1
|
Sadria M, Layton A, Goyal S, Bader GD. Fatecode enables cell fate regulator prediction using classification-supervised autoencoder perturbation. CELL REPORTS METHODS 2024; 4:100819. [PMID: 38986613 PMCID: PMC11294839 DOI: 10.1016/j.crmeth.2024.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 11/20/2023] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Cell reprogramming, which guides the conversion between cell states, is a promising technology for tissue repair and regeneration, with the ultimate goal of accelerating recovery from diseases or injuries. To accomplish this, regulators must be identified and manipulated to control cell fate. We propose Fatecode, a computational method that predicts cell fate regulators based only on single-cell RNA sequencing (scRNA-seq) data. Fatecode learns a latent representation of the scRNA-seq data using a deep learning-based classification-supervised autoencoder and then performs in silico perturbation experiments on the latent representation to predict genes that, when perturbed, would alter the original cell type distribution to increase or decrease the population size of a cell type of interest. We assessed Fatecode's performance using simulations from a mechanistic gene-regulatory network model and scRNA-seq data mapping blood and brain development of different organisms. Our results suggest that Fatecode can detect known cell fate regulators from single-cell transcriptomics datasets.
Collapse
Affiliation(s)
- Mehrshad Sadria
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada.
| | - Anita Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada; Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada; Department of Biology, University of Waterloo, Waterloo, ON, Canada; School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Sidhartha Goyal
- Department of Physics, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; The Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Computer Science, University of Toronto, Toronto, ON, Canada; The Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Canadian Institute for Advanced Research (CIFAR), Toronto, ON, Canada
| |
Collapse
|
2
|
Krivec N, Ghosh MS, Spits C. Gains of 20q11.21 in human pluripotent stem cells: Insights from cancer research. Stem Cell Reports 2024; 19:11-27. [PMID: 38157850 PMCID: PMC10828824 DOI: 10.1016/j.stemcr.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
The genetic abnormalities observed in hPSC cultures worldwide have been suggested to pose an important hurdle in their safe use in regenerative medicine due to the possibility of oncogenic transformation by mutant cells in the patient posttransplantation. One of the best-characterized genetic lesions in hPSCs is the gain of 20q11.21, found in 20% of hPSC lines worldwide, and strikingly, also amplified in 20% of human cancers. In this review, we have curated the existing knowledge on the incidence of this mutation in hPSCs and cancer, explored the significance of chromosome 20q11.21 amplification in cancer progression, and reviewed the oncogenic role of the genes in the smallest common region of gain, to shed light on the significance of this mutation in hPSC-based cell therapy. Lastly, we discuss the state-of-the-art strategies devised to detect aneuploidies in hPSC cultures, avoid genetic changes in vitro cultures of hPSCs, and strategies to eliminate genetically abnormal cells from culture.
Collapse
Affiliation(s)
- Nuša Krivec
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Manjusha S Ghosh
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
3
|
LeMaster C, Pierce SH, Geanes ES, Khanal S, Elliott SS, Scott AB, Louiselle DA, McLennan R, Maulik D, Lewis T, Pastinen T, Bradley T. The cellular and immunological dynamics of early and transitional human milk. Commun Biol 2023; 6:539. [PMID: 37202439 DOI: 10.1038/s42003-023-04910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Human milk is essential for infant nutrition and immunity, providing protection against infections and other immune-mediated diseases during the lactation period and beyond in later childhood. Milk contains a broad range of bioactive factors such as nutrients, hormones, enzymes, immunoglobulins, growth factors, cytokines, and antimicrobial factors, as well as heterogeneous populations of maternal cells. The soluble and cellular components of milk are dynamic over time to meet the needs of the growing infant. In this study, we utilize systems-approaches to define and characterize 62 analytes of the soluble component, including immunoglobulin isotypes, as well as the cellular component of human milk during the first two weeks postpartum from 36 mothers. We identify soluble immune and growth factors that are dynamic over time and could be utilized to classify milk into different phenotypic groups. We identify 24 distinct populations of both epithelial and immune cells by single-cell transcriptome analysis of 128,016 human milk cells. We found that macrophage populations have shifting inflammatory profiles during the first two weeks of lactation. This analysis provides key insights into the soluble and cellular components of human milk and serves as a substantial resource for future studies of human milk.
