1
|
Horie H, Oshima Y, Fukumitsu K, Iwaki K, Munekage F, Makino K, Wakama S, Ito T, Tomofuji K, Ogiso S, Uebayashi EY, Ishii T, Ishihara K, Hatano E. Antithrombotic Revascularization Strategy of Bioengineered Liver Using a Biomimetic Polymer. Tissue Eng Part A 2024. [PMID: 39276095 DOI: 10.1089/ten.tea.2024.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024] Open
Abstract
A bioengineered liver has the potential to save patients with end-stage liver disease, and a three-dimensional decellularized scaffold is a promising approach for practical use. The main challenge in bioengineered liver transplantation is thrombogenicity during blood perfusion. We aimed to apply a novel antithrombotic polymer to revascularize liver scaffolds and evaluate the thrombogenicity and biosafety of the polymer-treated scaffolds. A biomimetic polymer, 2-metacryloyloxyethyl phosphorylcholine (MPC) was prepared for modification of the extracellular matrix in liver scaffolds. The polymer was injected into the rat liver scaffolds' portal vein and could extensively react to the vessel walls. In an ex vivo blood perfusion experiment, we demonstrated significantly less platelet deposition in the polymer-treated scaffolds than nontreated or re-endothelialized scaffolds with human umbilical vein endothelial cells. In the heterotopic transplantation model, liver volume was better maintained in the polymer-treated groups, and platelet deposition was suppressed in these groups. Additionally, the polymer-treated liver scaffolds maintained the metabolic function of the recellularized rat primary hepatocytes during perfusion culture. The MPC polymer treatment efficiently suppressed thrombus formation during blood perfusion in liver scaffolds and maintained the function of recellularized hepatocytes. Revascularizing liver scaffolds using this polymer is a promising approach for bioengineered liver transplantation.
Collapse
Affiliation(s)
- Hiroshi Horie
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yu Oshima
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Surgery, Nagahama City Hospital, Shiga, Japan
| | - Ken Fukumitsu
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Surgery, Kyoto Katsura Hospital, Kyoto, Japan
| | - Kentaro Iwaki
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumiaki Munekage
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenta Makino
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Wakama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Ito
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Katsuhiro Tomofuji
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Ogiso
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Takamichi Ishii
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Liu Q, Wang S, Fu J, Chen Y, Xu J, Wei W, Song H, Zhao X, Wang H. Liver regeneration after injury: Mechanisms, cellular interactions and therapeutic innovations. Clin Transl Med 2024; 14:e1812. [PMID: 39152680 PMCID: PMC11329751 DOI: 10.1002/ctm2.1812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 08/19/2024] Open
Abstract
The liver possesses a distinctive capacity for regeneration within the human body. Under normal circumstances, liver cells replicate themselves to maintain liver function. Compensatory replication of healthy hepatocytes is sufficient for the regeneration after acute liver injuries. In the late stage of chronic liver damage, a large number of hepatocytes die and hepatocyte replication is blocked. Liver regeneration has more complex mechanisms, such as the transdifferentiation between cell types or hepatic progenitor cells mediated. Dysregulation of liver regeneration causes severe chronic liver disease. Gaining a more comprehensive understanding of liver regeneration mechanisms would facilitate the advancement of efficient therapeutic approaches. This review provides an overview of the signalling pathways linked to different aspects of liver regeneration in various liver diseases. Moreover, new knowledge on cellular interactions during the regenerative process is also presented. Finally, this paper explores the potential applications of new technologies, such as nanotechnology, stem cell transplantation and organoids, in liver regeneration after injury, offering fresh perspectives on treating liver disease.
Collapse
Affiliation(s)
- Qi Liu
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Senyan Wang
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Jing Fu
- International Cooperation Laboratory on Signal TransductionNational Center for Liver CancerMinistry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghai Key Laboratory of Hepato‐biliary Tumor BiologyEastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical UniversityShanghaiChina
| | - Yao Chen
- International Cooperation Laboratory on Signal TransductionNational Center for Liver CancerMinistry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghai Key Laboratory of Hepato‐biliary Tumor BiologyEastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical UniversityShanghaiChina
| | - Jing Xu
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Wenjuan Wei
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Hao Song
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Xiaofang Zhao
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Hongyang Wang
- International Cooperation Laboratory on Signal TransductionNational Center for Liver CancerMinistry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghai Key Laboratory of Hepato‐biliary Tumor BiologyEastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical UniversityShanghaiChina
| |
Collapse
|
3
|
Bhatt S S, Krishna Kumar J, Laya S, Thakur G, Nune M. Scaffold-mediated liver regeneration: A comprehensive exploration of current advances. J Tissue Eng 2024; 15:20417314241286092. [PMID: 39411269 PMCID: PMC11475092 DOI: 10.1177/20417314241286092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/08/2024] [Indexed: 10/19/2024] Open
Abstract
The liver coordinates over 500 biochemical processes crucial for maintaining homeostasis, detoxification, and metabolism. Its specialized cells, arranged in hexagonal lobules, enable it to function as a highly efficient metabolic engine. However, diseases such as cirrhosis, fatty liver disease, and hepatitis present significant global health challenges. Traditional drug development is expensive and often ineffective at predicting human responses, driving interest in advanced in vitro liver models utilizing 3D bioprinting and microfluidics. These models strive to mimic the liver's complex microenvironment, improving drug screening and disease research. Despite its resilience, the liver is vulnerable to chronic illnesses, injuries, and cancers, leading to millions of deaths annually. Organ shortages hinder liver transplantation, highlighting the need for alternative treatments. Tissue engineering, employing polymer-based scaffolds and 3D bioprinting, shows promise. This review examines these innovative strategies, including liver organoids and liver tissue-on-chip technologies, to address the challenges of liver diseases.
Collapse
Affiliation(s)
- Supriya Bhatt S
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jayanthi Krishna Kumar
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shurthi Laya
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Goutam Thakur
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manasa Nune
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
4
|
Singh K, Kaistha S, Jain R, Khurana S. The yesterday, today and tomorrow of liver transplant. Med J Armed Forces India 2023; 79:638-644. [PMID: 37981927 PMCID: PMC10654371 DOI: 10.1016/j.mjafi.2023.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/20/2023] [Indexed: 11/21/2023] Open
Abstract
With a very long history of setbacks and successes, organ transplantation is one of the greatest medical achievements of the twentieth century. Liver transplantation is currently the most effective method for treating end-stage liver disease. From humble beginnings, improvements in surgical technique, perioperative management, and immunosuppressive therapy have yielded excellent graft and patient outcomes. Most established 'liver transplant' (LT) centres have a 1-year survival rate exceeding 90%, and a 3-year survival rate of over 80%. With immense success, the need for hepatic grafts substantially exceeds their availability. This problem has been partially addressed by using split grafts, living donor liver transplantation (LDLT), and extended criteria grafts (ECG). This article reviews the immense progress made in various aspects of LT including evaluation, increasing donor pool, surgical advances, immunosuppression and anaesthesia related aspects and the way forward. With ongoing cutting edge research in technologies like artificial liver devices, tissue bioengineering and hepatocyte 'farms', the future of LT is more exciting than ever before.
Collapse
Affiliation(s)
- K.J. Singh
- Dy Commandant, Army Hospital (R&R), Delhi Cantt, India
| | - Sumesh Kaistha
- Senior Advisor (Surgery) & GI Surgeon, Army Hospital (R&R), Delhi Cantt, India
| | - Rahul Jain
- Senior Advisor (Medicine) & Gastroenterologist, Army Hospital (R&R), Delhi Cantt, India
| | - Saurabh Khurana
- Classified Specialist (Anaesthesia), Army Hospital (R&R), Delhi Cantt, India
| |
Collapse
|
5
|
Abstract
The field of hepatology has made impressive progress over its ~75 years of existence. Advances in understanding liver function and its dysregulation in disease, genetic determinants of disease, antiviral therapy, and transplantation have transformed the lives of patients. However, there are still significant challenges that require ongoing creativity and discipline, particularly with the emergence of fatty liver diseases, as well as managing autoimmune disease, cancer, and liver disease in children. Diagnostic advances are urgently needed to accelerate risk stratification and efficient testing of new agents with greater precision in enriched populations. Integrated, holistic care models should be extended beyond liver cancer to diseases like NAFLD with systemic manifestations or extrahepatic comorbidities such as cardiovascular disease, diabetes, addiction, and depressive disorders. To meet the growing burden of asymptomatic liver disease, the workforce will need to be expanded by incorporating more advanced practice providers and educating other specialists. The training of future hepatologists will benefit from incorporating emerging skills in data management, artificial intelligence, and precision medicine. Continued investment in basic and translational science is crucial for further progress. The challenges ahead are significant, but with collective effort, the field of hepatology will continue to make progress and overcome obstacles.
Collapse
Affiliation(s)
- Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
6
|
Barreto da Silva T, Dias EA, Cardoso LMDF, Gama JFG, Alves LA, Henriques-Pons A. Magnetic Nanostructures and Stem Cells for Regenerative Medicine, Application in Liver Diseases. Int J Mol Sci 2023; 24:ijms24119293. [PMID: 37298243 DOI: 10.3390/ijms24119293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The term "liver disease" refers to any hepatic condition that leads to tissue damage or altered hepatic function and can be induced by virus infections, autoimmunity, inherited genetic mutations, high consumption of alcohol or drugs, fat accumulation, and cancer. Some types of liver diseases are becoming more frequent worldwide. This can be related to increasing rates of obesity in developed countries, diet changes, higher alcohol intake, and even the coronavirus disease 2019 (COVID-19) pandemic was associated with increased liver disease-related deaths. Although the liver can regenerate, in cases of chronic damage or extensive fibrosis, the recovery of tissue mass is impossible, and a liver transplant is indicated. Because of reduced organ availability, it is necessary to search for alternative bioengineered solutions aiming for a cure or increased life expectancy while a transplant is not possible. Therefore, several groups were studying the possibility of stem cells transplantation as a therapeutic alternative since it is a promising strategy in regenerative medicine for treating various diseases. At the same time, nanotechnological advances can contribute to specifically targeting transplanted cells to injured sites using magnetic nanoparticles. In this review, we summarize multiple magnetic nanostructure-based strategies that are promising for treating liver diseases.
