences and Critical Care, Department of Medicine, University of Colorado, Denver, Aurora, Colorado
| | - Sevilay Turan
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | | | - Christina Ruiz-Rodriguez
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Charles Owens
- Department of Surgery, University of Colorado, Aurora, Colorado
| | - James C Costello
- Department of Pharmacology, University of Colorado, Aurora, Colorado
| | | | | | | | | | - Zhiming Cai
- Shenzhen Second People's Hospital, Shenzhen, China
| | - Lee E Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - M Scott Lucia
- Department of Pathology, University of Colorado, Aurora, Colorado
| | - Michael Dean
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Dan Theodorescu
- Department of Surgery, University of Colorado, Aurora, Colorado. Department of Pharmacology, University of Colorado, Aurora, Colorado. University of Colorado Comprehensive Cancer Center, Aurora, Colorado.
| |
Collapse
|
33
|
Dancik GM. An online tool for evaluating diagnostic and prognostic gene expression biomarkers in bladder cancer. BMC Urol 2015; 15:59. [PMID: 26126604 PMCID: PMC4487975 DOI: 10.1186/s12894-015-0056-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/15/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In the past ~15 years, the identification of diagnostic and prognostic biomarkers from gene expression data has increased our understanding of cancer biology and has led to advances in the personalized treatment of many cancers. A diagnostic biomarker is indicative of tumor status such as tumor stage, while a prognostic biomarker is indicative of disease outcome. Despite these advances, however, there are no clinically approved biomarkers for the treatment of bladder cancer, which is the fourth most common cancer in males in the United States and one of the most expensive cancers to treat. Although gene expression profiles of bladder cancer patients are publicly available, biomarker identification requires bioinformatics expertise that is not available to many research laboratories. DESCRIPTION We collected gene expression data from 13 publicly available patient cohorts (N = 1454) and developed BC-BET, an online Bladder Cancer Biomarker Evaluation Tool for evaluating candidate diagnostic and prognostic gene expression biomarkers in bladder cancer. A user simply selects a gene, and BC-BET evaluates the utility of that gene's expression as a diagnostic and prognostic biomarker. Specifically, BC-BET calculates how strongly a gene's expression is associated with tumor presence (distinguishing tumor from normal samples), tumor grade (distinguishing low- from high-grade tumors), tumor stage (distinguishing non-muscle invasive from muscle invasive samples), and patient outcome (e.g., disease-specific survival) across all patients in each cohort. Patients with low-grade, non-muscle invasive tumors and patients with high-grade, muscle invasive tumors are also analyzed separately in order to evaluate whether the biomarker of interest has prognostic value independent of grade and stage. CONCLUSION Although bladder cancer gene expression datasets are publicly available, their analysis is computationally intensive and requires bioinformatics expertise. BC-BET is an easy-to-use tool for rapidly evaluating bladder cancer gene expression biomarkers across multiple patient cohorts.
Collapse
Affiliation(s)
- Garrett M Dancik
- Mathematics and Computer Science Department, Eastern Connecticut State University, Science Building, Rm. 257, Willimantic, CT, 06226, USA.
| |
Collapse
|
34
|
Bryan RT, Ward DG. Words of wisdom. Bladder cancers arise from distinct urothelial sub-populations. Eur Urol 2015; 67:590-1. [PMID: 25760413 DOI: 10.1016/j.eururo.2014.11.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Richard T Bryan
- School of Cancer Sciences, University of Birmingham, Birmingham, UK.
| | - Douglas G Ward
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
35
|
Hosen I, Rachakonda PS, Heidenreich B, de Verdier PJ, Ryk C, Steineck G, Hemminki K, Kumar R. Mutations in TERT promoter and FGFR3 and telomere length in bladder cancer. Int J Cancer 2015; 137:1621-9. [PMID: 25809917 DOI: 10.1002/ijc.29526] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/23/2015] [Accepted: 03/13/2015] [Indexed: 01/09/2023]
Abstract
Mutations in the promoter of the telomerase reverse transcriptase (TERT) and fibroblast growth factor receptor 3 (FGFR3) genes constitute the most recurrent somatic alterations in urothelial carcinoma of bladder. In this study, we screened DNA from 327 urothelial bladder carcinomas from well-documented patients, with different stages and grades and known TERT promoter mutational status, for FGFR3 alterations and measured relative telomere length (RTL). Although, the frequency of the TERT promoter mutations was higher than those in FGFR3; however, the alterations at the two loci occurred together more frequently than per chance [Odds ratio (OR) = 4.93, 95% CI = 2.72-8.92, p < 0.0001]. While tumors with TERT promoter and FGFR3 mutations had shorter RTL than those without mutations (p < 0.0001), the TERT promoter mutations in conjunction with the common allele of the rs2853669 polymorphism defined sub-group of patients with an observed decreased overall survival (OR = 2.15, 95% CI = 1.00-4.61) and increased recurrence in patients with TaG1+TaG2 disease categories (OR = 3.68, 95%CI = 1.12-12.05). The finding of shorter telomeres in tumors with TERT promoter and/or FGFR3 mutations than without mutations implies mechanistic relevance of telomere biology in cancer progression. The observed association with recurrence and survival shows that the TERT promoter mutations can potentially be used as markers to refine selection of patients for different treatments. The overwhelming frequency of the TERT promoter mutations also represents a case for development of an eventual therapeutic target.