Collapse
Affiliation(s)
- Cas LeMaster
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Stephen H Pierce
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Eric S Geanes
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Santosh Khanal
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Staci S Elliott
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Allison B Scott
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Daniel A Louiselle
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Rebecca McLennan
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Devika Maulik
- Fetal Health Center, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Tamorah Lewis
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
- Department of Pediatrics, UMKC School of Medicine, Kansas City, MO, 64108, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
- Department of Pediatrics, UMKC School of Medicine, Kansas City, MO, 64108, USA
| | - Todd Bradley
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Department of Pediatrics, UMKC School of Medicine, Kansas City, MO, 64108, USA.
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
4
|
Zhang Y, Xie Y, Lu W, Xu S, Wang X, Zhou W, Zhang Y, Ding X, Zhao S. Identification of resident progenitors labeled with Top2a responsible for proximal tubular regeneration in ischemia reperfusion-induced acute kidney injury. Cell Signal 2023; 101:110506. [PMID: 36309330 DOI: 10.1016/j.cellsig.2022.110506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Acute kidney injury is a common fatal disease with complex etiology and limited treatment methods. Proximal tubules (PTs) are the most vulnerable segment. Not only in injured kidneys but also in normal kidneys, shedding of PTs often happens. However, the source cells and mechanism of their regeneration remain unclear. METHODS ScRNA and snRNA sequencing data of acute injured or normal kidney were downloaded from GEO database to identify the candidate biomarker of progenitor of proximal tubules. SLICE algorithm and CytoTRACE analyses were employed to evaluate the stemness of progenitors. Then the repairing trajectory was constructed through pseudotime analyses. SCENIC algorithm was used to detect cell-type-specific regulon. With spatial transcriptome data, the location of progenitors was simulated. Neonatal/ adult/ aged mice and preconditioning AKI mice model and deconvolution of 2 RNA-seq data were employed for validation. RESULTS Through cluster identification, PT cluster expressed Top2a specifically was identified to increase significantly during AKI. With relatively strong stemness, the Top2a-labeled PT cluster tended to be the origin of the repairing trajectory. Moreover, the cluster was regulated by Pbx3-based regulon and possessed great segmental heterogeneity. Changes of Top2a between neonatal and aged mice and among AKI models validated the progenitor role of Top2a-labeled cluster. CONCLUSIONS Our study provided transcriptomic evidence that resident proximal tubular progenitors labeled with Top2a participated in regeneration. Considering the segmental heterogeneity, we find that there is a group of reserve progenitor cells in each tubular segment. When AKI occurs, the reserve progenitors of each tubular segment proliferate and replenish first, and PT-progenitors, a cluster with no obvious PT markers replenish each subpopulation of the reserve cells.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University
| | - Yeqing Xie
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney Disease; Kidney and Dialysis Institute of Shanghai; Kidney and Blood Purification Key Laboratory of Shanghai
| | - Wei Lu
- Department of Nephrology, Zhongshan Hospital, Fudan University
| | - Sujuan Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University
| | - Xiaoyan Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University
| | - Weiran Zhou
- Department of Nephrology, Zhongshan Hospital, Fudan University
| | - Yingjia Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney Disease; Kidney and Dialysis Institute of Shanghai; Kidney and Blood Purification Key Laboratory of Shanghai.
| | - Shuan Zhao
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney Disease; Kidney and Dialysis Institute of Shanghai; Kidney and Blood Purification Key Laboratory of Shanghai.
