1
|
Wang S, Miao J, Qu M, Yang GY, Shen L. Adiponectin modulates the function of endothelial progenitor cells via AMPK/eNOS signaling pathway. Biochem Biophys Res Commun 2017; 493:64-70. [DOI: 10.1016/j.bbrc.2017.09.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 01/15/2023]
|
2
|
Constitutive Expression of Adiponectin in Endothelial Progenitor Cells Protects a Rat Model of Cerebral Ischemia. Neural Plast 2017; 2017:6809745. [PMID: 29201467 PMCID: PMC5671740 DOI: 10.1155/2017/6809745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/15/2017] [Indexed: 02/05/2023] Open
Abstract
Endothelial progenitor cells (EPCs), as precursors to endothelial cells, play a significant part in the process of endogenous blood vessel repair and maintenance of endothelial integrity. Adiponectin (APN) is an adipocyte-specific adipocytokine. In this study, we aim to test whether we transplant a combined graft of EPCs transfected with the adiponectin gene into a rat model of cerebral ischemia could improve functional recovery after middle cerebral artery occlusion (MCAO). Sprague-Dawley (SD) rats were randomly divided into a MCAO control group, a MCAO EPC treatment group, and a MCAO LV-APN-EPC treatment group. A focal cerebral ischemia and reperfusion model was induced by the intraluminal suture method. After 2 h of reperfusion, EPCs were transplanted by injection through the tail vein. A rotarod test was conducted to assess behavioral function before MCAO and on days 1, 7, and 14 after MCAO. After 14 d, TTC staining, CD31 immunofluorescence, and TUNEL staining were used to evaluate infarct volume, microvessel density, and cell apoptosis. Results revealed that behavioral function, infarct area percentage, microvessel density, and cell apoptosis rates were more favorable in the LV-APN-EPC treatment group than in the EPC treatment group. These data suggested that gene-modified cell therapy may be a useful approach for the treatment of ischemic stroke.
Collapse
|
3
|
Piao L, Zhao G, Zhu E, Inoue A, Shibata R, Lei Y, Hu L, Yu C, Yang G, Wu H, Xu W, Okumura K, Ouchi N, Murohara T, Kuzuya M, Cheng XW. Chronic Psychological Stress Accelerates Vascular Senescence and Impairs Ischemia-Induced Neovascularization: The Role of Dipeptidyl Peptidase-4/Glucagon-Like Peptide-1-Adiponectin Axis. J Am Heart Assoc 2017; 6:e006421. [PMID: 28963101 PMCID: PMC5721852 DOI: 10.1161/jaha.117.006421] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Exposure to psychosocial stress is a risk factor for cardiovascular disease, including vascular aging and regeneration. Given that dipeptidyl peptidase-4 (DPP4) regulates several intracellular signaling pathways associated with the glucagon-like peptide-1 (GLP-1) metabolism, we investigated the role of DPP4/GLP-1 axis in vascular senescence and ischemia-induced neovascularization in mice under chronic stress, with a special focus on adiponectin -mediated peroxisome proliferator activated receptor-γ/its co-activator 1α (PGC-1α) activation. METHODS AND RESULTS Seven-week-old mice subjected to restraint stress for 4 weeks underwent ischemic surgery and were kept under immobilization stress conditions. Mice that underwent ischemic surgery alone served as controls. We demonstrated that stress impaired the recovery of the ischemic/normal blood-flow ratio throughout the follow-up period and capillary formation. On postoperative day 4, stressed mice showed the following: increased levels of plasma and ischemic muscle DPP4 and decreased levels of GLP-1 and adiponectin in plasma and phospho-AMP-activated protein kinase α (p-AMPKα), vascular endothelial growth factor, peroxisome proliferator activated receptor-γ, PGC-1α, and Sirt1 proteins and insulin receptor 1 and glucose transporter 4 genes in the ischemic tissues, vessels, and/or adipose tissues and numbers of circulating endothelial CD31+/c-Kit+ progenitor cells. Chronic stress accelerated aortic senescence and impaired aortic endothelial sprouting. DPP4 inhibition and GLP-1 receptor activation improved these changes; these benefits were abrogated by adiponectin blocking and genetic depletion. CONCLUSIONS These results indicate that the DPP4/GLP-1-adiponectin axis is a novel therapeutic target for the treatment of vascular aging and cardiovascular disease under chronic stress conditions.
