1
|
Islam R, Noman H, Azimi A, Siu R, Chinchalongporn V, Schuurmans C, Morshead CM. Primitive and Definitive Neural Precursor Cells Are Present in Human Cerebral Organoids. Int J Mol Sci 2024; 25:6549. [PMID: 38928255 PMCID: PMC11203442 DOI: 10.3390/ijms25126549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Activation of neural stem cells (NSCs) correlates with improved functional outcomes in mouse models of injury. In the murine brain, NSCs have been extensively characterized and comprise (1) primitive NSCs (pNSCs) and (2) definitive NSCs (dNSCs). pNSCs are the earliest cells in the NSC lineage giving rise to dNSCs in the embryonic and adult mouse brain. pNSCs are quiescent under baseline conditions and can be activated upon injury. Herein, we asked whether human pNSCs and dNSCs can be isolated during the maturation of human cerebral organoids (COs) and activated by drugs known to regulate mouse NSC behavior. We demonstrate that self-renewing, multipotent pNSC and dNSC populations are present in human COs and express genes previously characterized in mouse NSCs. The drug NWL283, an inhibitor of apoptosis, reduced cell death in COs but did not improve NSC survival. Metformin, a drug used to treat type II diabetes that is known to promote NSC activation in mice, was found to expand human NSC pools. Together, these findings are the first to identify and characterize human pNSCs, advancing our understanding of the human NSC lineage and highlighting drugs that enhance their activity.
Collapse
Affiliation(s)
- Rehnuma Islam
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3E1, Canada
| | - Humna Noman
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3E1, Canada
| | - Ashkan Azimi
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
| | - Ricky Siu
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
| | | | - Carol Schuurmans
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
- Department of Biochemistry, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3E1, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3E1, Canada
| | - Cindi M. Morshead
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3E1, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
2
|
Yammine SZ, Burns I, Gosio J, Peluso A, Merritt DM, Innes B, Coles BLK, Yan WR, Bader GD, Morshead CM, van der Kooy D. Fate Specification of GFAP-Negative Primitive Neural Stem Cells and Their Progeny at Clonal Resolution. Stem Cells Dev 2023; 32:606-621. [PMID: 37551982 DOI: 10.1089/scd.2023.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
The mature brain contains an incredible number and diversity of cells that are produced and maintained by heterogeneous pools of neural stem cells (NSCs). Two distinct types of NSCs exist in the developing and adult mouse brain: Glial Fibrillary Acidic Protein (GFAP)-negative primitive (p)NSCs and downstream GFAP-positive definitive (d)NSCs. To better understand the embryonic functions of NSCs, we performed clonal lineage tracing within neurospheres grown from either pNSCs or dNSCs to enrich for their most immediate downstream neural progenitor cells (NPCs). These clonal progenitor lineage tracing data allowed us to construct a hierarchy of progenitor subtypes downstream of pNSCs and dNSCs that were then validated using single-cell transcriptomics. Further, we identify Nexn as required for neuronal specification from neuron/astrocyte progenitor cells downstream of rare pNSCs. Combined, these data provide single-cell resolution of NPC lineages downstream of rare pNSCs that likely would be missed from population-level analyses in vivo.