| |
Collapse
|
5
|
Qin S, Yuan Y, Huang X, Tan Z, Hu X, Liu H, Pu Y, Ding YQ, Su Z, He C. Topoisomerase IIA in adult NSCs regulates SVZ neurogenesis by transcriptional activation of Usp37. Nucleic Acids Res 2022; 50:9319-9338. [PMID: 36029179 PMCID: PMC9458435 DOI: 10.1093/nar/gkac731] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/31/2022] [Accepted: 08/14/2022] [Indexed: 01/27/2023] Open
Abstract
Topoisomerase IIA (TOP2a) has traditionally been known as an important nuclear enzyme that resolves entanglements and relieves torsional stress of DNA double strands. However, its function in genomic transcriptional regulation remains largely unknown, especially during adult neurogenesis. Here, we show that TOP2a is preferentially expressed in neurogenic niches in the brain of adult mice, such as the subventricular zone (SVZ). Conditional knockout of Top2a in adult neural stem cells (NSCs) of the SVZ significantly inhibits their self-renewal and proliferation, and ultimately reduces neurogenesis. To gain insight into the molecular mechanisms by which TOP2a regulates adult NSCs, we perform RNA-sequencing (RNA-Seq) plus chromatin immunoprecipitation sequencing (ChIP-Seq) and identify ubiquitin-specific protease 37 (Usp37) as a direct TOP2a target gene. Importantly, overexpression of Usp37 is sufficient to rescue the impaired self-renewal ability of adult NSCs caused by Top2a knockdown. Taken together, this proof-of-principle study illustrates a TOP2a/Usp37-mediated novel molecular mechanism in adult neurogenesis, which will significantly expand our understanding of the function of topoisomerase in the adult brain.
Collapse
Affiliation(s)
- Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yimin Yuan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Xiao Huang
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Zijian Tan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Xin Hu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Hong Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yingyan Pu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yu-qiang Ding
- Department of Laboratory Animal Science, and State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhida Su
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
6
|
Pellegrini S, Zamarian V, Sordi V. Strategies to Improve the Safety of iPSC-Derived β Cells for β Cell Replacement in Diabetes. Transpl Int 2022; 35:10575. [PMID: 36090777 PMCID: PMC9448870 DOI: 10.3389/ti.2022.10575] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022]
Abstract
Allogeneic islet transplantation allows for the re-establishment of glycemic control with the possibility of insulin independence, but is severely limited by the scarcity of organ donors. However, a new source of insulin-producing cells could enable the widespread use of cell therapy for diabetes treatment. Recent breakthroughs in stem cell biology, particularly pluripotent stem cell (PSC) techniques, have highlighted the therapeutic potential of stem cells in regenerative medicine. An understanding of the stages that regulate β cell development has led to the establishment of protocols for PSC differentiation into β cells, and PSC-derived β cells are appearing in the first pioneering clinical trials. However, the safety of the final product prior to implantation remains crucial. Although PSC differentiate into functional β cells in vitro, not all cells complete differentiation, and a fraction remain undifferentiated and at risk of teratoma formation upon transplantation. A single case of stem cell-derived tumors may set the field back years. Thus, this review discusses four approaches to increase the safety of PSC-derived β cells: reprogramming of somatic cells into induced PSC, selection of pure differentiated pancreatic cells, depletion of contaminant PSC in the final cell product, and control or destruction of tumorigenic cells with engineered suicide genes.