Collapse
MESH Headings
- Adiponectin/metabolism
- Animals
- Cells, Cultured
- Cellular Senescence
- Chronic Disease
- Dipeptidyl Peptidase 4/deficiency
- Dipeptidyl Peptidase 4/genetics
- Dipeptidyl Peptidase 4/metabolism
- Disease Models, Animal
- Endothelial Progenitor Cells/enzymology
- Endothelial Progenitor Cells/pathology
- Glucagon-Like Peptide 1/metabolism
- Ischemia/enzymology
- Ischemia/genetics
- Ischemia/pathology
- Ischemia/physiopathology
- Male
- Mice, Inbred C57BL
- Neovascularization, Physiologic
- PPAR gamma/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Proteolysis
- Rats, Inbred F344
- Rats, Transgenic
- Receptors, Adiponectin/metabolism
- Signal Transduction
- Stress, Psychological/enzymology
- Stress, Psychological/genetics
- Stress, Psychological/pathology
- Stress, Psychological/physiopathology
- Time Factors
- Tissue Culture Techniques
Collapse
Affiliation(s)
- Limei Piao
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Cardiology and ICU, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Guangxian Zhao
- Cardiology and ICU, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Enbo Zhu
- Cardiology and ICU, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Aiko Inoue
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rei Shibata
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yanna Lei
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Cardiology and ICU, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Lina Hu
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Public Health, Guilin Medical College, Guilin, Guangxi Province, China
| | - Chenglin Yu
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Cardiology and ICU, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Guang Yang
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Cardiology and ICU, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Hongxian Wu
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Cardiology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhu Xu
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Cardiology and ICU, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Kenji Okumura
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Noriyuki Ouchi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masafumi Kuzuya
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xian Wu Cheng
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Cardiology and ICU, Yanbian University Hospital, Yanji, Jilin Province, China
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
4
|
Satthenapalli VR, Lamberts RR, Katare RG. Concise Review: Challenges in Regenerating the Diabetic Heart: A Comprehensive Review. Stem Cells 2017. [PMID: 28639375 DOI: 10.1002/stem.2661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stem cell therapy is one of the promising regenerative strategies developed to improve cardiac function in patients with ischemic heart diseases (IHD). However, this approach is limited in IHD patients with diabetes due to a progressive decline in the regenerative capacity of stem cells. This decline is mainly attributed to the metabolic memory incurred by diabetes on stem cell niche and their systemic cues. Understanding the molecular pathways involved in the diabetes-induced deterioration of stem cell function will be critical for developing new cardiac regeneration therapies. In this review, we first discuss the most common molecular alterations occurring in the diabetic stem cells/progenitor cells. Next, we highlight the key signaling pathways that can be dysregulated in a diabetic environment and impair the mobilization of stem/progenitor cells, which is essential for the transplanted/endogenous stem cells to reach the site of injury. We further discuss the possible methods of preconditioning the diabetic cardiac progenitor cell (CPC) with an aim to enrich the availability of efficient stem cells to regenerate the diseased diabetic heart. Finally, we propose new modalities for enriching the diabetic CPC through genetic or tissue engineering that would aid in developing autologous therapeutic strategies, improving the proliferative, angiogenic, and cardiogenic properties of diabetic stem/progenitor cells. Stem Cells 2017;35:2009-2026.