Collapse
Affiliation(s)
- Tatiane Barreto da Silva
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil
| | - Evellyn Araújo Dias
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil
| | | | - Jaciara Fernanda Gomes Gama
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil
| | - Luiz Anastácio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil
| | - Andrea Henriques-Pons
- Laboratory of Innovations in Therapies, Education, and Bioproducts, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-361, Brazil
| |
Collapse
|
7
|
Chen L, Wei X, Gu D, Xu Y, Zhou H. Human liver cancer organoids: Biological applications, current challenges, and prospects in hepatoma therapy. Cancer Lett 2023; 555:216048. [PMID: 36603689 DOI: 10.1016/j.canlet.2022.216048] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
Liver cancer and disease are among the most socially challenging global health concerns. Although organ transplantation, surgical resection and anticancer drugs are the main methods for the treatment of liver cancer, there are still no proven cures owing to the lack of donor livers and tumor heterogeneity. Recently, advances in tumor organoid technology have attracted considerable attention as they can simulate the spatial constructs and pathophysiological characteristics of tumorigenesis and metastasis in a more realistic manner. Organoids may further contribute to the development of tailored therapies. Combining organoids with other emerging techniques, such as CRISPR-HOT, organ-on-a-chip, and 3D bioprinting, may further develop organoids and address their bottlenecks to create more practical models that generalize different tissue or organ interactions in tumor progression. In this review, we summarize the various methods in which liver organoids may be generated and describe their biological and clinical applications, present challenges, and prospects for their integration with emerging technologies. These rapidly developing liver organoids may become the focus of in vitro clinical model development and therapeutic research for liver diseases in the near future.
Collapse
Affiliation(s)
- Lichan Chen
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Xiafei Wei
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China.
| | - Dayong Gu
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Yong Xu
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Hongzhong Zhou
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Qiu L, Kong B, Kong T, Wang H. Recent advances in liver-on-chips: Design, fabrication, and applications. SMART MEDICINE 2023; 2:e20220010. [PMID: 39188562 PMCID: PMC11235950 DOI: 10.1002/smmd.20220010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/20/2022] [Indexed: 08/28/2024]
Abstract
The liver is a multifunctional organ and the metabolic center of the human body. Most drugs and toxins are metabolized in the liver, resulting in varying degrees of hepatotoxicity. The damage of liver will seriously affect human health, so it is very important to study the prevention and treatment of liver diseases. At present, there are many research studies in this field. However, most of them are based on animal models, which are limited by the time-consuming processes and species difference between human and animals. In recent years, liver-on-chips have emerged and developed rapidly and are expected to replace animal models. Liver-on-chips refer to the use of a small number of liver cells on the chips to simulate the liver microenvironment and ultrastructure in vivo. They hold extensive applications in multiple fields by reproducing the unique physiological functions of the liver in vitro. In this review, we first introduced the physiology and pathology of liver and then described the cell system of liver-on-chips, the chip-based liver models, and the applications of liver-on-chips in liver transplantation, drug screening, and metabolic evaluation. Finally, we discussed the currently encountered challenges and future trends in liver-on-chips.
Collapse
Affiliation(s)
- Linjie Qiu
- The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
- School of MedicineSun Yat‐Sen UniversityShenzhenChina
| | - Bin Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenChina
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenChina
| | - Huan Wang
- The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| |
Collapse
|
9
|
Constantin A, Comarița IK, Alexandru N, Filippi A, Bojin F, Gherghiceanu M, Vîlcu A, Nemecz M, Niculescu LS, Păunescu V, Georgescu A. Stem cell‐derived extracellular vesicles reduce the expression of molecules involved in cardiac hypertrophy—In a model of human-induced pluripotent stem cell-derived cardiomyocytes. Front Pharmacol 2022; 13:1003684. [PMID: 36299891 PMCID: PMC9589060 DOI: 10.3389/fphar.2022.1003684] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/16/2022] [Indexed: 12/04/2022] Open
Abstract
Cardiac pathological hypertrophy is the major risk factor that usually progresses to heart failure. We hypothesized that extracellular vesicles (EVs), known to act as important mediators in regulating physiological and pathological functions, could have the potential to reduce the cardiac hypertrophy and the ensuing cardiovascular diseases. Herein, the effects of mesenchymal stem cell-derived extracellular vesicles (EV-MSCs) on cardiac hypertrophy were investigated. EVs were isolated from the secretome of human adipose tissue-derived stem cells (EV-ADSCs) or bone marrow-derived stem cells (EV-BMMSCs). Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were stimulated with AngII and TGF-β1, in absence or presence of EVs. The results showed that exposure of hiPSC-CMs to AngII and TGF-β1 generated in vitro model of hypertrophic cardiomyocytes characterized by increases in surface area, reactive oxygen species production, protein expression of cardiac-specific biomarkers atrial natriuretic factor, migration inhibitory factor, cTnI, COL1A1, Cx43, α-SMA and signalling molecules SMAD2 and NF-kBp50. The presence of EV-ADSCs or EV-BMMSCs in the hiPSC-CM culture along with hypertrophic stimuli reduced the protein expressions of hypertrophic specific markers (ANF, MIF, cTnI, COL1A1) and the gene expressions of IL-6 molecule involved in inflammatory process associated with cardiac hypertrophy and transcription factors SMAD2, SMAD3, cJUN, cFOS with role in cardiomyocyte hypertrophic response induced by AngII and TGF-β1. The EV-ADSCs were more effective in reducing the protein expressions of hypertrophic and inflammatory markers, while EV-BMMSCs in reducing the gene expressions of transcription factors. Notably, neither EV-ADSCs nor EV-BMMSCs induced significant changes in cardiac biomarkers Cx43, α-SMA and fibronectin. These different effects of stem cell-derived EVs could be attributed to their miRNA content: some miRNAs (miR-126-3p, miR-222-3p, miR-30e-5p, miR-181b-5p, miR-124-3p, miR-155-5p, miR-210-3p hsa-miR-221-3p) were expressed in both types of EVs and others only in EV-ADSCs (miR-181a-5p, miR-185-5p, miR-21-5p) or in EV-BMMSCs (miR-143-3p, miR-146a-5p, miR-93-5p), some of these attenuating the cardiac hypertrophy while others enhance it. In conclusion, in hiPSC-CMs the stem cell-derived EVs through their cargo reduced the expression of hypertrophic specific markers and molecules involved in inflammatory process associated with cardiac hypertrophy. The data suggest the EV potential to act as therapeutic mediators to reduce cardiac hypertrophy and possibly the subsequent cardiovascular events.
Collapse
Affiliation(s)
- Alina Constantin
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Ioana Karla Comarița
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Nicoleta Alexandru
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Alexandru Filippi
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
| | - Florina Bojin
- Immuno-Physiology and Biotechnology Center (CIFBIOTECH), Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, Timisoara, Romania
| | - Mihaela Gherghiceanu
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- “Victor Babeș” National Institute of Pathology, Bucharest, Romania
| | - Alexandra Vîlcu
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Miruna Nemecz
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Loredan Stefan Niculescu
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Virgil Păunescu
- Immuno-Physiology and Biotechnology Center (CIFBIOTECH), Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, Timisoara, Romania
| | - Adriana Georgescu
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
- *Correspondence: Adriana Georgescu,
| |
Collapse
|
10
|
Liu J, Yuan Z, Wang Q. Pluripotent Stem Cell-derived Strategies to Treat Acute Liver Failure: Current Status and Future Directions. J Clin Transl Hepatol 2022; 10:692-699. [PMID: 36062278 PMCID: PMC9396313 DOI: 10.14218/jcth.2021.00353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/17/2022] [Accepted: 02/12/2022] [Indexed: 12/04/2022] Open
Abstract
Liver disease has long been a heavy health and economic burden worldwide. Once the disease is out of control and progresses to end-stage or acute organ failure, orthotopic liver transplantation (OLT) is the only therapeutic alternative, and it requires appropriate donors and aggressive administration of immunosuppressive drugs. Therefore, hepatocyte transplantation (HT) and bioartificial livers (BALs) have been proposed as effective treatments for acute liver failure (ALF) in clinics. Although human primary hepatocytes (PHs) are an ideal cell source to support these methods, the large demand and superior viability of PH is needed, which restrains its wide usage. Thus, a finding alternative to meet the quantity and quality of hepatocytes is urgent. In this context, human pluripotent stem cells (PSC), which have unlimited proliferative and differential potential, derived hepatocytes are a promising renewable cell source. Recent studies of the differentiation of PSC into hepatocytes has provided evidence that supports their clinical application. In this review, we discuss the recent status and future directions of the potential use of PSC-derived hepatocytes in treating ALF. We also discuss opportunities and challenges of how to promote such strategies in the common applications in clinical treatments.
Collapse
Affiliation(s)
- Jingfeng Liu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zhiming Yuan
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Qingwen Wang
- Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Tomofuji K, Fukumitsu K, Kondo J, Horie H, Makino K, Wakama S, Ito T, Oshima Y, Ogiso S, Ishii T, Inoue M, Hatano E. Liver ductal organoids reconstruct intrahepatic biliary trees in decellularized liver grafts. Biomaterials 2022; 287:121614. [PMID: 35688027 DOI: 10.1016/j.biomaterials.2022.121614] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/14/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022]
Abstract
Three-dimensional scaffolds decellularized from native organs are a promising technique to establish engineered liver grafts and overcome the current shortage of donor organs. However, limited sources of bile duct cells and inappropriate cell distribution in bioengineered liver grafts have hindered their practical application. Organoid technology is anticipated to be an excellent tool for the advancement of regenerative medicine. In the present study, we reconstructed intrahepatic bile ducts in a rat decellularized liver graft by recellularization with liver ductal organoids. Using an ex vivo perfusion culture system, we demonstrated the biliary characteristics of repopulated mouse liver organoids, which maintained bile duct markers and reconstructed biliary tree-like networks with luminal structures. We also established a method for the co-recellularization with engineered bile ducts and primary hepatocytes, revealing the appropriate cell distribution to mimic the native liver. We then utilized this model in human organoids to demonstrate the reconstructed bile ducts. Our results show that liver ductal organoids are a potential cell source for bile ducts from bioengineered liver grafts using three-dimensional scaffolds.
Collapse
Affiliation(s)
- Katsuhiro Tomofuji
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, 46-29, Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ken Fukumitsu
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Jumpei Kondo
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, 46-29, Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Hiroshi Horie
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, 46-29, Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kenta Makino
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Satoshi Wakama
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takashi Ito
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yu Oshima
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Satoshi Ogiso
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takamichi Ishii
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masahiro Inoue
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, 46-29, Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
12
|
Tamai M, Adachi E, Kawase M, Tagawa YI. Syngeneic implantation of mouse hepatic progenitor cell-derived three-dimensional liver tissue with dense collagen fibrils. World J Gastroenterol 2022; 28:1444-1454. [PMID: 35582675 PMCID: PMC9048472 DOI: 10.3748/wjg.v28.i14.1444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/10/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver transplantation is a therapy for irreversible liver failure; however, at present, donor organs are in short supply. Cell transplantation therapy for liver failure is still at the developmental stage and is critically limited by a shortage of human primary hepatocytes.