Collapse
Affiliation(s)
- Samantha Z Yammine
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Ian Burns
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jessica Gosio
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Andrew Peluso
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Daniel M Merritt
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Brendan Innes
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Brenda L K Coles
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Wen Rui Yan
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- The Donnelly Centre and University of Toronto, Toronto, Canada
| | - Cindi M Morshead
- The Donnelly Centre and University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Derek van der Kooy
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- The Donnelly Centre and University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Yanchus C, Drucker KL, Kollmeyer TM, Tsai R, Winick-Ng W, Liang M, Malik A, Pawling J, De Lorenzo SB, Ali A, Decker PA, Kosel ML, Panda A, Al-Zahrani KN, Jiang L, Browning JWL, Lowden C, Geuenich M, Hernandez JJ, Gosio JT, Ahmed M, Loganathan SK, Berman J, Trcka D, Michealraj KA, Fortin J, Carson B, Hollingsworth EW, Jacinto S, Mazrooei P, Zhou L, Elia A, Lupien M, He HH, Murphy DJ, Wang L, Abyzov A, Dennis JW, Maass PG, Campbell K, Wilson MD, Lachance DH, Wrensch M, Wiencke J, Mak T, Pennacchio LA, Dickel DE, Visel A, Wrana J, Taylor MD, Zadeh G, Dirks P, Eckel-Passow JE, Attisano L, Pombo A, Ida CM, Kvon EZ, Jenkins RB, Schramek D. A noncoding single-nucleotide polymorphism at 8q24 drives IDH1-mutant glioma formation. Science 2022; 378:68-78. [PMID: 36201590 PMCID: PMC9926876 DOI: 10.1126/science.abj2890] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Establishing causal links between inherited polymorphisms and cancer risk is challenging. Here, we focus on the single-nucleotide polymorphism rs55705857, which confers a sixfold greater risk of isocitrate dehydrogenase (IDH)-mutant low-grade glioma (LGG). We reveal that rs55705857 itself is the causal variant and is associated with molecular pathways that drive LGG. Mechanistically, we show that rs55705857 resides within a brain-specific enhancer, where the risk allele disrupts OCT2/4 binding, allowing increased interaction with the Myc promoter and increased Myc expression. Mutating the orthologous mouse rs55705857 locus accelerated tumor development in an Idh1R132H-driven LGG mouse model from 472 to 172 days and increased penetrance from 30% to 75%. Our work reveals mechanisms of the heritable predisposition to lethal glioma in ~40% of LGG patients.
Collapse
Affiliation(s)
- Connor Yanchus
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kristen L. Drucker
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Thomas M. Kollmeyer
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ricky Tsai
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Warren Winick-Ng
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, 13092 Berlin, Germany
| | - Minggao Liang
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Ahmad Malik
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Judy Pawling
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Silvana B. De Lorenzo
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Asma Ali
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Paul A. Decker
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Matt L. Kosel
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Arijit Panda
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Khalid N. Al-Zahrani
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Lingyan Jiang
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jared W. L. Browning
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Chris Lowden
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Michael Geuenich
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - J. Javier Hernandez
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jessica T. Gosio
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Sampath Kumar Loganathan
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jacob Berman
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Daniel Trcka
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | | | - Jerome Fortin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Brittany Carson
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Ethan W. Hollingsworth
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92617, USA
| | - Sandra Jacinto
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92617, USA
| | - Parisa Mazrooei
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Lily Zhou
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Andrew Elia
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Daniel J. Murphy
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, Scotland, UK
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, Scotland, UK
| | - Liguo Wang
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Alexej Abyzov
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - James W. Dennis
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Philipp G. Maass
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Kieran Campbell
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michael D. Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Daniel H. Lachance
- Departments of Neurology and Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Margaret Wrensch
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - John Wiencke
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Tak Mak
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Len A. Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94710, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA 94720, USA
- US Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Diane E. Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94710, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94710, USA
- US Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
- School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Jeffrey Wrana
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michael D. Taylor
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Gelareh Zadeh
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Peter Dirks
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | | | - Liliana Attisano
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Ana Pombo
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, 13092 Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, 10115 Berlin, Germany
| | - Cristiane M. Ida
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Evgeny Z. Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92617, USA
| | - Robert B. Jenkins
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
4
|
Regulating Endogenous Neural Stem Cell Activation to Promote Spinal Cord Injury Repair. Cells 2022; 11:cells11050846. [PMID: 35269466 PMCID: PMC8909806 DOI: 10.3390/cells11050846] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) affects millions of individuals worldwide. Currently, there is no cure, and treatment options to promote neural recovery are limited. An innovative approach to improve outcomes following SCI involves the recruitment of endogenous populations of neural stem cells (NSCs). NSCs can be isolated from the neuroaxis of the central nervous system (CNS), with brain and spinal cord populations sharing common characteristics (as well as regionally distinct phenotypes). Within the spinal cord, a number of NSC sub-populations have been identified which display unique protein expression profiles and proliferation kinetics. Collectively, the potential for NSCs to impact regenerative medicine strategies hinges on their cardinal properties, including self-renewal and multipotency (the ability to generate de novo neurons, astrocytes, and oligodendrocytes). Accordingly, endogenous NSCs could be harnessed to replace lost cells and promote structural repair following SCI. While studies exploring the efficacy of this approach continue to suggest its potential, many questions remain including those related to heterogeneity within the NSC pool, the interaction of NSCs with their environment, and the identification of factors that can enhance their response. We discuss the current state of knowledge regarding populations of endogenous spinal cord NSCs, their niche, and the factors that regulate their behavior. In an attempt to move towards the goal of enhancing neural repair, we highlight approaches that promote NSC activation following injury including the modulation of the microenvironment and parenchymal cells, pharmaceuticals, and applied electrical stimulation.