Collapse
Affiliation(s)
- Venkata R Satthenapalli
- Department of Physiology, School of Biomedical Sciences, HeartOtago, University of Otago, Dunedin, New Zealand
| | - Regis R Lamberts
- Department of Physiology, School of Biomedical Sciences, HeartOtago, University of Otago, Dunedin, New Zealand
| | - Rajesh G Katare
- Department of Physiology, School of Biomedical Sciences, HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Inoue A, Cheng XW, Huang Z, Hu L, Kikuchi R, Jiang H, Piao L, Sasaki T, Itakura K, Wu H, Zhao G, Lei Y, Yang G, Zhu E, Li X, Sato K, Koike T, Kuzuya M. Exercise restores muscle stem cell mobilization, regenerative capacity and muscle metabolic alterations via adiponectin/AdipoR1 activation in SAMP10 mice. J Cachexia Sarcopenia Muscle 2017; 8:370-385. [PMID: 27897419 PMCID: PMC5476856 DOI: 10.1002/jcsm.12166] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/08/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Exercise train (ET) stimulates muscle response in pathological conditions, including aging. The molecular mechanisms by which exercise improves impaired adiponectin/adiponectin receptor 1 (AdipoR1)-related muscle actions associated with aging are poorly understood. Here we observed that in a senescence-accelerated mouse prone 10 (SAMP10) model, long-term ET modulated muscle-regenerative actions. METHODS 25-week-old male SAMP10 mice were randomly assigned to the control and the ET (45 min/time, 3/week) groups for 4 months. Mice that were maintained in a sedentary condition served controls. RESULTS ET ameliorated aging-related muscle changes in microstructure, mitochondria, and performance. The amounts of proteins or mRNAs for p-AMPKα, p-Akt, p-ERK1/2, p-mTOR, Bcl-XL, p-FoxO3, peroxisome proliferators-activated receptor-γ coactivator, adiponectin receptor1 (adpoR1), and cytochrome c oxidase-IV, and the numbers of CD34+ /integrin-α7+ muscle stem cells (MuSCs) and proliferating cells in the muscles and bone-marrow were enhanced by ET, whereas the levels of p-GSK-3α and gp91phox proteins and apoptotic cells were reduced by ET. The ET also resulted in increased levels of plasma adiponectin and the numbers of bone-marrow (BM)-derived circulating CD34+ /integrin-α7+ MuSCs and their functions. Integrin-α7+ MuSCs of exercised mice had improved changes of those beneficial molecules. These ET-mediated aged muscle benefits were diminished by adiponectin and AdipoR1 blocking as well as AMPK inhibition. Finally, recombinant mouse adiponectin enhanced AMPK and mTOR phosphorylations in BM-derived integrin-α7+ cells. CONCLUSIONS These findings suggest that ET can improve aging-related impairments of BM-derived MuSC regenerative capacity and muscle metabolic alterations via an AMPK-dependent mechanism that is mediated by an adiponectin/AdipoR1 axis in SAMP10 mice.
Collapse
Affiliation(s)
- Aiko Inoue
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| | - Xian Wu Cheng
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, 133000, Jilin PR., China.,Department of Cardiovascular of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Zhe Huang
- Department of Neurology, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Fukuoka, Japan
| | - Lina Hu
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| | - Ryosuke Kikuchi
- Department of Medical Technique, Nagoya University Hospital, Nagoya, 466-8550, Aichiken, Japan
| | - Haiying Jiang
- Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji, 133000, Jilin PR., China
| | - Limei Piao
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, 133000, Jilin PR., China
| | - Takeshi Sasaki
- Department of Anatomy and Neuroscience, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Shizuokaken, Japan
| | - Kohji Itakura
- Division for Medical Research Engineering, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| | - Hongxian Wu
- Department of Sport Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| | - Guangxian Zhao
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, 133000, Jilin PR., China
| | - Yanna Lei
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, 133000, Jilin PR., China
| | - Guang Yang
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, 133000, Jilin PR., China
| | - Enbo Zhu
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, 133000, Jilin PR., China
| | - Xiang Li
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, 133000, Jilin PR., China
| | - Kohji Sato
- Department of Anatomy and Neuroscience, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Shizuokaken, Japan
| | - Teruhiko Koike
- Department of Sport Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| | - Masafumi Kuzuya
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| |
Collapse
|
6
|
Saad MI, Abdelkhalek TM, Saleh MM, Kamel MA, Youssef M, Tawfik SH, Dominguez H. Insights into the molecular mechanisms of diabetes-induced endothelial dysfunction: focus on oxidative stress and endothelial progenitor cells. Endocrine 2015; 50:537-67. [PMID: 26271514 DOI: 10.1007/s12020-015-0709-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/25/2015] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is a heterogeneous, multifactorial, chronic disease characterized by hyperglycemia owing to insulin insufficiency and insulin resistance (IR). Recent epidemiological studies showed that the diabetes epidemic affects 382 million people worldwide in 2013, and this figure is expected to be 600 million people by 2035. Diabetes is associated with microvascular and macrovascular complications resulting in accelerated endothelial dysfunction (ED), atherosclerosis, and cardiovascular disease (CVD). Unfortunately, the complex pathophysiology of diabetic cardiovascular damage is not fully understood. Therefore, there is a clear need to better understand the molecular pathophysiology of ED in diabetes, and consequently, better treatment options and novel efficacious therapies could be identified. In the light of recent extensive research, we re-investigate the association between diabetes-associated metabolic disturbances (IR, subclinical inflammation, dyslipidemia, hyperglycemia, dysregulated production of adipokines, defective incretin and gut hormones production/action, and oxidative stress) and ED, focusing on oxidative stress and endothelial progenitor cells (EPCs). In addition, we re-emphasize that oxidative stress is the final common pathway that transduces signals from other conditions-either directly or indirectly-leading to ED and CVD.