AIM To investigate the possibility that hepatic progenitor cells (HPCs) prepared from the portal branch-ligated hepatic lobe may be used in regenerative medicine, we attempted to enable the implantation of extracellular matrices containing organoids consisting of HPC-derived hepatocytes and non-parenchymal cells.
METHODS In vitro liver organoid tissue has been generated by accumulating collagen fibrils, fibroblasts, and HPCs on a mesh of polylactic acid fabric using a bioreactor; this was subsequently implanted into syngeneic wild-type mice.
RESULTS The in vitro liver organoid tissues generated transplantable tissues in the condensed collagen fibril matrix and were obtained from the mouse through partial hepatectomy.
CONCLUSION Liver organoid tissue was produced from expanded HPCs using an originally designed bioreactor system. This tissue was comparable to liver lobules, and with fibroblasts embedded in the network collagen fibrils of this artificial tissue, it is useful for reconstructing the hepatic interstitial structure.
Collapse
Affiliation(s)
- Miho Tamai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama-shi 226-8501, Japan
- Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Eijiro Adachi
- Department of Molecular Morphology, Kitasato University, Yokohama-shi 319-3526, Japan
- Long-Term Care Health Facility Yasuragi, Ibaraki Zip or Postal Code, Japan
| | - Masaya Kawase
- Nagahama Institute of Bio-Science and Technology, Shiga 526-0829, Japan
| | - Yoh-ichi Tagawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama-shi 226-8501, Japan
| |
Collapse
|
13
|
Wang J, Huang D, Yu H, Cheng Y, Ren H, Zhao Y. Developing tissue engineering strategies for liver regeneration. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
14
|
Ectopic expansion and vascularization of engineered hepatic tissue based on heparinized acellular liver matrix and mesenchymal stromal cell spheroids. Acta Biomater 2022; 137:79-91. [PMID: 34678485 DOI: 10.1016/j.actbio.2021.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 02/05/2023]
Abstract
Engineered liver organogenesis is not yet a viable therapeutic option, but ectopic liver histogenesis may be possible. Accumulating evidence has suggested that cell-cell interactions and cell-matrix interactions play an important role in determining the properties of engineered hepatic tissue in vitro and in vivo. In the current study, we utilized heparinized decellularized liver scaffolds and bone marrow mesenchymal stromal cell spheroids to fabricate engineered hepatic tissue, which was subsequently implanted into the omentum of Sprague-Dawley rats with or without liver injury. The survival, liver-specific functions, differentiation level and regenerative potential of the implanted hepatocyte-like cells in this ectopic liver system were evaluated, together with the vascularization status and therapeutic potential of the engineered hepatic tissue. We demonstrated that these hepatic grafts could survive and possess hepatocyte specific function in this ectopic liver system but could also efficiently anastomose with host vascular networks. Furthermore, we found that hepatocyte-like cells within grafts expanded more than 9-fold over the course of 4 weeks in immunocompetent rats with injured livers. Immunostaining revealed that these hepatocyte-like cells could self-organize into cord-like structures in vivo. In addition, these hepatic grafts exhibited therapeutic potential in liver injury induced by CCl4. To our knowledge, this is the first report demonstrating the generation of long-term vascularized hepatic parenchyma at ectopic sites based on decellularized liver scaffolds and stem cells. These results provide an economic and feasible method for engineering hepatic tissue from construction to transplantation. This methodology may be applicable in clinical medicine, especially metabolic liver diseases. STATEMENT OF SIGNIFICANCE: In this manuscript, we presented an optimized method for the hepatic engineered tissue (HET) from construction to transplantation. The core of this method is utilizing the combination of heparinized decellularized liver scaffolds and stem cell spheroids, which could provide necessary cell-cell and cell-extracellular matrix interactions for HET in vitro and in vivo. We proved that these hepatic grafts could possess hepatocyte specific function and exhibit strong proliferative activity in ectopic liver system, but also able to anastomose with the host vascular networks efficiently and be compatible with the host immune system. This methodology may be possible one day to apply in clinical medicine, especially metabolic liver diseases.
Collapse
|
15
|
Morita A, Yamada M, Utoh R, Momiyama K, Iwadate H, Seki M. Formation of 3D tissues of primary hepatocytes using fibrillized collagen microparticles as intercellular binders. J Biosci Bioeng 2021; 133:265-272. [PMID: 34903469 DOI: 10.1016/j.jbiosc.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 01/03/2023]
Abstract
Numerous attempts have been made to organize isolated primary hepatocytes into functional three-dimensional (3D) constructs, but technologies to introduce extracellular matrix (ECM) components into such assemblies have not been fully developed. Here we report a new approach to forming hepatocyte-based 3D tissues using fibrillized collagen microparticles (F-CMPs) as intercellular binders. We created thick tissues with a thickness of ∼200 μm simply by mixing F-CMPs with isolated primary rat hepatocytes and culturing them in cell culture inserts. Owing to the incorporated F-CMPs, the circular morphology of the formed tissues was stabilized, which was strong enough to be manually manipulated and retrieved from the chamber of the insert. We confirmed that the F-CMPs dramatically improved the cell viability and hepatocyte-specific functions such as albumin production and urea synthesis in the formed tissues. The presented approach provides a versatile strategy for hepatocyte-based tissue engineering, and will have a significant impact on biomedical applications and pharmaceutical research.
Collapse
Affiliation(s)
- Akihiro Morita
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masumi Yamada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Rie Utoh
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Kanta Momiyama
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Hideki Iwadate
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Minoru Seki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
16
|
Wang J, Ren H, Liu Y, Sun L, Zhang Z, Zhao Y, Shi X. Bioinspired Artificial Liver System with hiPSC-Derived Hepatocytes for Acute Liver Failure Treatment. Adv Healthc Mater 2021; 10:e2101580. [PMID: 34599859 DOI: 10.1002/adhm.202101580] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/17/2021] [Indexed: 12/21/2022]
Abstract
Bioartificial liver (BAL) system has become a promising alternative to traditional liver transplantation in rescuing acute liver failure (ALF) patients. Herein, inspired by natural microstructure of hepatic lobules, a novel biomimetic bioartificial liver system (BBALS) is developed by integrating human induced pluripotent stem cell-derived hepatocytes (hiPSC-Heps) -laden microparticles and semipermeable microtubes into a microfluidic platform. As the working units are hepatic lobules-like semipermeable microtubes surrounding with serum-free suspension differentiated hiPSC-Heps microcarriers, the BBALS is endowed with functional cell aggregates and effective circulation system. Thus, the BBALS possesses high cell viability, favorable function regeneration, and effective substances exchange. Based on these features, a 3D liver chip with multiple parallel BBALS units is created for filtering the plasma of ALF rabbits, which validates the research significance and application potential of the proposed BBALS. Moreover, the novel integrated BBALS is applied to treat ALF rabbits and shows great advantages in increasing survival, generating serum proteins, and decreasing inflammation. These properties point to the broad prospects of BBALS in treating related diseases and improving traditional clinical methods.
Collapse
Affiliation(s)
- Jinglin Wang
- Department of Hepatobiliary Surgery the Affiliated Drum Tower Hospital of Nanjing University Medical School Hepatobiliary Institute of Nanjing University Nanjing 210008 China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery the Affiliated Drum Tower Hospital of Nanjing University Medical School Hepatobiliary Institute of Nanjing University Nanjing 210008 China
| | - Yuxiao Liu
- Department of Hepatobiliary Surgery the Affiliated Drum Tower Hospital of Nanjing University Medical School Hepatobiliary Institute of Nanjing University Nanjing 210008 China
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Lingyu Sun
- Department of Hepatobiliary Surgery the Affiliated Drum Tower Hospital of Nanjing University Medical School Hepatobiliary Institute of Nanjing University Nanjing 210008 China
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Zhuohao Zhang
- Department of Hepatobiliary Surgery the Affiliated Drum Tower Hospital of Nanjing University Medical School Hepatobiliary Institute of Nanjing University Nanjing 210008 China
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Yuanjin Zhao
- Department of Hepatobiliary Surgery the Affiliated Drum Tower Hospital of Nanjing University Medical School Hepatobiliary Institute of Nanjing University Nanjing 210008 China
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery the Affiliated Drum Tower Hospital of Nanjing University Medical School Hepatobiliary Institute of Nanjing University Nanjing 210008 China
| |
Collapse
|
17
|
Bass NM. A Brief History of Hepatic Encephalopathy. Clin Liver Dis (Hoboken) 2021; 18:49-62. [PMID: 34745583 PMCID: PMC8555462 DOI: 10.1002/cld.1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/04/2023] Open
Abstract
Content available: Author Audio Recording.
Collapse
Affiliation(s)
- Nathan M. Bass
- Department of MedicineUniversity of California, San FranciscoSan FranciscoCA
| |
Collapse
|
18
|
Parsons RF, Baquerizo A, Kirchner VA, Malek S, Desai CS, Schenk A, Finger EB, Brennan TV, Parekh KR, MacConmara M, Brayman K, Fair J, Wertheim JA. Challenges, highlights, and opportunities in cellular transplantation: A white paper of the current landscape. Am J Transplant 2021; 21:3225-3238. [PMID: 34212485 DOI: 10.1111/ajt.16740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023]
Abstract
Although cellular transplantation remains a relatively small field compared to solid organ transplantation, the prospects for advancement in basic science and clinical care remain bountiful. In this review, notable historical events and the current landscape of the field of cellular transplantation are reviewed with an emphasis on islets (allo- and xeno-), hepatocytes (including bioartificial liver), adoptive regulatory immunotherapy, and stem cells (SCs, specifically endogenous organ-specific and mesenchymal). Also, the nascent but rapidly evolving field of three-dimensional bioprinting is highlighted, including its major processing steps and latest achievements. To reach its full potential where cellular transplants are a more viable alternative than solid organ transplants, fundamental change in how the field is regulated and advanced is needed. Greater public and private investment in the development of cellular transplantation is required. Furthermore, consistent with the call of multiple national transplant societies for allo-islet transplants, the oversight of cellular transplants should mirror that of solid organ transplants and not be classified under the unsustainable, outdated model that requires licensing as a drug with the Food and Drug Administration. Cellular transplantation has the potential to bring profound benefit through progress in bioengineering and regenerative medicine, limiting immunosuppression-related toxicity, and providing markedly reduced surgical morbidity.