Collapse
|
7
|
Stojkovic M, Han D, Jeong M, Stojkovic P, Stankovic KM. Human induced pluripotent stem cells and CRISPR/Cas-mediated targeted genome editing: Platforms to tackle sensorineural hearing loss. STEM CELLS (DAYTON, OHIO) 2021; 39:673-696. [PMID: 33586253 DOI: 10.1002/stem.3353] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/13/2020] [Indexed: 11/09/2022]
Abstract
Hearing loss (HL) is a major global health problem of pandemic proportions. The most common type of HL is sensorineural hearing loss (SNHL) which typically occurs when cells within the inner ear are damaged. Human induced pluripotent stem cells (hiPSCs) can be generated from any individual including those who suffer from different types of HL. The development of new differentiation protocols to obtain cells of the inner ear including hair cells (HCs) and spiral ganglion neurons (SGNs) promises to expedite cell-based therapy and screening of potential pharmacologic and genetic therapies using human models. Considering age-related, acoustic, ototoxic, and genetic insults which are the most frequent causes of irreversible damage of HCs and SGNs, new methods of genome editing (GE), especially the CRISPR/Cas9 technology, could bring additional opportunities to understand the pathogenesis of human SNHL and identify novel therapies. However, important challenges associated with both hiPSCs and GE need to be overcome before scientific discoveries are correctly translated to effective and patient-safe applications. The purpose of the present review is (a) to summarize the findings from published reports utilizing hiPSCs for studies of SNHL, hence complementing recent reviews focused on animal studies, and (b) to outline promising future directions for deciphering SNHL using disruptive molecular and genomic technologies.
Collapse
Affiliation(s)
- Miodrag Stojkovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Dongjun Han
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Minjin Jeong
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Petra Stojkovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Konstantina M Stankovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, Massachusetts, USA.,Harvard Program in Therapeutic Science, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
8
|
Salicylic diamines selectively eliminate residual undifferentiated cells from pluripotent stem cell-derived cardiomyocyte preparations. Sci Rep 2021; 11:2391. [PMID: 33504837 PMCID: PMC7841182 DOI: 10.1038/s41598-021-81351-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Clinical translation of pluripotent stem cell (PSC) derivatives is hindered by the tumorigenic risk from residual undifferentiated cells. Here, we identified salicylic diamines as potent agents exhibiting toxicity to murine and human PSCs but not to cardiomyocytes (CMs) derived from them. Half maximal inhibitory concentrations (IC50) of small molecules SM2 and SM6 were, respectively, 9- and 18-fold higher for human than murine PSCs, while the IC50 of SM8 was comparable for both PSC groups. Treatment of murine embryoid bodies in suspension differentiation cultures with the most effective small molecule SM6 significantly reduced PSC and non-PSC contamination and enriched CM populations that would otherwise be eliminated in genetic selection approaches. All tested salicylic diamines exerted their toxicity by inhibiting the oxygen consumption rate (OCR) in PSCs. No or only minimal and reversible effects on OCR, sarcomeric integrity, DNA stability, apoptosis rate, ROS levels or beating frequency were observed in PSC-CMs, although effects on human PSC-CMs seemed to be more deleterious at higher SM-concentrations. Teratoma formation from SM6-treated murine PSC-CMs was abolished or delayed compared to untreated cells. We conclude that salicylic diamines represent promising compounds for PSC removal and enrichment of CMs without the need for other selection strategies.