Collapse
Affiliation(s)
- Mohamed I Saad
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt.
- Hudson Institute of Medical Research, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia.
| | - Taha M Abdelkhalek
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Moustafa M Saleh
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mina Youssef
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Shady H Tawfik
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Helena Dominguez
- Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
7
|
Fiaschi T, Magherini F, Gamberi T, Modesti PA, Modesti A. Adiponectin as a tissue regenerating hormone: more than a metabolic function. Cell Mol Life Sci 2014; 71:1917-25. [PMID: 24322911 PMCID: PMC11113778 DOI: 10.1007/s00018-013-1537-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 11/24/2013] [Accepted: 11/25/2013] [Indexed: 02/04/2023]
Abstract
The great interest that scientists have for adiponectin is primarily due to its central metabolic role. Indeed, the major function of this adipokine is the control of glucose homeostasis that it exerts regulating liver and muscle metabolism. Adiponectin has insulin-sensitizing action and leads to down-regulation of hepatic gluconeogenesis and an increase of fatty acid oxidation. In addition, adiponectin is reported to play an important role in the inhibition of inflammation. The hormone is secreted in full-length form, which can either assemble into complexes or be converted into globular form by proteolytic cleavage. Over the past few years, emerging publications reveal a more varied and pleiotropic action of this hormone. Many studies emphasize a key role of adiponectin during tissue regeneration and show that adiponectin deficiency greatly inhibits the mechanisms underlying tissue renewal. This review deals with the role of adiponectin in tissue regeneration, mainly referring to skeletal muscle regeneration, a process in which adiponectin is deeply involved. In this tissue, globular adiponectin increases proliferation, migration and myogenic properties of both resident stem cells (namely satellite cells) and non-resident muscle precursors (namely mesoangioblasts). Furthermore, skeletal muscle could be a site for the local production of the globular form that occurs in an inflamed environment. Overall, these recent findings contribute to highlight an intriguing function of adiponectin in addition to its well-recognized metabolic action.
Collapse
Affiliation(s)
- Tania Fiaschi
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Universita' degli Studi di Firenze, Viale Morgagni 50, 50134, Florence, Italy,
| | | | | | | | | |
Collapse
|
8
|
Caselli C, D'Amico A, Cabiati M, Prescimone T, Del Ry S, Giannessi D. Back to the heart: the protective role of adiponectin. Pharmacol Res 2014; 82:9-20. [PMID: 24657240 DOI: 10.1016/j.phrs.2014.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/25/2014] [Accepted: 03/06/2014] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide and the prevalence of obesity and diabetes are increasing. In obesity, adipose tissue increases the secretion of bioactive mediators (adipokines) that may represent a key mechanism linking obesity to CVD. Adiponectin, extensively studied in metabolic diseases, exerts anti-diabetic, anti-atherogenic and anti-inflammatory activities. Due to these positive actions, the role of adiponectin in cardiovascular protection has been evaluated in recent years. In particular, for its potential therapeutic benefits in humans, adiponectin has become the subject of intense preclinical research. In the cardiovascular context, understanding of the cellular and molecular mechanisms underlying the adiponectin system, throughout its secretion, regulation and signaling, is critical for designing new drugs that target adiponectin system molecules. This review focused on recent advances regarding molecular mechanisms related to protective effects of the adiponectin system on both cardiac and vascular compartments and its potential use as a target for therapeutic intervention of CVD.