Collapse
Affiliation(s)
- Ronald F Parsons
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia
| | - Angeles Baquerizo
- Scripps Center for Cell and Organ Transplantation, La Jolla, California
| | - Varvara A Kirchner
- Division of Transplantation, Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Sayeed Malek
- Division of Transplant Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Chirag S Desai
- Division of Transplantation, Department of Surgery, University of North Carolina, Chapel Hill, North Carolina
| | - Austin Schenk
- Division of Transplantation, Department of Surgery, Ohio State University, Columbus, Ohio
| | - Erik B Finger
- Division of Transplantation, Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Todd V Brennan
- Department of Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kalpaj R Parekh
- Division of Cardiothoracic Surgery, Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Malcolm MacConmara
- Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kenneth Brayman
- Division of Transplantation, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Jeffrey Fair
- Division of Transplant Surgery, Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Jason A Wertheim
- Departments of Surgery and Biomedical Engineering, University of Arizona Health Sciences, Tucson, Arizona
| | | |
Collapse
|
19
|
Zhu X, Zhang B, He Y, Bao J. Liver Organoids: Formation Strategies and Biomedical Applications. Tissue Eng Regen Med 2021; 18:573-585. [PMID: 34132985 DOI: 10.1007/s13770-021-00357-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 02/05/2023] Open
Abstract
The liver is the most important digestive organ in the body. Several studies have explored liver biology and diseases related to the liver. However, most of these studies have only explored liver development, mechanism of liver regeneration and pathophysiology of liver diseases mainly based on two-dimensional (2D) cell lines and animal models. Traditional 2D cell lines do not represent the complex three-dimensional tissue architecture whereas animal models are limited by inter-species differences. These shortcomings limit understanding of liver biology and diseases. Liver organoid technology is effective in elucidating structural and physiological characteristics and basic tissue-level functions of liver tissue. In this review, formation strategies and a wide range of applications in biomedicine of liver organoid are summarized. Liver organoids are derived from single type cell culture, such as induced pluripotent stem cells (iPSCs), adult stem cells, primary hepatocytes, and primary cholangiocytes and multi-type cells co-culture, such as iPSC-derived hepatic endoderm cells co-cultured with mesenchymal stem cells and umbilical cord-derived endothelial cells. In vitro studies report that liver organoids are a promising model for regenerative medicine, organogenesis, liver regeneration, disease modelling, drug screening and personalized treatment. Liver organoids are a promising in vitro model for basic research and for development of clinical therapeutic interventions for hepatopathy.
Collapse
Affiliation(s)
- Xinglong Zhu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Bingqi Zhang
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Yuting He
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Ji Bao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
20
|
Harrison SP, Baumgarten SF, Verma R, Lunov O, Dejneka A, Sullivan GJ. Liver Organoids: Recent Developments, Limitations and Potential. Front Med (Lausanne) 2021; 8:574047. [PMID: 34026769 PMCID: PMC8131532 DOI: 10.3389/fmed.2021.574047] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Liver cell types derived from induced pluripotent stem cells (iPSCs) share the potential to investigate development, toxicity, as well as genetic and infectious disease in ways currently limited by the availability of primary tissue. With the added advantage of patient specificity, which can play a role in all of these areas. Many iPSC differentiation protocols focus on 3 dimensional (3D) or organotypic differentiation, as these offer the advantage of more closely mimicking in vivo systems including; the formation of tissue like architecture and interactions/crosstalk between different cell types. Ultimately such models have the potential to be used clinically and either with or more aptly, in place of animal models. Along with the development of organotypic and micro-tissue models, there will be a need to co-develop imaging technologies to enable their visualization. A variety of liver models termed "organoids" have been reported in the literature ranging from simple spheres or cysts of a single cell type, usually hepatocytes, to those containing multiple cell types combined during the differentiation process such as hepatic stellate cells, endothelial cells, and mesenchymal cells, often leading to an improved hepatic phenotype. These allow specific functions or readouts to be examined such as drug metabolism, protein secretion or an improved phenotype, but because of their relative simplicity they lack the flexibility and general applicability of ex vivo tissue culture. In the liver field these are more often constructed rather than developed together organotypically as seen in other organoid models such as brain, kidney, lung and intestine. Having access to organotypic liver like surrogates containing multiple cell types with in vivo like interactions/architecture, would provide vastly improved models for disease, toxicity and drug development, combining disciplines such as microfluidic chip technology with organoids and ultimately paving the way to new therapies.
Collapse
Affiliation(s)
- Sean Philip Harrison
- Hybrid Technology Hub–Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Saphira Felicitas Baumgarten
- Hybrid Technology Hub–Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Rajneesh Verma
- Hybrid Technology Hub–Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, Prague, Czechia
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, Prague, Czechia
| | - Gareth John Sullivan
- Hybrid Technology Hub–Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Norwegian Center for Stem Cell Research, Oslo University Hospital, University of Oslo, Oslo, Norway
- Institute of Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
21
|
Portillo Esquivel LE, Zhang B. Application of Cell, Tissue, and Biomaterial Delivery in Cardiac Regenerative Therapy. ACS Biomater Sci Eng 2021; 7:1000-1021. [PMID: 33591735 DOI: 10.1021/acsbiomaterials.0c01805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death around the world, being responsible for 31.8% of all deaths in 2017 (Roth, G. A. et al. The Lancet 2018, 392, 1736-1788). The leading cause of CVD is ischemic heart disease (IHD), which caused 8.1 million deaths in 2013 (Benjamin, E. J. et al. Circulation 2017, 135, e146-e603). IHD occurs when coronary arteries in the heart are narrowed or blocked, preventing the flow of oxygen and blood into the cardiac muscle, which could provoke acute myocardial infarction (AMI) and ultimately lead to heart failure and death. Cardiac regenerative therapy aims to repair and refunctionalize damaged heart tissue through the application of (1) intramyocardial cell delivery, (2) epicardial cardiac patch, and (3) acellular biomaterials. In this review, we aim to examine these current approaches and challenges in the cardiac regenerative therapy field.
Collapse
Affiliation(s)
| | - Boyang Zhang
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada.,School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontaria L8S 4L8, Canada
| |
Collapse
|
22
|
Vyhmeister R, Enestvedt CK. The Changing Liver Transplant Recipient: From Hepatitis C to Nonalcoholic Steatohepatitis and Alcohol. Clin Liver Dis 2021; 25:137-155. [PMID: 33978575 DOI: 10.1016/j.cld.2020.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatitis C virus has historically been the leading indication for liver transplant, followed by nonalcoholic steatohepatitis (NASH) and alcoholic liver disease. Severe alcoholic hepatitis has become a growing indication for liver transplant, and overall alcohol use rates continue to increase in the United States. Rates of obesity and NASH in the United States continue to increase and are expected to place increasing demand on liver transplant infrastructure. In the current absence of robust pharmacologic therapy for NASH, the use of bariatric procedures and surgeries is being explored, as are other innovative approaches to curtail this upward trend.
Collapse
Affiliation(s)
- Ross Vyhmeister
- Department of Medicine, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - C Kristian Enestvedt
- Division of Abdominal Organ Transplantation and HPB Surgery, School of Medicine, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
23
|
Zhang J, Chan HF, Wang H, Shao D, Tao Y, Li M. Stem cell therapy and tissue engineering strategies using cell aggregates and decellularized scaffolds for the rescue of liver failure. J Tissue Eng 2021; 12:2041731420986711. [PMID: 35003615 PMCID: PMC8733710 DOI: 10.1177/2041731420986711] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Liver failure is a lethal condition with hepatocellular dysfunction, and liver transplantation is presently the only effective treatment. However, due to the limited availability of donors and the potential immune rejection, novel therapeutic strategies are actively sought to restore the normal hepatic architectures and functions, especially for livers with inherited metabolic dysfunctions or chronic diseases. Although the conventional cell therapy has shown promising results, the direct infusion of hepatocytes is hampered by limited hepatocyte sources, poor cell viability, and engraftment. Hence, this review mainly highlights the role of stem cells and progenitors as the alternative cell source and summarizes the potential approaches based on tissue engineering to improve the delivery efficiency of cells. Particularly, the underlying mechanisms for cell therapy using stem cells and progenitors are discussed in two main aspects: paracrine effect and cell differentiation. Moreover, tissue-engineering approaches using cell aggregates and decellularized liver scaffolds for bioengineering of functional hepatic constructs are discussed and compared in terms of the potential to replicate liver physiological structures. In the end, a potentially effective strategy combining the premium advantages of stem cell aggregates and decellularized liver scaffolds is proposed as the future direction of liver tissue engineering and regeneration.
Collapse
Affiliation(s)
- Jiabin Zhang
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan Shao
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, China
| |
Collapse
|
24
|
Huang D, Gibeley SB, Xu C, Xiao Y, Celik O, Ginsberg HN, Leong KW. Engineering liver microtissues for disease modeling and regenerative medicine. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909553. [PMID: 33390875 PMCID: PMC7774671 DOI: 10.1002/adfm.201909553] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Indexed: 05/08/2023]
Abstract
The burden of liver diseases is increasing worldwide, accounting for two million deaths annually. In the past decade, tremendous progress has been made in the basic and translational research of liver tissue engineering. Liver microtissues are small, three-dimensional hepatocyte cultures that recapitulate liver physiology and have been used in biomedical research and regenerative medicine. This review summarizes recent advances, challenges, and future directions in liver microtissue research. Cellular engineering approaches are used to sustain primary hepatocytes or produce hepatocytes derived from pluripotent stem cells and other adult tissues. Three-dimensional microtissues are generated by scaffold-free assembly or scaffold-assisted methods such as macroencapsulation, droplet microfluidics, and bioprinting. Optimization of the hepatic microenvironment entails incorporating the appropriate cell composition for enhanced cell-cell interactions and niche-specific signals, and creating scaffolds with desired chemical, mechanical and physical properties. Perfusion-based culture systems such as bioreactors and microfluidic systems are used to achieve efficient exchange of nutrients and soluble factors. Taken together, systematic optimization of liver microtissues is a multidisciplinary effort focused on creating liver cultures and on-chip models with greater structural complexity and physiological relevance for use in liver disease research, therapeutic development, and regenerative medicine.
Collapse
Affiliation(s)
- Dantong Huang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Sarah B. Gibeley
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cong Xu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Ozgenur Celik
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Henry N. Ginsberg
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
25
|
Stem Cells and Hydrogels for Liver Tissue Engineering: Synergistic Cure for Liver Regeneration. Stem Cell Rev Rep 2020; 16:1092-1104. [DOI: 10.1007/s12015-020-10060-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
|
26
|
Research Highlights. Transplantation 2020. [DOI: 10.1097/tp.0000000000003422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Papatheodoridi M, Mazza G, Pinzani M. Regenerative hepatology: In the quest for a modern prometheus? Dig Liver Dis 2020; 52:1106-1114. [PMID: 32868215 DOI: 10.1016/j.dld.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
Abstract
As liver-related morbidity and mortality is rising worldwide and orthotopic liver transplantation (OLT) remains the only standard-of-care for end-stage liver disease or acute liver failure, shortage of donor organs is becoming more prominent. Importantly, advances in regenerative Hepatology and liver bioengineering are bringing new hope to the possibility of restoring impaired hepatic functionality in the presence of acute or chronic liver failure. Hepatocyte transplantation and artificial liver-support systems were the first strategies used in regenerative hepatology but have presented various types of efficiency limitations restricting their widespread use. In parallel, liver bioengineering has been a rapidly developing field bringing continuously novel advancements in biomaterials, three dimensional (3D) scaffolds, cell sources and relative methodologies for creating bioengineered liver tissue. The current major task in liver bioengineering is to build small implantable liver mass for treating inherited metabolic disorders, bioengineered bile ducts for congenital biliary defects and large bioengineered liver organs for transplantation, as substitutes to donor-organs, in cases of acute or acute-on-chronic liver failure. This review aims to summarize the state-of-the-art and upcoming technologies of regenerative Hepatology that are emerging as promising alternatives to the current standard-of care in liver disease.