Collapse
|
5
|
Singular Adult Neural Stem Cells Do Not Exist. Cells 2022; 11:cells11040722. [PMID: 35203370 PMCID: PMC8870225 DOI: 10.3390/cells11040722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Adult neural stem cells (aNSCs) are the source for the continuous production of new neurons throughout life. This so-called adult neurogenesis has been extensively studied; the intermediate cellular stages are well documented. Recent discoveries have raised new controversies in the field, such as the notion that progenitor cells hold similar self-renewal potential as stem cells, or whether different types of aNSCs exist. Here, we discuss evidence for heterogeneity of aNSCs, including short-term and long-term self-renewing aNSCs, regional and temporal differences in aNSC function, and single cell transcriptomics. Reviewing various genetic mouse models used for targeting aNSCs and lineage tracing, we consider potential lineage relationships between Ascl1-, Gli1-, and Nestin-targeted aNSCs. We present a multidimensional model of adult neurogenesis that incorporates recent findings and conclude that stemness is a phenotype, a state of properties that can change with time, rather than a cell property, which is static and immutable. We argue that singular aNSCs do not exist.
Collapse
|
6
|
Grisé KN, Coles BLK, Bautista NX, van der Kooy D. Activation of adult mammalian retinal stem cells in vivo via antagonism of BMP and sFRP2. Stem Cell Res Ther 2021; 12:560. [PMID: 34717744 PMCID: PMC8557620 DOI: 10.1186/s13287-021-02630-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/17/2021] [Indexed: 11/15/2022] Open
Abstract
Background The adult mammalian retina does not have the capacity to regenerate cells lost due to damage or disease. Therefore, retinal injuries and blinding diseases result in irreversible vision loss. However, retinal stem cells (RSCs), which participate in retinogenesis during development, persist in a quiescent state in the ciliary epithelium (CE) of the adult mammalian eye. Moreover, RSCs retain the ability to generate all retinal cell types when cultured in vitro, including photoreceptors. Therefore, it may be possible to activate endogenous RSCs to induce retinal neurogenesis in vivo and restore vision in the adult mammalian eye. Methods To investigate if endogenous RSCs can be activated, we performed combinatorial intravitreal injections of antagonists to BMP and sFRP2 proteins (two proposed mediators of RSC quiescence in vivo), with or without growth factors FGF and Insulin. We also investigated the effects of chemically-induced N-methyl-N-Nitrosourea (MNU) retinal degeneration on RSC activation, both alone and in combination withthe injected factors. Further, we employed inducible Msx1-CreERT2 genetic lineage labeling of the CE followed by stimulation paradigms to determine if activated endogenous RSCs could migrate into the retina and differentiate into retinal neurons. Results We found that in vivo antagonism of BMP and sFRP2 proteins induced CE cells in the RSC niche to proliferate and expanded the RSC population. BMP and sFRP2 antagonism also enhanced CE cell proliferation in response to exogenous growth factor stimulation and MNU-induced retinal degeneration. Furthermore, Msx1-CreERT2 genetic lineage tracing revealed that CE cells migrated into the retina following stimulation and/or injury, where they expressed markers of mature photoreceptors and retinal ganglion cells. Conclusions Together, these results indicate that endogenous adult mammalian RSCs may have latent regenerative potential that can be activated by modulating the RSC niche and hold promise as a means for endogenous retinal cell therapy to repair the retina and improve vision. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02630-0.
Collapse
Affiliation(s)
- Kenneth N Grisé
- Department of Molecular Genetics, University of Toronto, Donnelly Centre Rm 1110, 160 College Street, Toronto, ON, M5S 3E1, Canada.