Collapse
Affiliation(s)
- C Caselli
- Consiglio Nazionale delle Ricerche (CNR), Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa 56100, Italy.
| | - A D'Amico
- Scuola Superiore S. Anna, Pisa, Italy
| | - M Cabiati
- Consiglio Nazionale delle Ricerche (CNR), Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa 56100, Italy
| | - T Prescimone
- Consiglio Nazionale delle Ricerche (CNR), Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa 56100, Italy
| | - S Del Ry
- Consiglio Nazionale delle Ricerche (CNR), Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa 56100, Italy
| | - D Giannessi
- Consiglio Nazionale delle Ricerche (CNR), Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa 56100, Italy
| |
Collapse
|
9
|
Van de Voorde J, Pauwels B, Boydens C, Decaluwé K. Adipocytokines in relation to cardiovascular disease. Metabolism 2013; 62:1513-21. [PMID: 23866981 DOI: 10.1016/j.metabol.2013.06.004] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 01/22/2023]
Abstract
Adipose tissue can be considered as a huge gland producing paracrine and endocrine hormones, the adipo(cyto)kines. There is growing evidence that these adipo(cyto)kines may link obesity to cardiovascular diseases. The excessive adipocyte hypertrophy in obesity induces hypoxia in adipose tissue. This leads to adiposopathy, the process that converts "healthy" adipose tissue to "sick" adipose tissue. This is accompanied by a change in profile of adipo(cyto)kines released, with less production of the "healthy" adipo(cyto)kines such as adiponectin and omentin and more release of the "unhealthy" adipo(cyto)kines, ultimately leading to the development of cardiovascular diseases. The present review provides a concise and general overview of the actual concepts of the role of adipo(cyto)kines in endothelial dysfunction, hypertension, atherosclerosis and heart diseases. The knowledge of these concepts may lead to new tools to improve health in the next generations.
Collapse
Affiliation(s)
- Johan Van de Voorde
- Department of Pharmacology, Vascular Research Unit, Ghent University, Belgium.
| | | | | | | |
Collapse
|
10
|
Assessment of endothelial dysfunction in childhood obesity and clinical use. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:174782. [PMID: 23691262 PMCID: PMC3649697 DOI: 10.1155/2013/174782] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/06/2013] [Indexed: 12/11/2022]
Abstract
The association of obesity with noncommunicable diseases, such as cardiovascular complications and diabetes, is considered a major threat to the management of health care worldwide. Epidemiological findings show that childhood obesity is rapidly rising in Western society, as well as in developing countries. This pandemic is not without consequences and can affect the risk of future cardiovascular disease in these children. Childhood obesity is associated with endothelial dysfunction, the first yet still reversible step towards atherosclerosis. Advanced research techniques have added further insight on how childhood obesity and associated comorbidities lead to endothelial dysfunction. Techniques used to measure endothelial function were further brought to perfection, and novel biomarkers, including endothelial progenitor cells, were discovered. The aim of this paper is to provide a critical overview on both in vivo as well as in vitro markers for endothelial integrity. Additionally, an in-depth description of the mechanisms that disrupt the delicate balance between endothelial damage and repair will be given. Finally, the effects of lifestyle interventions and pharmacotherapy on endothelial dysfunction will be reviewed.
Collapse
|
11
|
Abstract
UNLABELLED The global epidemic of obesity is accompanied by an increased prevalence of cardiovascular disease (CVD), in particular stroke and heart attack. Dysfunctional adipose tissue links obesity to CVD by secreting a multitude of bioactive lipids and pro-inflammatory factors (adipokines) with detrimental effects on the cardiovascular system. Adiponectin is one of the few adipokines that possesses multiple salutary effects on insulin sensitivity and cardiovascular health. Clinical investigations have identified adiponectin deficiency (hypoadiponectinaemia) as an independent risk factor for CVD. In animals, elevation of plasma adiponectin by either pharmacological or genetic approaches alleviates obesity-induced endothelial dysfunction and hypertension, and also prevents atherosclerosis, myocardial infarction and diabetic cardiomyopathy. Furthermore, many therapeutic benefits of the peroxisome-proliferator activated receptor gamma agonists, the thiazolidinediones, are mediated by induction of adiponectin. Adiponectin protects cardiovascular health through its vasodilator, anti-apoptotic, anti-inflammatory and anti-oxidative activities in both cardiac and vascular cells. This review summarizes recent findings in the understanding of the physiological role and clinical relevance of adiponectin in cardiovascular health, and in the identification of the receptor and postreceptor signalling events that mediate the cardiovascular actions of adiponectin. It also discusses adiponectin-targeted drug discovery strategies for treating obesity, diabetes and CVD. LINKED ARTICLES This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3.