Collapse
Affiliation(s)
- Margarita Papatheodoridi
- Sheila Sherlock Liver Unit, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Giuseppe Mazza
- Sheila Sherlock Liver Unit, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Massimo Pinzani
- Sheila Sherlock Liver Unit, Institute for Liver and Digestive Health, University College London, London, United Kingdom.
| |
Collapse
|
28
|
Søreide JA, Deshpande R. Post hepatectomy liver failure (PHLF) - Recent advances in prevention and clinical management. Eur J Surg Oncol 2020; 47:216-224. [PMID: 32943278 DOI: 10.1016/j.ejso.2020.09.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Posthepatectomy liver failure (PHLF) is a relatively rare but feared complication following liver surgery, and associated with high morbidity, mortality and cost implications. Significant advances have been made in detailed preoperative assessment, particularly of the liver function in an attempt to predict and mitigate this complication. METHODS A detailed search of PubMed and Medline was performed using keywords "liver failure", "liver insufficiency", "liver resection", "postoperative", and "post-hepatectomy". Only full texts published in English were considered. Particular emphasis was placed on literature published after 2015. A formal systematic review was not found feasible hence a pragmatic review was performed. RESULTS The reported incidence of PHLF varies widely in reported literature due to a historical absence of a universal definition. Incorporation of the now accepted definition and grading of PHLF would suggest the incidence to be between 8 and 12%. Major risk factors include background liver disease, extent of resection and intraoperative course. The vast majority of mortality associated with PHLF is related to sepsis, organ failure and cerebral events. Despite multiple attempts, there has been little progress in the definitive and specific management of liver failure. This review article discusses recent advances made in detailed preoperative evaluation of liver function and evidence-based targeted approach to managing PHLF. CONCLUSION PHLF remains a major cause of mortality following liver resection. In absence of a specific remedy, the best approach is mitigating the risk of it happening by detailed assessment of liver function, patient selection and general care of a critically ill patient.
Collapse
Affiliation(s)
- Jon Arne Søreide
- Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | - Rahul Deshpande
- Department of HPB Surgery, Manchester Royal Infirmary, Manchester, UK
| |
Collapse
|
29
|
Kastania G, Campbell J, Mitford J, Volodkin D. Polyelectrolyte Multilayer Capsule (PEMC)-Based Scaffolds for Tissue Engineering. MICROMACHINES 2020; 11:E797. [PMID: 32842692 PMCID: PMC7570195 DOI: 10.3390/mi11090797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022]
Abstract
Tissue engineering (TE) is a highly multidisciplinary field that focuses on novel regenerative treatments and seeks to tackle problems relating to tissue growth both in vitro and in vivo. These issues currently involve the replacement and regeneration of defective tissues, as well as drug testing and other related bioapplications. The key approach in TE is to employ artificial structures (scaffolds) to support tissue development; these constructs should be capable of hosting, protecting and releasing bioactives that guide cellular behaviour. A straightforward approach to integrating bioactives into the scaffolds is discussed utilising polyelectrolyte multilayer capsules (PEMCs). Herein, this review illustrates the recent progress in the use of CaCO3 vaterite-templated PEMCs for the fabrication of functional scaffolds for TE applications, including bone TE as one of the main targets of PEMCs. Approaches for PEMC integration into scaffolds is addressed, taking into account the formulation, advantages, and disadvantages of such PEMCs, together with future perspectives of such architectures.
Collapse
Affiliation(s)
| | | | | | - Dmitry Volodkin
- School of Science and Technology, Department of Chemistry and Forensics, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK; (G.K.); (J.C.); (J.M.)
| |
Collapse
|
30
|
Yasen A, Li W, Maimaitinijiati Y, Aini A, Ran B, Wang H, Tuxun T, Shao Y, Aji T, Wen H. Direct effects of transforming growth factor-β1 signaling on the differentiation fate of fetal hepatic progenitor cells. Regen Med 2020; 15:1719-1733. [PMID: 32772793 DOI: 10.2217/rme-2020-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate direct roles of TGF-β1 signaling in the differentiation process of fetal hepatic progenitor cells (HPCs). Materials & methods: Exogenous TGF-β1 and SB431542 were added into fetal HPCs. Then, SB431542 was intraperitoneally injected into pregnant mice for 8 days. Results: Fetal HPCs treated with TGF-β1 differentiated into cholangiocytes. However, hepatocyte marker was highly expressed after inhibiting TGF-β1 signaling. In vivo, hematopoietic cells were gradually replaced with liver cells and TGF-β1 expression was evidently decreased as fetal liver developed. Inhibition of TGF-β1 signaling caused increase of ALB+ cells, but CK19 expression was more obvious in control mice livers. Conclusion: TGF-β1 signaling may play decisive roles in fetal HPCs differentiation into functional hepatocytes or cholangiocytes.
Collapse
Affiliation(s)
- Aimaiti Yasen
- Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830011, PR China.,Department of Hepatobiliary & Hydatid Disease, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Wending Li
- Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830011, PR China
| | | | - Abudusalamu Aini
- Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830011, PR China
| | - Bo Ran
- Department of Hepatobiliary & Hydatid Disease, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Hui Wang
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Tuerhongjiang Tuxun
- Department of Liver & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Yingmei Shao
- Department of Hepatobiliary & Hydatid Disease, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Tuerganaili Aji
- Department of Hepatobiliary & Hydatid Disease, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Hao Wen
- Department of Hepatobiliary & Hydatid Disease, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China.,State Key Laboratory of Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, 393 Xin Yi Road, Urumqi 830011, PR China
| |
Collapse
|
31
|
Dossymbekova R, Bgatova N, Tungushbayeva Z, Sharipov K, Taneyeva G, Kydyrbaeva A, Solovieva A. Effect of lithium carbonate on autophagy and proliferative activity of isolated hepatocytes. Biochem Biophys Res Commun 2020; 528:343-346. [PMID: 32209260 DOI: 10.1016/j.bbrc.2020.03.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 12/09/2022]
Abstract
The hepatocytes were cultivated in the presence of lithium carbonate (LC) for drugs testing or possible source for transplantation in the treatment of hereditary or terminal liver diseases. The LC, as an inducer of autophagy, is a promising drug for maintaining cell homeostasis and has a significant effect on the ultrastructural organization of hepatocyte cells. Within current investigation, new mechanisms of the biological effects of lithium and the ultrastructural analysis of the primary culture of hepatocytes were studied via flow cytofluorometry, light, and electron microscopy methods. Obtained results demonstrate the absence of the toxic effect of 5 mM of LC on the primary hepatocyte culture. In addition, LC does not block the cell cycle at the G0/G1 stage after 24 h of hepatocyte cultivation and promotes the preservation of their viability by 48 h of the experiment. Moreover, LC does not stimulate hepatocyte apoptosis, induces autophagy and the preserves the proliferative activity of hepatocytes.
Collapse
Affiliation(s)
- Raushan Dossymbekova
- Department of Biology, Institute of Natural Sciences and Geography, Abai Kazakh National Pedagogical University, Abai Kazakh National Pedagogical University, Kazakhstan.
| | - Nataliya Bgatova
- Research Institute of Clinical and Experimental Lymphology-Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Siberian Branch of Russian Academy of Sciences, Russia
| | - Zina Tungushbayeva
- Department of Biology, Institute of Natural Sciences and Geography, Abai Kazakh National Pedagogical University, Abai Kazakh National Pedagogical University, Kazakhstan
| | - Kamalidin Sharipov
- Department of Biological Chemistry, Kazakh National Medical University named after S.D. Asfendiyarov, S.D. Asfendiyarov Kazakh National Medical University, Kazakhstan
| | - Gulzhan Taneyeva
- Department of Molecular Biology and Medical Genetics, Kazakh National Medical University named after S.D. Asfendiyarov, S.D. Asfendiyarov Kazakh National Medical University, Kazakhstan
| | - Asem Kydyrbaeva
- Department of Molecular Biology and Medical Genetics, Kazakh National Medical University named after S.D. Asfendiyarov, S.D. Asfendiyarov Kazakh National Medical University, Kazakhstan
| | - Anastasiya Solovieva
- Laboratory of Pharmacological Active Compounds Research Institute of Clinical and Experimental Lymphology, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Siberian Branch of Russian Academy of Sciences, Russia
| |
Collapse
|
32
|
Meng D, Lei X, Li Y, Kong Y, Huang D, Zhang G. Three dimensional polyvinyl alcohol scaffolds modified with collagen for HepG2 cell culture. J Biomater Appl 2020; 35:459-470. [DOI: 10.1177/0885328220933505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The creation of in vitro functional hepatic tissue simulating micro environmental niche of the native liver is a keen area of research due to its demand in bioartificial liver. However, it is still unclear how to maintain benign cell function while achieving the sufficient cell quantity. In this work, we aim to prepare a novel scaffold for the culture of HepG2 cells, a liver cell line, by modifying polyvinyl alcohol (PVA) scaffold with collagen (COL). PVA is a kind of synthetic biostable polymer with high hydrophilicity in the human body, has been widely used in the biomedical field. However, the use of PVA is limited in cell cultures due to lack of biologically active functional groups. In this study, amino silane (KH-550), glutaraldehyde and native type I collagen were used to modify three-dimensional PVA scaffold to establish a suitable composite scaffold for hepatocyte culture. Three types of composite scaffolds were prepared for different collagen content, named as PVA/COL (0.2%), PVA/COL (0.5%) and PVA/COL (0.8%), respectively. The composite scaffolds were characterized by SEM, XPS, FTIR, MS, porosity estimation and water contact angle measurement. The PVA/COL (0.8%) scaffolds had the highest collagen content of 12.13%. The composite scaffold showed high porosity with interconnected pores. Furthermore, the biocompatibility between HepG2 cells and scaffolds was evaluated by the ability of cell proliferation, albumin secretion, as well as urea synthesis. The coating of collagen on PVA scaffolds promoted hydrophilicity and HepG2 cell adhesion. Additionally, enhanced cell proliferation, increased albumin secretion and urea synthesis were observed in HepG2 cells growing on collagen-coated three-dimensional PVA scaffolds.