Collapse
Affiliation(s)
- Ismail Hosen
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | | | - Barbara Heidenreich
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Petra J de Verdier
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Charlotta Ryk
- Department of Urology, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Urology Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Steineck
- Division of Clinical Cancer Epidemiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Cancer Epidemiology, Karolinska Intstitutet, Stockholm, Sweden
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany.,Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
36
|
Kobayashi T, Owczarek TB, McKiernan JM, Abate-Shen C. Modelling bladder cancer in mice: opportunities and challenges. Nat Rev Cancer 2015; 15:42-54. [PMID: 25533675 PMCID: PMC4386904 DOI: 10.1038/nrc3858] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The prognosis and treatment of bladder cancer have improved little in the past 20 years. Bladder cancer remains a debilitating and often fatal disease, and is among the most costly cancers to treat. The generation of informative mouse models has the potential to improve our understanding of bladder cancer progression, as well as to affect its diagnosis and treatment. However, relatively few mouse models of bladder cancer have been described, and in particular, few that develop invasive cancer phenotypes. This Review focuses on opportunities for improving the landscape of mouse models of bladder cancer.
Collapse
Affiliation(s)
- Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Tomasz B Owczarek
- 1] Department of Urology, Columbia University Medical Center. [2] Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032, USA
| | | | - Cory Abate-Shen
- 1] Department of Urology, Columbia University Medical Center. [2] Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032, USA. [3] Department of Systems Biology, Columbia University Medical Center, New York, New York 10032, USA. [4] Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|
37
|
Bladder cancers arise from distinct urothelial sub-populations. Nat Cell Biol 2014; 16:982-91, 1-5. [PMID: 25218638 DOI: 10.1038/ncb3038] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 08/08/2014] [Indexed: 02/07/2023]
Abstract
Bladder cancer is the sixth most common cancer in humans. This heterogeneous set of lesions including urothelial carcinoma (Uca) and squamous cell carcinoma (SCC) arise from the urothelium, a stratified epithelium composed of K5-expressing basal cells, intermediate cells and umbrella cells. Superficial Uca lesions are morphologically distinct and exhibit different clinical behaviours: carcinoma in situ (CIS) is a flat aggressive lesion, whereas papillary carcinomas are generally low-grade and non-invasive. Whether these distinct characteristics reflect different cell types of origin is unknown. Here we show using lineage tracing in a murine model of carcinogenesis that intermediate cells give rise primarily to papillary lesions, whereas K5-basal cells are likely progenitors of CIS, muscle-invasive lesions and SCC depending on the genetic background. Our results provide a cellular and genetic basis for the diversity in bladder cancer lesions and provide a possible explanation for their clinical and morphological differences.
Collapse
|
38
|
Conconi D, Panzeri E, Redaelli S, Bovo G, Viganò P, Strada G, Dalprà L, Bentivegna A. Chromosomal imbalances in human bladder urothelial carcinoma: similarities and differences between biopsy samples and cancer stem-like cells. BMC Cancer 2014; 14:646. [PMID: 25178926 PMCID: PMC4162911 DOI: 10.1186/1471-2407-14-646] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/20/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The existence of two distinct groups of tumors with different clinical characteristic is a remarkable feature of transitional cell carcinomas (TCCs) of the bladder. More than 70% are low-grade (LG) non-infiltrating (NI) cancers at diagnosis, but 60-80% of them recur at least one time and 10-20% progress in stage and grade. On the other hand, about 20% of tumors show muscle invasion (IN) and have a poor prognosis with <50% survival after 5 years. This study focuses on the complexity of the bladder cancer genome, and for the first time to our knowledge, on the possibility to compare genomic alterations of in vitro selected cancer stem-like cells (CSCs), and their original biopsy in order to identify different genomic signature already present in the early stages of tumorigenesis of LG and HG tumors. METHODS We initially used conventional chromosome analysis on TCC biopsies with different histotypes (LG vs HG) in order to detect rough differences between them. Then, we performed array comparative genomic hybridization (aCGH) on 10 HG and 10 LG tumors providing an overview of copy number alterations (CNAs). Finally, we made a comparison of the overall CNAs in 16 biopsies and their respective CSCs isolated from them. RESULTS Our findings indicate that LG and HG bladder cancer differ with regard to their genomic profile even in the early stage of tumorigenesis; moreover, we identified a subgroup of LG samples with a higher tendency to lose genomic regions which could represent a more aggressive phenotype. CONCLUSIONS The outcomes not only provide valuable information to deeper studying TCC carcinogenesis, but also could help in the clinic for diagnosis and prognosis of patients who will benefit from a more aggressive therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Angela Bentivegna
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, via Cadore 48, 20052 Monza, Italy.
| |
Collapse
|
39
|
|