Collapse
Affiliation(s)
- Xiaoyan Hui
- Department of Medicine, the University of Hong Kong, Hong Kong
| | | | | | | |
Collapse
|
12
|
Xu A, Vanhoutte PM. Adiponectin and adipocyte fatty acid binding protein in the pathogenesis of cardiovascular disease. Am J Physiol Heart Circ Physiol 2011; 302:H1231-40. [PMID: 22210749 DOI: 10.1152/ajpheart.00765.2011] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The heart and blood vessels are surrounded by epicardial and perivascular adipose tissues, respectively, which play important roles in maintaining cardiovascular homeostasis by secreting a number of biologically active molecules, termed "adipokines." Many of these adipokines function as an important component of the 'adipo-cardiovascular axis' mediating the cross talk between adipose tissues, the heart, and the vasculature. On the one hand, most adipokines [including tumor necrosis factor-α, resistin, adipocyte fatty acid binding protein (A-FABP), and lipocalin-2] are proinflammatory and causally associated with endothelial and cardiac dysfunction by their endocrine/paracrine actions. On the other hand, adiponectin is one of the few adipokines that possesses multiple salutary effects on the prevention of cardiovascular disease, because of its pleiotropic actions on the heart and the blood vessels. The discordant production of adipokines in dysfunctional adipose tissue is a key contributor to obesity-related cardiovascular disease. This review provides an update in understanding the roles of adipokines in the pathogenesis of cardiovascular disorders associated with obesity and diabetes and focuses on the two most abundant adipokines, adiponectin and A-FABP. Indeed, data from both animal studies and clinical investigations imply that these two adipokines are prognostic biomarkers for cardiovascular disease and even promising therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Aimin Xu
- Department of Pharmacology and Pharmacy, the University of Hong Kong, Hong Kong
| | | |
Collapse
|
13
|
Aprahamian TR, Sam F. Adiponectin in cardiovascular inflammation and obesity. Int J Inflam 2011; 2011:376909. [PMID: 21941676 PMCID: PMC3175407 DOI: 10.4061/2011/376909] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/08/2011] [Accepted: 06/10/2011] [Indexed: 01/08/2023] Open
Abstract
Inflammation is
widely known to play a key role in the
development and progression of cardiovascular
diseases. It is becoming increasingly evident
that obesity is linked to many proinflammatory
and obesity-associated cardiovascular conditions
(e.g., metabolic syndrome, acute coronary
syndrome, and congestive heart failure). It has
been observed that adipokines play an
increasingly large role in systemic and local
inflammation. Therefore, adipose tissue may have
a more important role than previously thought in
the pathogenesis of several disease types. This
review explores the recently described role of
adiponectin as an immunomodulatory factor and
how it intersects with the inflammation
associated with both cardiovascular and
autoimmune pathologies.
Collapse
Affiliation(s)
- Tamar R Aprahamian
- Renal Section, Evans Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
14
|
Vaiopoulos AG, Marinou K, Christodoulides C, Koutsilieris M. The role of adiponectin in human vascular physiology. Int J Cardiol 2011; 155:188-93. [PMID: 21907426 DOI: 10.1016/j.ijcard.2011.07.047] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 06/22/2011] [Accepted: 07/11/2011] [Indexed: 12/20/2022]
Abstract
Adiponectin (ApN) is an adipose tissue-derived hormone which is involved in a wide variety of physiological processes including energy metabolism, inflammation, and vascular physiology via actions on a broad spectrum of target organs including liver, skeletal muscle, and vascular endothelium. Besides possessing insulin sensitizing and anti-inflammatory properties ApN also exerts a pivotal role in vascular protection through activation of multiple intracellular signaling cascades. Enhancement of nitric oxide generation and attenuation of reactive oxygen species production in endothelial cells along with reduced vascular smooth muscle cell proliferation and migration constitute some of ApN's vasoprotective actions. Additionally, recent data indicate that ApN has direct myocardio-protective effects. Decreased plasma ApN levels are implicated in the pathogenesis of the metabolic syndrome and atherosclerosis and may serve as a diagnostic and prognostic biomarker as well as a rational pharmaco-therapeutic target to treat these disorders. This review article summarizes recent work on the cardiovascular actions of ApN.