Collapse
Affiliation(s)
- Di Meng
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiongxin Lei
- Institute of Process Engineering, National Key Laboratory of Biochemical Engineering, Beijing, China
| | - Yang Li
- Institute of Process Engineering, National Key Laboratory of Biochemical Engineering, Beijing, China
- Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yingjun Kong
- Institute of Process Engineering, National Key Laboratory of Biochemical Engineering, Beijing, China
| | - Dawei Huang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Guifeng Zhang
- Institute of Process Engineering, National Key Laboratory of Biochemical Engineering, Beijing, China
| |
Collapse
|
33
|
Ogura Y, Kabacam G, Singhal A, Moon DB. The role of living donor liver transplantation for acute liver failure. Int J Surg 2020; 82S:145-148. [PMID: 32353557 DOI: 10.1016/j.ijsu.2020.04.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 01/13/2023]
Abstract
Acute liver failure (ALF) is a life-threatening illness that occurs in the absence of pre-existing liver disease. When symptoms seriously progress under continuous supportive medical care, liver transplantation becomes the only therapeutic strategy. However, the available sources of organs for liver transplantation differ worldwide. In regions in which organs from cadaveric donors are more common, deceased donor liver transplantation (DDLT) is performed in this urgent situation. Conversely, in countries where cadaveric donors are scarce, living donor liver transplantation (LDLT) is the only choice. Special considerations must be made for urgent LDLT for ALF, including the expedited evaluation of living donors, technical issues, and the limitations of ABO blood type combinations between recipients and donor candidates. In this review, we highlight the role of LDLT for ALF and the considerations that distinguish it from DDLT. LDLT is well-established as a life-saving procedure for ALF patients and there is often no alternative to LDLT, especially in countries where DDLT is not feasible. However, from a global perspective, an increase in the deceased donor pool might be an urgent and important necessity.
Collapse
Affiliation(s)
- Yasuhiro Ogura
- Department of Transplantation Surgery, Nagoya University Hospital, Aichi, Japan.
| | - Gokhan Kabacam
- Department of Gastroenterology, Guven Hospital, Ankara, Turkey
| | - Ashish Singhal
- Advanced Institute of Liver & Biliary Sciences, Fortis Hospitals, Delhi-NCR, India
| | - Deok-Bok Moon
- Department of Surgery, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
34
|
Wang J, Fu X, Yan Y, Li S, Duan Y, Marie Inglis B, Si W, Zheng B. In vitro differentiation of rhesus macaque bone marrow- and adipose tissue-derived MSCs into hepatocyte-like cells. Exp Ther Med 2020; 20:251-260. [PMID: 32518605 PMCID: PMC7273898 DOI: 10.3892/etm.2020.8676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
Orthotopic liver or hepatocyte transplantation is effective for the treatment of acute liver injury and end-stage chronic liver disease. However, both of these therapies are hampered by the extreme shortage of organ donors. The clinical application of cell therapy through the substitution of hepatocytes with mesenchymal stem cells (MSCs) that have been differentiated into hepatocyte-like cells (HLCs) for liver disease treatment is expected to overcome this shortage. Bone marrow and adipose tissue are two major sources of MSCs [bone marrow-derived MSCs (BM-MSCs) and adipose tissue-derived MSCs (AT-MSCs), respectively]. However, knowledge about the variability in the differentiation potential between BM-MSCs and AT-MSCs is lacking. In the present study, the hepatogenic differentiation potential of rhesus macaque BM-MSCs and AT-MSCs was compared with the evaluation of morphology, immunophenotyping profiles, differentiation potential, glycogen deposition, urea secretion and hepatocyte-specific gene expression. The results indicated that BM-MSCs and AT-MSCs shared similar characteristics in terms of primary morphology, surface markers and trilineage differentiation potential (adipogenesis, osteogenesis and chondrogenesis). Subsequently, the hepatogenic differentiation potential of BM-MSCs and AT-MSCs was evaluated by morphology, glycogen accumulation, urea synthesis and expression of hepatocyte marker genes. The results indicated that rhesus BM-MSCs and AT-MSCs had hepatogenic differentiation ability. To the best of our knowledge, this is the first report to detect the hepatogenic differentiation potential of rhesus macaque BM-MSCs and AT-MSCs. The present study provides the basis for the selection of seed cells that can trans-differentiate into HLCs for cytotherapy of acute or chronic liver injuries in either clinical or veterinary practice.
Collapse
Affiliation(s)
- Junfeng Wang
- Department of Hepatic and Bile Duct Surgery, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China.,Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Xufeng Fu
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China.,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, Ningxia Medical University, Yinchuan, Ningxia 741001, P.R. China.,School of Medicine, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Yaping Yan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Shanshan Li
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Yanchao Duan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Briauna Marie Inglis
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Wei Si
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Bingrong Zheng
- School of Medicine, Yunnan University, Kunming, Yunnan 650091, P.R. China
| |
Collapse
|
35
|
Pareja E, Gómez-Lechón MJ, Tolosa L. Induced pluripotent stem cells for the treatment of liver diseases: challenges and perspectives from a clinical viewpoint. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:566. [PMID: 32775367 PMCID: PMC7347783 DOI: 10.21037/atm.2020.02.164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The only curative treatment for severe end-stage liver disease (ESLD) is liver transplantation (LT) but it is limited by the shortage of organ donors. The increase of the incidence of liver disease has led to develop new therapeutic approaches such as liver cell transplantation. Current challenges that limit a wider application of this therapy include a limited cell source and the poor engraftment in the host liver of cryopreserved hepatocytes after thawing. Induced pluripotent stem cells (iPSCs) that can be differentiated into hepatocyte-like cells (HLCs) are being widely explored as an alternative to human hepatocytes because of their unlimited proliferation capacity and their potential ability to avoid the immune system. Their large-scale production could provide a new tool to produce enough HLCs for treating patients with metabolic diseases, acute liver failure (ALF), those with ESLD or patients not considered for organ transplantation. In this review we discuss current challenges for generating differentiated cells compatible with human application as well as in-depth safety evaluation. This analysis highlights the uncertainties and deficiencies that should be addressed before their clinical use but also points out the potential benefits that will produce a great impact in the field of hepatology.
Collapse
Affiliation(s)
- Eugenia Pareja
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Unidad Hepatobiliopancreáctica, Hospital Universitario Doctor Peset, Valencia, Spain
| | - M José Gómez-Lechón
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,CIBERehd, ISCIII, Madrid, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
36
|
Furuta T, Furuya K, Zheng YW, Oda T. Novel alternative transplantation therapy for orthotopic liver transplantation in liver failure: A systematic review. World J Transplant 2020; 10:64-78. [PMID: 32257850 PMCID: PMC7109592 DOI: 10.5500/wjt.v10.i3.64] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/10/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Orthotopic liver transplantation (OLT) is the only treatment for end-stage liver failure; however, graft shortage impedes its applicability. Therefore, studies investigating alternative therapies are plenty. Nevertheless, no study has comprehensively analyzed these therapies from different perspectives.
AIM To summarize the current status of alternative transplantation therapies for OLT and to support future research.
METHODS A systematic literature search was performed using PubMed, Cochrane Library and EMBASE for articles published between January 2010 and 2018, using the following MeSH terms: [(liver transplantation) AND cell] OR [(liver transplantation) AND differentiation] OR [(liver transplantation) AND organoid] OR [(liver transplantation) AND xenotransplantation]. Various types of studies describing therapies to replace OLT were retrieved for full-text evaluation. Among them, we selected articles including in vivo transplantation.
RESULTS A total of 89 studies were selected. There are three principle forms of treatment for liver failure: Xeno-organ transplantation, scaffold-based transplantation, and cell transplantation. Xeno-organ transplantation was covered in 14 articles, scaffold-based transplantation was discussed in 22 articles, and cell transplantation was discussed in 53 articles. Various types of alternative therapies were discussed: Organ liver, 25 articles; adult hepatocytes, 31 articles; fetal hepatocytes, three articles; mesenchymal stem cells (MSCs), 25 articles; embryonic stem cells, one article; and induced pluripotent stem cells, three articles and other sources. Clinical applications were discussed in 12 studies: Cell transplantation using hepatocytes in four studies, five studies using umbilical cord-derived MSCs, three studies using bone marrow-derived MSCs, and two studies using hematopoietic stem cells.
CONCLUSION The clinical applications are present only for cell transplantation. Scaffold-based transplantation is a comprehensive treatment combining organ and cell transplantations, which warrants future research to find relevant clinical applications.
Collapse
Affiliation(s)
- Tomoaki Furuta
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| | - Kinji Furuya
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
- Institute of Regenerative Medicine and Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- Department of Regenerative Medicine, School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
- Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| |
Collapse
|
37
|
Matsunaga S, Jeremiah SS, Miyakawa K, Kurotaki D, Shizukuishi S, Watashi K, Nishitsuji H, Kimura H, Tamura T, Yamamoto N, Shimotohno K, Wakita T, Ryo A. Engineering Cellular Biosensors with Customizable Antiviral Responses Targeting Hepatitis B Virus. iScience 2020; 23:100867. [PMID: 32105634 PMCID: PMC7113479 DOI: 10.1016/j.isci.2020.100867] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/16/2019] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
SynNotch receptor technology is a versatile tool that uses the regulatory notch core portion with an extracellular scFv and an intracellular transcription factor that enables to program customized input and output functions in mammalian cells. In this study, we designed a novel synNotch receptor comprising scFv against HBs antigen linked with an intracellular artificial transcription factor and exploited it for viral sensing and cellular immunotherapy. The synNotch receptor expressing cells sensed HBV particles and membrane-bound HBs antigens and responded by expressing reporter molecules, secNL or GFP. We also programmed these cells to dispense antiviral responses such as type I interferon and anti-HBV neutralizing mouse-human chimeric antibodies. Our data reveal that synNotch receptor signaling works for membrane-bound ligands such as enveloped viral particles and proteins borne on liposomal vesicles. This study establishes the concepts of "engineered immunity" where the synNotch platform is utilized for cellular immunotherapy against viral infections.