Collapse
|
9
|
Ramotowski C, Qu X, Villa-Diaz LG. Progress in the Use of Induced Pluripotent Stem Cell-Derived Neural Cells for Traumatic Spinal Cord Injuries in Animal Populations: Meta-Analysis and Review. Stem Cells Transl Med 2019; 8:681-693. [PMID: 30903654 PMCID: PMC6591555 DOI: 10.1002/sctm.18-0225] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/20/2019] [Indexed: 12/25/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are cells genetically reprogrammed from somatic cells, which can be differentiated into neurological lineages with the aim to replace or assist damaged neurons in the treatment of spinal cord injuries (SCIs) caused by physical trauma. Here, we review studies addressing the functional use of iPSC‐derived neural cells in SCIs and perform a meta‐analysis to determine if significant motor improvement is restored after treatment with iPSC‐derived neural cells compared with treatments using embryonic stem cell (ESC)‐derived counterpart cells and control treatments. Overall, based on locomotion scales in rodents and monkeys, our meta‐analysis indicates a therapeutic benefit for SCI treatment using neural cells derived from either iPSCs or ESCs, being this of importance due to existing ethical and immunological complications using ESCs. Results from these studies are evidence of the successes and limitations of iPSC‐derived neural cells in the recovery of motor capacity. stem cells translational medicine2019;8:681&693
Collapse
Affiliation(s)
| | - Xianggui Qu
- Department of Mathematics and Statistics, Oakland University College of Arts and Sciences, Rochester, Michigan, USA
| | - Luis G Villa-Diaz
- Department of Biological Sciences, Oakland University College of Arts and Sciences, Rochester, Michigan, USA
| |
Collapse
|
10
|
Mao D, Chung XKW, Andoh-Noda T, Qin Y, Sato SI, Takemoto Y, Akamatsu W, Okano H, Uesugi M. Chemical decontamination of iPS cell-derived neural cell mixtures. Chem Commun (Camb) 2018; 54:1355-1358. [PMID: 29350722 DOI: 10.1039/c7cc08686e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This report describes the design and evaluation of phosphorylated 7-ethyl-10-hydroxycamptothecin (SN38-P), which selectively eliminates tumor-forming proliferative stem cells, including human induced pluripotent stem cells (hiPSCs) and neural stem cells, from iPSC-derived neural cell mixtures. Results of the present study demonstrate that simple phosphorylation of an anticancer drug can provide a safe, cost-effective, and chemically-defined tool for decontaminating hiPSC-derived neuron.
Collapse
Affiliation(s)
- Di Mao
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) and Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Odorico J, Markmann J, Melton D, Greenstein J, Hwa A, Nostro C, Rezania A, Oberholzer J, Pipeleers D, Yang L, Cowan C, Huangfu D, Egli D, Ben-David U, Vallier L, Grey ST, Tang Q, Roep B, Ricordi C, Naji A, Orlando G, Anderson DG, Poznansky M, Ludwig B, Tomei A, Greiner DL, Graham M, Carpenter M, Migliaccio G, D'Amour K, Hering B, Piemonti L, Berney T, Rickels M, Kay T, Adams A. Report of the Key Opinion Leaders Meeting on Stem Cell-derived Beta Cells. Transplantation 2018; 102:1223-1229. [PMID: 29781950 PMCID: PMC6775764 DOI: 10.1097/tp.0000000000002217] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Beta cell replacement has the potential to restore euglycemia in patients with insulin-dependent diabetes. Although great progress has been made in establishing allogeneic islet transplantation from deceased donors as the standard of care for those with the most labile diabetes, it is also clear that the deceased donor organ supply cannot possibly treat all those who could benefit from restoration of a normal beta cell mass, especially if immunosuppression were not required. Against this background, the International Pancreas and Islet Transplant Association in collaboration with the Harvard Stem Cell Institute, the Juvenile Diabetes Research Foundation (JDRF), and the Helmsley Foundation held a 2-day Key Opinion Leaders Meeting in Boston in 2016 to bring together experts in generating and transplanting beta cells derived from stem cells. The following summary highlights current technology, recent significant breakthroughs, unmet needs and roadblocks to stem cell-derived beta cell therapies, with the aim of spurring future preclinical collaborative investigations and progress toward the clinical application of stem cell-derived beta cells.