Collapse
|
15
|
Ryan AM, Duong M, Healy L, Ryan SA, Parekh N, Reynolds JV, Power DG. Obesity, metabolic syndrome and esophageal adenocarcinoma: epidemiology, etiology and new targets. Cancer Epidemiol 2011; 35:309-19. [PMID: 21470937 DOI: 10.1016/j.canep.2011.03.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 02/24/2011] [Accepted: 03/03/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND Rates of distal and junctional adenocarcinomas are increasing in Western countries. METHODS Systematic review of epidemiological evidence linking obesity to esophageal adenocarcinoma (EA) was performed for studies published from 2005 to 2010. The current understanding of obesity's role in the etiology and potential dysplastic progression of Barrett's esophagus (BE) to EA is reviewed. RESULTS Accumulating epidemiological studies provide evidence of obesity's role as a driving force behind the increasing rates of EA. The simplest construct is that obesity promotes reflux, causing chronic inflammation and BE, predisposing to adenocarcinoma. However, as obesity is positively associated with the prevalence of many cancers, other mechanisms are important. A link may exist between fat distribution patterns and the risk of BE and EA. Altered metabolic profiles in the metabolic syndrome (MetS) may be a key factor in cell cycle/genetic abnormalities that mark the progression of BE towards cancer. Research highlighting a unique role of MetS in the length of BE, and its association with systemic inflammation and insulin resistance is discussed, as well as adipokine receptor expression in both BE and esophageal epithelium, and how MetS and the systemic response impacts on key regulators of inflammation and tumorigenesis. CONCLUSIONS/IMPACT: Obesity is positively associated with EA. The systemic inflammatory state consequent on the altered metabolism of obese patients, and the associated impact of adipocytokines and pro-coagulant factors released by adipocytes in central fat, may underlie obesity's relationship to this cancer. Novel therapeutic agents that may antagonize adipo-cytokines and potentially offer a promising role in cancer therapy are discussed.
Collapse
Affiliation(s)
- Aoife M Ryan
- Department of Nutrition, Food Studies & Public Health, New York University, New York, NY 10044, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Leicht SF, Schwarz TM, Hermann PC, Seissler J, Aicher A, Heeschen C. Adiponectin pretreatment counteracts the detrimental effect of a diabetic environment on endothelial progenitors. Diabetes 2011; 60:652-61. [PMID: 21270275 PMCID: PMC3028367 DOI: 10.2337/db10-0240] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE It has been shown that vascular progenitors from patients with diabetes are dysfunctional. However, therapeutic strategies to counteract their reduced functional capacity are still lacking. Because adiponectin has reported salutary effects on endothelial function, we investigated the functional effects of globular adiponectin (gAcrp), the active domain of adiponectin, on isolated endothelial colony-forming cells (ECFC). RESEARCH DESIGN AND METHODS ECFC were isolated from peripheral blood of type 2 diabetic patients (dmECFC) and compared with ECFC of healthy young volunteers (yECFC) and nondiabetic age-matched control subjects (hECFC). Cells were treated with gAcrp for 48 h followed by assessment of cell counts, cell cycle analysis, and migration capacity. For in vivo evaluation, human ECFC were injected into normoglycemic or streptozotocin-induced hyperglycemic nu/nu mice after hind limb ischemia. RESULTS Whereas dmECFC were functionally impaired compared with yECFC and hECFC, gAcrp significantly enhanced their in vitro proliferation and migratory activity. In vitro effects were significantly stronger in hECFC compared with dmECFC and were mediated through the cyclooxygenase-2 pathway. Most important, however, we observed a profound and sustained increase of the in vivo neovascularization in mice receiving gAcrp-pretreated dmECFC compared with untreated dmECFC under both normoglycemic and hyperglycemic conditions. CONCLUSIONS Pretreatment of ECFC with gAcrp enhanced the functional capacity of ECFC in vitro and in vivo in normoglycemic and hyperglycemic environments. Therefore, preconditioning of dmECFC with gAcrp may be a novel approach to counteract their functional impairment in diabetes.