Collapse
Affiliation(s)
- Satoko Matsunaga
- Department of Microbiology, Yokohama City University School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Sundararaj S Jeremiah
- Department of Microbiology, Yokohama City University School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Kei Miyakawa
- Department of Microbiology, Yokohama City University School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Daisuke Kurotaki
- Department of Immunology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Sayaka Shizukuishi
- Department of Microbiology, Yokohama City University School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hironori Nishitsuji
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba 272-8516, Japan
| | - Hirokazu Kimura
- School of Medical Technology, Faculty of Health Sciences, Gunma Paz University, Takasaki 370-0006, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Naoki Yamamoto
- Department of Microbiology, Yokohama City University School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Kunitada Shimotohno
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba 272-8516, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan.
| |
Collapse
|
38
|
Heydari Z, Najimi M, Mirzaei H, Shpichka A, Ruoss M, Farzaneh Z, Montazeri L, Piryaei A, Timashev P, Gramignoli R, Nussler A, Baharvand H, Vosough M. Tissue Engineering in Liver Regenerative Medicine: Insights into Novel Translational Technologies. Cells 2020; 9:E304. [PMID: 32012725 PMCID: PMC7072533 DOI: 10.3390/cells9020304] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
Organ and tissue shortage are known as a crucially important public health problem as unfortunately a small percentage of patients receive transplants. In the context of emerging regenerative medicine, researchers are trying to regenerate and replace different organs and tissues such as the liver, heart, skin, and kidney. Liver tissue engineering (TE) enables us to reproduce and restore liver functions, fully or partially, which could be used in the treatment of acute or chronic liver disorders and/or generate an appropriate functional organ which can be transplanted or employed as an extracorporeal device. In this regard, a variety of techniques (e.g., fabrication technologies, cell-based technologies, microfluidic systems and, extracorporeal liver devices) could be applied in tissue engineering in liver regenerative medicine. Common TE techniques are based on allocating stem cell-derived hepatocyte-like cells or primary hepatocytes within a three-dimensional structure which leads to the improvement of their survival rate and functional phenotype. Taken together, new findings indicated that developing liver tissue engineering-based techniques could pave the way for better treatment of liver-related disorders. Herein, we summarized novel technologies used in liver regenerative medicine and their future applications in clinical settings.
Collapse
Affiliation(s)
- Zahra Heydari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (Z.H.); (Z.F.)
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran 1665659911, Iran
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental & Clinical Research, Université Catholique de Louvain, B-1200 Brussels, Belgium;
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan 121135879, Iran;
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, 119146 Moscow, Russia; (A.S.); (P.T.)
| | - Marc Ruoss
- Siegfried Weller Institute for Trauma Research, University of Tübingen, 72076 Tübingen, Germany; (M.R.); (A.N.)
| | - Zahra Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (Z.H.); (Z.F.)
| | - Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
| | - Abbas Piryaei
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 119146 Moscow, Russia; (A.S.); (P.T.)
- Department of Polymers and Composites, N.N.Semenov Institute of Chemical Physics, 117977 Moscow, Russia
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Andreas Nussler
- Siegfried Weller Institute for Trauma Research, University of Tübingen, 72076 Tübingen, Germany; (M.R.); (A.N.)
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (Z.H.); (Z.F.)
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran 1665659911, Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (Z.H.); (Z.F.)
- Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| |
Collapse
|
39
|
Improved in vivo efficacy of clinical-grade cryopreserved human hepatocytes in mice with acute liver failure. Cytotherapy 2020; 22:114-121. [PMID: 31987755 DOI: 10.1016/j.jcyt.2019.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/04/2019] [Accepted: 12/08/2019] [Indexed: 12/21/2022]
Abstract
Clinical hepatocyte transplantation short-term efficacy has been demonstrated; however, some major limitations, mainly due to the shortage of organs, the lack of quality of isolated cells and the low cell engraftment after transplantation, should be solved for increasing its efficacy in clinical applications. Cellular stress during isolation causes an unpredictable loss of attachment ability of the cells, which can be aggravated by cryopreservation and thawing. In this work, we focused on the use of a Good Manufacturing Practice (GMP) solution compared with the standard cryopreservation medium, the University of Wisconsin medium, for the purpose of improving the functional quality of cells and their ability to engraft in vivo, with the idea of establishing a biobank of cryopreserved human hepatocytes available for their clinical use. We evaluated not only cell viability but also specific hepatic function indicators of the functional performance of the cells such as attachment efficiency, ureogenic capability, phase I and II enzymes activities and the expression of specific adhesion molecules in vitro. Additionally, we also assessed and compared the in vivo efficacy of human hepatocytes cryopreserved in different media in an animal model of acute liver failure. Human hepatocytes cryopreserved in the new GMP solution offered better in vitro and in vivo functionality compared with those cryopreserved in the standard medium. Overall, the results indicate that the new tested GMP solution maintains better hepatic functions and, most importantly, shows better results in vivo, which could imply an increase in long-term efficacy when used in patients.
Collapse
|
40
|
Mirdamadi ES, Kalhori D, Zakeri N, Azarpira N, Solati-Hashjin M. Liver Tissue Engineering as an Emerging Alternative for Liver Disease Treatment. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:145-163. [PMID: 31797731 DOI: 10.1089/ten.teb.2019.0233] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic liver diseases affect thousands of lives throughout the world every year. The shortage of liver donors for transplantation has been the main driving force to employ alternative methods such as liver tissue engineering (LTE) in fabricating a three-dimensional transplantable liver tissue or enhancing cell delivery techniques alleviating the need for liver donors. LTE consists of three components, cells, ECM (extracellular matrix), and signaling molecules, which we discuss the first and second. The three most common cell sources used in LTE are human and animal primary hepatocytes, and stem cells for different applications. Two major categories of ECM are used to mimic the microenvironment of these cells, named scaffolds and microbeads. Scaffolds have been made by numerous methods with a wide range of synthetic and natural biomaterials. Cell encapsulation has also been utilized by many polymeric biomaterials. To investigate their functions, many properties have been discussed in the literature, such as biochemical, geometrical, and mechanical properties, in both of these categories. Overall, LTE shows excellent potential in assisting hepatic disorders. However, some challenges exist that prevent the practical use of it clinically, making LTE an ongoing research subject in the scientific society.
Collapse
Affiliation(s)
- Elnaz Sadat Mirdamadi
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Dianoosh Kalhori
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Nima Zakeri
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Solati-Hashjin
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
41
|
Toma D, Lazar O, Bontas E. Acute Liver Failure. LIVER DISEASES 2020. [PMCID: PMC7122204 DOI: 10.1007/978-3-030-24432-3_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Acute liver failure is a highly unpredictable disease that can evolve to a life-threatening situation within few hours. In a simplified manner, acute liver failure is the acute liver dysfunction with multiorgan damaging associated with numerous complications, and very poor prognosis, being caused by varied etiologies. Despite the numerous advances on pathophysiology, intensive care treatment, and transplantation techniques from the last decades, is still characterized by increased mortality. At present, the patients with acute liver failure should be managed in Intensive Care Unit where the therapy should be applied based on the specific etiology of the acute liver failure and it should be started as early as possible.
Collapse
|
42
|
Philips CA, Augustine P, Ahamed R, Rajesh S, George T, Valiathan GC, John SK. Role of Granulocyte Colony-stimulating Factor Therapy in Cirrhosis, 'Inside Any Deep Asking Is the Answering'. J Clin Transl Hepatol 2019; 7:371-383. [PMID: 31915607 PMCID: PMC6943215 DOI: 10.14218/jcth.2019.00034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/20/2019] [Accepted: 10/05/2019] [Indexed: 12/13/2022] Open
Abstract
Liver cirrhosis progresses through multiple clinical stages which culminate in either death or liver transplantation. Availability of organs, timely listing and prompt receipt of donor-livers pose difficulties in improving transplant-listed and transplant outcomes. In this regard, regenerative therapies, particularly with granulocyte colony-stimulating factor (GCSF), has become a lucrative option for improving transplant-free survival. However, the literature is confusing with regards to patient selection and real outcomes. In this exhaustive review, we describe the basics of liver fibrosis and cirrhosis through novel insights from a therapeutic point of view, discuss preclinical studies on GCSF in advanced liver disease to improve on clinical utility, shed light on the pertinent literature of GCSF in advanced cirrhosis, and provide astute inputs on growth factor therapy in decompensated cirrhosis.
Collapse
Affiliation(s)
- Cyriac Abby Philips
- The Liver Unit and Monarch Liver Lab, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| | - Philip Augustine
- Department of Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| | - Rizwan Ahamed
- Department of Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| | - Sasidharan Rajesh
- Interventional Radiology, Hepatobiliary Division, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| | - Tom George
- Interventional Radiology, Hepatobiliary Division, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| | - Gopakumar C. Valiathan
- Department of Hepatobiliary and Transplant Surgery, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| | - Solomon K. John
- Department of Hepatobiliary and Transplant Surgery, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, Kerala, India
| |
Collapse
|
43
|
Sharma A, Bischof JC, Finger EB. Liver Cryopreservation for Regenerative Medicine Applications. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00131-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Elchaninov AV, Fatkhudinov TK, Vishnyakova PA, Lokhonina AV, Sukhikh GT. Phenotypical and Functional Polymorphism of Liver Resident Macrophages. Cells 2019; 8:E1032. [PMID: 31491903 PMCID: PMC6769646 DOI: 10.3390/cells8091032] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
Liver diseases are one of the main causes of mortality. In this regard, the development of new ways of reparative processes stimulation is relevant. Macrophages play a leading role in the regulation of liver homeostasis in physiological conditions and in pathology. In this regard, the development of new liver treatment methods is impossible without taking into account this cell population. Resident macrophages of the liver, Kupffer cells, represent a unique cell population, first of all, due to their development. Most of the liver macrophages belong to the self-sustaining macrophage cell population, whose origin is not bone marrow. In addition, Kupffer cells are involved in such processes as regulation of hepatocyte proliferation and apoptosis, remodeling of the intercellular matrix, lipid metabolism, protective function, etc. Such a broad spectrum of liver macrophage functions indicates their high functional plasticity. The review summarizes recent data on the development, phenotypic and functional plasticity, and participation in the reparative processes of liver macrophages: resident macrophages (Kupffer cells) and bone marrow-derived macrophages.
Collapse
Affiliation(s)
- Andrey V Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
- Histology, Embryology and Cytology Department, Ministry of Healthcare of The Russian Federation, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997, Russia.
| | - Timur Kh Fatkhudinov
- Histology, Embryology and Cytology Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia.
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia.
| | - Polina A Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
| | - Anastasia V Lokhonina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
- Histology, Embryology and Cytology Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia.
| | - Gennady T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
| |
Collapse
|
45
|
Giri TK, Alexander A, Agrawal M, Saraf S, Saraf S, Ajazuddin. Current Status of Stem Cell Therapies in Tissue Repair and Regeneration. Curr Stem Cell Res Ther 2019; 14:117-126. [PMID: 29732992 DOI: 10.2174/1574888x13666180502103831] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/07/2023]
Abstract
Tissue engineering is a multi-disciplinary field such as material science, life science, and bioengineering that are necessary to make artificial tissue or rejuvenate damaged tissue. Numerous tissue repair techniques and substitute now exist even though it has several shortcomings; these shortcomings give a good reason for the continuous research for more acceptable tissue-engineered substitutes. The search for and use of a suitable stem cell in tissue engineering is a promising concept. Stem cells have a distinctive capability to differentiate and self-renew that make more suitable for cell-based therapies in tissue repair and regeneration. This review article focuses on stem cell for tissue engineering and their methods of manufacture with their application in nerve, bone, skin, cartilage, bladder, cardiac, liver tissue repair and regeneration.