Collapse
Affiliation(s)
- Jon Odorico
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - James Markmann
- Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Douglas Melton
- Harvard Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Boston MA
| | | | - Albert Hwa
- Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Cristina Nostro
- Department of Physiology, University of Toronto, University of Toronto, Toronto Canada
| | | | - Jose Oberholzer
- Department of Surgery, University of Illinois at Chicago, Chicago, IL
| | - Daniel Pipeleers
- Center for Beta Cell Therapy in Diabetes, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Chad Cowan
- Harvard Stem Cell Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Danwei Huangfu
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Dieter Egli
- Columbia Stem Cell Initiative, Columbia University, New York, NY
| | - Uri Ben-David
- Broad Institute of MIT and Harvard, Cancer Program, Golub Lab, Cambridge MA
| | - Ludovic Vallier
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Shane T Grey
- Department of Medicine, University of Sydney, Sydney, Australia
| | - Qizhi Tang
- Department of Surgery, UCSF Medical Center, San Francisco, CA
| | - Bart Roep
- National Diabetes Center of Excellence, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ali Naji
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Giuseppe Orlando
- Center on Diabetes, Obesity, and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC
| | - Daniel G Anderson
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA
| | - Mark Poznansky
- Department of Medicine, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Barbara Ludwig
- Department of Endocrinology and Diabetes, University Hospital Dresden, Dresden, Germany
| | - Alice Tomei
- Department of Surgery, University of Miami, Miami, FL
| | - Dale L Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Melanie Graham
- Department of Surgery, University of Minnesota, Minneapolis, MN
| | | | | | | | - Bernhard Hering
- Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Thierry Berney
- Department of Surgery, Geneva University, Geneva, Switzerland
| | - Mike Rickels
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Thomas Kay
- Department of Medicine, St. Vincent's Institute, Melbourne, Australia
| | - Ann Adams
- Department of Surgery, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
12
|
Zhao W, Liu H, Wang J, Wang M, Shao R. Cyclizing-berberine A35 induces G2/M arrest and apoptosis by activating YAP phosphorylation (Ser127). JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:98. [PMID: 29728107 PMCID: PMC5935996 DOI: 10.1186/s13046-018-0759-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 04/10/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND A35 is a novel synthetic cyclizing-berberine recently patented as an antitumor compound. Based on its dual targeting topoisomerase (top) activity, A35 might overcome the resistance of single-target top inhibitors and has no cardiac toxicity for not targeting top2β. In this study we further explored the biological effects and mechanisms of A35. METHODS Antitumor activity of A35 was evaluated by SRB and colony formation assay. G2/M phase arrest (especially M) and first damage of M-phase cells were investigated by flow cytometry, cytogenetic analysis, immunofluorescence, co-immunoprecipitation and WB. The key role of phospho-YAP (Ser127) in decreasing YAP nuclear localization, subsequent G2/M arrest and proliferation inhibition were explored by YAP1-/- cells, mutated Ser127 YAP construct (Ser127A) and TUNEL. RESULTS G2/M arrest induced by A35 was independent of p53. M phase cells at low dose were firstly damaged and most damaged-cells accumulated in M phase, and that was a result of preferring targeting top2α by A35, as top2α is essential to push M phase into next phase, and targeting top2α induced cells arrested at M phase. A35 decreased YAP1 nuclear localization by activating YAP phosphorylation (Ser127) which subsequently regulated the transcription of YAP target genes associated with growth and cycle regulation to induce G2/M arrest and growth inhibition. CONCLUSIONS Our studies suggested the mechanism of G2/M arrest induced by A35 and a novel role of YAP1 (Ser127) in G2/M arrest. As a dual topoisomerase inhibitor characterized by no cardiac toxicity, A35 is a promising topoisomerase anticancer agent and worthy of further development in future.
Collapse
Affiliation(s)
- Wuli Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Tiantan Xili, Beijing, 100050, China
| | - Hong Liu
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Tiantan Xili, Beijing, 100050, China
| | - Junxia Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Tiantan Xili, Beijing, 100050, China
| | | | - Rongguang Shao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Tiantan Xili, Beijing, 100050, China.