Collapse
Affiliation(s)
- Simon F. Leicht
- Clinical Research Programme, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Experimental Medicine, School of Medicine, Ludwig-Maximilian-University, Munich, Germany
| | - Theresa M. Schwarz
- Department of Experimental Medicine, School of Medicine, Ludwig-Maximilian-University, Munich, Germany
| | - Patrick C. Hermann
- Clinical Research Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Jochen Seissler
- Diabetes Centre, School of Medicine, Ludwig-Maximilian-University, Munich, Germany
| | - Alexandra Aicher
- School of Science and Technology, Nottingham Trent University, Nottingham, U.K
| | - Christopher Heeschen
- Clinical Research Programme, Spanish National Cancer Research Centre, Madrid, Spain
- Corresponding author: Christopher Heeschen,
| |
Collapse
|
17
|
Chen X, Wang Y. Adiponectin and breast cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2010. [PMID: 20625941 DOI: 10.1007/s12032010-9617-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adiponectin, an adipose tissue-derived hormone, has been studied intensively for the past decade because of its anti-inflammatory, anti-atherogenic, and anti-diabetic properties. Recent advances suggest that adiponectin also plays an important role in the development and progression of various cancers, especially obesity-related cancers. In this review, the authors focus on the potential role of adiponectin in breast cancer, an obesity- and endocrine-associated tumor. Epidemiological studies have shown that plasma adiponectin level is a risk factor for breast cancer in post-menopausal women. Adiponectin and its receptors are expressed on both breast cancer line cells and tumor tissues. Furthermore, exogenous adiponectin has exhibited therapeutic potential in animal models. Underlying mechanisms include the inhibition of cell proliferation and promotion of apoptosis, the regulation of tumorigenic-related factors, and the suppression of angiogenesis. The signaling pathways linking adiponectin with tumorigenesis might provide potential drug targets for the future. However, more convincing evidence is needed to fully elucidate the exact role of adiponectin in breast cancer, since both its beneficial effects and possible mechanisms remain controversial.
Collapse
Affiliation(s)
- Xiuping Chen
- Institute of Chinese Medical Sciences, University of Macau, Av. Padre Tomas Pereira S.J., Taipa, Macau, China.
| | | |
Collapse
|
18
|
Abstract
Adiponectin, an adipose tissue-derived hormone, has been studied intensively for the past decade because of its anti-inflammatory, anti-atherogenic, and anti-diabetic properties. Recent advances suggest that adiponectin also plays an important role in the development and progression of various cancers, especially obesity-related cancers. In this review, the authors focus on the potential role of adiponectin in breast cancer, an obesity- and endocrine-associated tumor. Epidemiological studies have shown that plasma adiponectin level is a risk factor for breast cancer in post-menopausal women. Adiponectin and its receptors are expressed on both breast cancer line cells and tumor tissues. Furthermore, exogenous adiponectin has exhibited therapeutic potential in animal models. Underlying mechanisms include the inhibition of cell proliferation and promotion of apoptosis, the regulation of tumorigenic-related factors, and the suppression of angiogenesis. The signaling pathways linking adiponectin with tumorigenesis might provide potential drug targets for the future. However, more convincing evidence is needed to fully elucidate the exact role of adiponectin in breast cancer, since both its beneficial effects and possible mechanisms remain controversial.
Collapse
|
19
|
Everaert BR, Van Craenenbroeck EM, Hoymans VY, Haine SE, Van Nassauw L, Conraads VM, Timmermans JP, Vrints CJ. Current perspective of pathophysiological and interventional effects on endothelial progenitor cell biology: focus on PI3K/AKT/eNOS pathway. Int J Cardiol 2010; 144:350-66. [PMID: 20444511 DOI: 10.1016/j.ijcard.2010.04.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 04/04/2010] [Indexed: 12/24/2022]
Abstract
For more than a decade, endothelial progenitor cells (EPCs) have been implicated in cardiovascular homeostasis. EPCs are believed to reside within the bone marrow in close contact with surrounding stromal cells, and, under stimulation of pro-inflammatory cytokines, EPCs are mobilized out of the bone marrow. Hereafter circulating EPCs home to peripheral tissues, undergoing further proliferation and differentiation. Under certain pathophysiologic conditions this process seems to be blunted, resulting in a reduced capacity of EPCs to engage in vasculogenesis at sites of endothelial injury or tissue ischemia. In this review, we focus on the effects of traditional cardiovascular risk factors on EPC biology and we explore whether pharmacological, dietary and lifestyle interventions can favorably restore EPC mobilization, differentiation, homing and angiogenic properties. Because the PI3K/Akt/eNOS pathway plays a pivotal role in the process of EPC mobilization, migration and homing, we specifically emphasize the involvement of PI3K, Akt and eNOS in EPC biology under these different (patho)physiologic conditions. (Pre)clinically used drugs or lifestyle interventions that have been shown to ameliorate EPC biology are reviewed. These treatment strategies remain attractive targets to restore the regenerative capacity of EPCs in cardiovascular diseases.
Collapse
Affiliation(s)
- Bert R Everaert
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|