Collapse
Affiliation(s)
- Tapan Kumar Giri
- NSHM College of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata Group of Institutions, 124 BL Saha Road, Kolkata-700053, West Bengal, India.,Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh 490024, India
| | - Amit Alexander
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh 490024, India
| | - Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh 490024, India
| | - Swarnalata Saraf
- Department of Pharmaceutics, University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Shailendra Saraf
- Department of Pharmaceutics, University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India.,Durg University, Govt. Vasudev Vaman Patankar Girls' P.G. College Campus, Raipur Naka, Durg, Chhattisgarh 491001, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh 490024, India
| |
Collapse
|
46
|
Geetha Bai R, Muthoosamy K, Manickam S, Hilal-Alnaqbi A. Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering. Int J Nanomedicine 2019; 14:5753-5783. [PMID: 31413573 PMCID: PMC6662516 DOI: 10.2147/ijn.s192779] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/22/2019] [Indexed: 12/14/2022] Open
Abstract
Tissue engineering embraces the potential of recreating and replacing defective body parts by advancements in the medical field. Being a biocompatible nanomaterial with outstanding physical, chemical, optical, and biological properties, graphene-based materials were successfully employed in creating the perfect scaffold for a range of organs, starting from the skin through to the brain. Investigations on 2D and 3D tissue culture scaffolds incorporated with graphene or its derivatives have revealed the capability of this carbon material in mimicking in vivo environment. The porous morphology, great surface area, selective permeability of gases, excellent mechanical strength, good thermal and electrical conductivity, good optical properties, and biodegradability enable graphene materials to be the best component for scaffold engineering. Along with the apt microenvironment, this material was found to be efficient in differentiating stem cells into specific cell types. Furthermore, the scope of graphene nanomaterials in liver tissue engineering as a promising biomaterial is also discussed. This review critically looks into the unlimited potential of graphene-based nanomaterials in future tissue engineering and regenerative therapy.
Collapse
Affiliation(s)
- Renu Geetha Bai
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Kasturi Muthoosamy
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Sivakumar Manickam
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Ali Hilal-Alnaqbi
- Electromechanical Technology, Abu Dhabi Polytechnic, Abu Dhabi, United Arab Emirates
| |
Collapse
|
47
|
He YT, Qi YN, Zhang BQ, Li JB, Bao J. Bioartificial liver support systems for acute liver failure: A systematic review and meta-analysis of the clinical and preclinical literature. World J Gastroenterol 2019; 25:3634-3648. [PMID: 31367162 PMCID: PMC6658398 DOI: 10.3748/wjg.v25.i27.3634] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/03/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute liver failure (ALF) has a high mortality varying from 80% to 85% with rapid progress in multi-organ system failure. Bioartificial liver (BAL) support systems have the potential to provide temporary support to bridge patients with ALF to liver transplantation or spontaneous recovery. In the past decades, several BAL support systems have been conducted in clinical trials. More recently, concerns have been raised on the renovation of high-quality cell sources and configuration of BAL support systems to provide more benefits to ALF models in preclinical experiments. AIM To investigate the characteristics of studies about BAL support systems for ALF, and to evaluate their effects on mortality. METHODS Eligible clinical trials and preclinical experiments on large animals were identified on Cochrane Library, PubMed, and EMbase up to March 6, 2019. Two reviewers independently extracted the necessary information, including key BAL indicators, survival and indicating outcomes, and adverse events during treatment. Descriptive analysis was used to identify the characteristics of the included studies, and a meta-analysis including only randomized controlled trial (RCT) studies was done to calculate the overall effect of BAL on mortality among humans and large animals, respectively. RESULTS Of the 30 selected studies, 18 were clinical trials and 12 were preclinical experiments. The meta-analysis result suggested that BAL might reduce mortality in ALF in large animals, probably due to the recent improvement of BAL, including the type, cell source, cell mass, and bioreactor, but seemed ineffective for humans [BAL vs control: relative risk (95% confidence interval), 0.27 (0.12-0.62) for animals and 0.72 (0.48-1.08) for humans]. Liver and renal functions, hematologic and coagulative parameters, encephalopathy index, and neurological indicators seemed to improve after BAL, with neither meaningful adverse events nor porcine endogenous retrovirus infection. CONCLUSION BAL may reduce the mortality of ALF by bridging the gap between preclinical experiments and clinical trials. Clinical trials using improved BAL must be designed scientifically and conducted in the future to provide evidence for transformation.
Collapse
Affiliation(s)
- Yu-Ting He
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ya-Na Qi
- Chinese Evidence-based Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bing-Qi Zhang
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jian-Bo Li
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ji Bao
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
48
|
Daneshgar A, Tang P, Remde C, Lommel M, Moosburner S, Kertzscher U, Klein O, Weinhart M, Pratschke J, Sauer IM, Hillebrandt KH. Teburu—Open source 3D printable bioreactor for tissue slices as dynamic three‐dimensional cell culture models. Artif Organs 2019; 43:1035-1041. [DOI: 10.1111/aor.13518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Assal Daneshgar
- Department of Surgery Campus Charité Mitte I Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Peter Tang
- Department of Surgery Campus Charité Mitte I Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Christopher Remde
- Cluster of Excellence, Interdisciplinary Laboratory Image Knowledge Gestaltung Humboldt‐Universität zu Berlin Berlin Germany
| | - Michael Lommel
- Biofluid Machanics Laboratory, Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Simon Moosburner
- Department of Surgery Campus Charité Mitte I Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Ulrich Kertzscher
- Biofluid Machanics Laboratory, Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Oliver Klein
- Berlin‐Brandenburg Center for Regenerative Therapies Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Marie Weinhart
- Institute for Chemistry and Biochemistry Freie Universität Berlin Berlin Germany
| | - Johann Pratschke
- Department of Surgery Campus Charité Mitte I Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Igor M. Sauer
- Department of Surgery Campus Charité Mitte I Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Karl H. Hillebrandt
- Department of Surgery Campus Charité Mitte I Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| |
Collapse
|
49
|
Acun A, Oganesyan R, Uygun BE. Liver Bioengineering: Promise, Pitfalls, and Hurdles to Overcome. CURRENT TRANSPLANTATION REPORTS 2019; 6:119-126. [PMID: 31289714 PMCID: PMC6615568 DOI: 10.1007/s40472-019-00236-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW In this review, we discuss the recent advancements in liver bioengineering and cell therapy and future advancements to improve the field towards clinical applications. RECENT FINDINGS 3D printing, hydrogel-based tissue fabrication, and the use of native decellularized liver extracellular matrix as a scaffold are used to develop whole or partial liver substitutes. The current focus is on developing a functional liver graft through achieving a non-leaky endothelium and a fully constructed bile duct. Use of cell therapy as a treatment is less invasive and less costly compared to transplantation, however, lack of readily available cell sources with low or no immunogenicity and contradicting outcomes of clinical trials are yet to be overcome. SUMMARY Liver bioengineering is advancing rapidly through the development of in vitro and in vivo tissue and organ models. Although there are major challenges to overcome, through optimization of the current methods and successful integration of induced pluripotent stem cells, the development of readily available, patient-specific liver substitutes can be achieved.
Collapse
Affiliation(s)
- Aylin Acun
- Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, 51 Blossom Street, Boston, MA 02114, USA
| | - Ruben Oganesyan
- Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, 51 Blossom Street, Boston, MA 02114, USA
| | - Basak E. Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, 51 Blossom Street, Boston, MA 02114, USA
| |
Collapse
|
50
|
Shagidulin MY, Onishchenko NA, Krasheninnikov ME, Nikolskaya AO, Volkova EA, Iljinsky IM, Mogeiko NP, Sevastianov VI, Gautier SV. The influence of the ratio of liver cells and bone marrow in the implantable cell-engineering structures of the liver on the recovery efficiency of functional and morphological parameters in chronic liver failure. RUSSIAN JOURNAL OF TRANSPLANTOLOGY AND ARTIFICIAL ORGANS 2019. [DOI: 10.15825/1995-1191-2019-1-122-134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aim:to determinate the most effective liver cells and multipotent mesenchymal stromal cells of bone marrow (MMSC BM) ratio into implantable cell engineering constructions (CECs) used for chronic liver failure (CLF) correcting.Materials and methods.For creating liver CECs it was used a biopolymer implant – a composition of a heterogeneous collagen-containing gel (BMCG) (Sphero®GEL trademark) containing viable liver cells and MMSC BM in the following ratios – 1 : 1; 5 : 1 and 10 : 1 respectively. CECs with different ratios of liver cells and MMSC BM were implanted into liver of rats in which chronic liver failure (CLF), was modeled by using CCl4. The effectiveness of the regulatory effects of CECs (with different cell ratios) on regenerative processes in livers were assessed by using biochemical, morphological and morphometric methods at different periods after their implantation.Results.Corrective effect of CECs with different cell composition on biochemical and morphological parameters of livers at chronic liver failure was established. During studying the liver CECs with various cell ratios of liver cells and MMSC BM (1 : 1; 5 : 1 and 10 : 1 respectively), it was found that the most optimal ratio of cells into the CECs is 5 : 1, because at this ratio of cells, there were a more distinct normalization of the morphological and functional liver parameters within 365 days after modeling CLF and maintenance of the structural homeostasis into the CECs. Themselves, which allows predicting their long-term regulatory effect on the liver tissue in CLF and maintaining its normal structural and functional state.Conclusion.The effective correction of chronic liver failure can be carried out by using the implanted liver CECs, in which donor liver cells and MMSC BM where presented in ratios – 1 : 1; 5 : 1 and 10 : 1. But analysis of prolonged correction of liver morphological and functional parameters at CECs using it was allow to recommend the preferences using of CECs with ratio 5 : 1, because prolonged preservation of structural homeostasis into these CECs makes possible to prognosticate their prolonged regulatory action on the liver tissue at CLF, especially for recipients on a waiting list for liver transplantation.
Collapse
Affiliation(s)
- M. Yu. Shagidulin
- V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation; I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovsky University)
| | - N. A. Onishchenko
- V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation
| | - M. E. Krasheninnikov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovsky University)
| | - A. O. Nikolskaya
- V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation
| | - E. A. Volkova
- V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation
| | - I. M. Iljinsky
- V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation
| | - N. P. Mogeiko
- V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation
| | - V. I. Sevastianov
- V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation
| | - S. V. Gautier
- V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation; I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovsky University)
| |
Collapse
|