| |
Collapse
|
13
|
Jeong HC, Cho SJ, Lee MO, Cha HJ. Technical approaches to induce selective cell death of pluripotent stem cells. Cell Mol Life Sci 2017; 74:2601-2611. [PMID: 28246701 PMCID: PMC11107638 DOI: 10.1007/s00018-017-2486-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/24/2017] [Accepted: 02/06/2017] [Indexed: 01/24/2023]
Abstract
Despite the recent promising results of clinical trials using human pluripotent stem cell (hPSC)-based cell therapies for age-related macular degeneration (AMD), the risk of teratoma formation resulting from residual undifferentiated hPSCs remains a serious and critical hurdle for broader clinical implementation. To mitigate the tumorigenic risk of hPSC-based cell therapy, a variety of approaches have been examined to ablate the undifferentiated hPSCs based on the unique molecular properties of hPSCs. In the present review, we offer a brief overview of recent attempts at selective elimination of undifferentiated hPSCs to decrease the risk of teratoma formation in hPSC-based cell therapy.
Collapse
Affiliation(s)
- Ho-Chang Jeong
- Dept. of Life Sciences, College of Natural Sciences, Sogang University, #1 Sinsu-dong, Mapo-gu, Seoul,, 121-742, Republic of Korea
| | - Seung-Ju Cho
- Dept. of Life Sciences, College of Natural Sciences, Sogang University, #1 Sinsu-dong, Mapo-gu, Seoul,, 121-742, Republic of Korea
| | - Mi-Ok Lee
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon,, 305-806, Republic of Korea
| | - Hyuk-Jin Cha
- Dept. of Life Sciences, College of Natural Sciences, Sogang University, #1 Sinsu-dong, Mapo-gu, Seoul,, 121-742, Republic of Korea.
| |
Collapse
|
14
|
Zhao W, Jiang G, Bi C, Li Y, Liu J, Ye C, He H, Li L, Song D, Shao R. The dual topoisomerase inhibitor A35 preferentially and specially targets topoisomerase 2α by enhancing pre-strand and post-strand cleavage and inhibiting DNA religation. Oncotarget 2016; 6:37871-94. [PMID: 26462155 PMCID: PMC4741971 DOI: 10.18632/oncotarget.5680] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 09/25/2015] [Indexed: 01/14/2023] Open
Abstract
DNA topoisomerases play a key role in tumor proliferation. Chemotherapeutics targeting topoisomerases have been widely used in clinical oncology, but resistance and side effects, particularly cardiotoxicity, usually limit their application. Clinical data show that a decrease in topoisomerase (top) levels is the primary factor responsible for resistance, but in cells there is compensatory effect between the levels of top1 and top2α. Here, we validated cyclizing-berberine A35, which is a dual top inhibitor and preferentially targets top2α. The impact on the top2α catalytic cycle indicated that A35 could intercalate into DNA but did not interfere with DNA-top binding and top2α ATPase activity. A35 could facilitate DNA-top2α cleavage complex formation by enhancing pre-strand and post-strand cleavage and inhibiting religation, suggesting this compound can be a topoisomerase poison and had a district mechanism from other topoisomerase inhibitors. TARDIS and comet assays showed that A35 could induce cell DNA breakage and DNA-top complexes but had no effect on the cardiac toxicity inducer top2β. Silencing top1 augmented DNA break and silencing top2α decreased DNA break. Further validation in H9c2 cardiac cells showed A35 did not disturb cell proliferation and mitochondrial membrane potency. Additionally, an assay with nude mice further demonstrated A35 did not damage the heart. Our work identifies A35 as a novel skeleton compound dually inhibits topoisomerases, and predominantly and specially targets top2α by interfering with all cleavage steps and its no cardiac toxicity was verified by cardiac cells and mice heart. A35 could be a novel and effective targeting topoisomerase agent.
Collapse
Affiliation(s)
- Wuli Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Guohua Jiang
- Analysis and Testing Center, Beijing Normal University, Beijing, China
| | - Chongwen Bi
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yangbiao Li
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jingbo Liu
- China Meitan General Hospital, Beijing, China
| | - Cheng Ye
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hongwei He
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Liang Li
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Danqing Song
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Rongguang Shao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|