| | - Brenda L K Coles
- Department of Molecular Genetics, University of Toronto, Donnelly Centre Rm 1110, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Nelson X Bautista
- Department of Molecular Genetics, University of Toronto, Donnelly Centre Rm 1110, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Derek van der Kooy
- Department of Molecular Genetics, University of Toronto, Donnelly Centre Rm 1110, 160 College Street, Toronto, ON, M5S 3E1, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
7
|
Cebrian Silla A, Nascimento MA, Redmond SA, Mansky B, Wu D, Obernier K, Romero Rodriguez R, Gonzalez Granero S, García-Verdugo JM, Lim D, Álvarez-Buylla A. Single-cell analysis of the ventricular-subventricular zone reveals signatures of dorsal & ventral adult neurogenesis. eLife 2021; 10:67436. [PMID: 34259628 PMCID: PMC8443251 DOI: 10.7554/elife.67436] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022] Open
Abstract
The ventricular-subventricular zone (V-SVZ), on the walls of the lateral ventricles, harbors the largest neurogenic niche in the adult mouse brain. Previous work has shown that neural stem/progenitor cells (NSPCs) in different locations within the V-SVZ produce different subtypes of new neurons for the olfactory bulb. The molecular signatures that underlie this regional heterogeneity remain largely unknown. Here, we present a single-cell RNA-sequencing dataset of the adult mouse V-SVZ revealing two populations of NSPCs that reside in largely non-overlapping domains in either the dorsal or ventral V-SVZ. These regional differences in gene expression were further validated using a single-nucleus RNA-sequencing reference dataset of regionally microdissected domains of the V-SVZ and by immunocytochemistry and RNAscope localization. We also identify two subpopulations of young neurons that have gene expression profiles consistent with a dorsal or ventral origin. Interestingly, a subset of genes are dynamically expressed, but maintained, in the ventral or dorsal lineages. The study provides novel markers and territories to understand the region-specific regulation of adult neurogenesis. Nerve cells, or neurons, are the central building blocks of brain circuits. Their damage, death or loss of function leads to cognitive decline. Neural stem/progenitor cells (NSPCs) first appear during embryo development, generating most of the neurons found in the nervous system. However, the adult brain retains a small subpopulation of NSPCs, which in some species are an important source of new neurons throughout life. In the adult mouse brain the largest population of NSPCs, known as B cells, is found in an area called the ventricular-subventricular zone (V-SVZ). These V-SVZ B cells have properties of specialized support cells known as astrocytes, but they can also divide and generate intermediate ‘progenitor cells’ called C cells. These, in turn, divide to generate large numbers of young ‘A cells’ neurons that undertake a long and complex migration from V-SVZ to the olfactory bulb, the first relay in the central nervous system for the processing of smells. Depending on their location in the V-SVZ, B cells can generate different kinds of neurons, leading to at least ten subtypes of neurons. Why this is the case is still poorly understood. To examine this question, Cebrián-Silla, Nascimento, Redmond, Mansky et al. determined which genes were expressed in B, C and A cells from different parts of the V-SVZ. While cells within each of these populations had different expression patterns, those that originated in the same V-SVZ locations shared a set of genes, many of which associated with regional specification in the developing brain. Some, however, were intriguingly linked to hormonal regulation. Salient differences between B cells depended on whether the cells originated closer to the top (‘dorsal’ position) or to the bottom of the brain (‘ventral’ position). This information was used to stain slices of mouse brains for the RNA and proteins produced by these genes in different regions. These experiments revealed dorsal and ventral territories containing B cells with distinct ‘gene expression’. This study highlights the heterogeneity of NSPCs, revealing key molecular differences among B cells in dorsal and ventral areas of the V-SVZ and reinforcing the concept that the location of NSPCs determines the types of neuron they generate. Furthermore, the birth of specific types of neurons from B cells that are so strictly localized highlights the importance of neuronal migration to ensure that young neurons with specific properties reach their appropriate destination in the olfactory bulb. The work by Cebrián-Silla, Nascimento, Redmond, Mansky et al. has identified sets of genes that are differentially expressed in dorsal and ventral regions which may contribute to regional regulation. Furthering the understanding of how adult NSPCs differ according to their location will help determine how various neuron types emerge in the adult brain.
Collapse
Affiliation(s)
- Arantxa Cebrian Silla
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - Marcos Assis Nascimento
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - Stephanie A Redmond
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - Benjamin Mansky
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - David Wu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - Kirsten Obernier
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - Ricardo Romero Rodriguez
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - Susana Gonzalez Granero
- Instituto Cavanilles, Universidad de Valencia, y Unidad Mixta de Esclerosis Múltiple y Neurorregeneración, CIBERNED, Valencia, Spain
| | - Jose Manuel García-Verdugo
- Instituto Cavanilles, Universidad de Valencia, y Unidad Mixta de Esclerosis Múltiple y Neurorregeneración, CIBERNED, Valencia, Spain
| | - Daniel Lim
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - Arturo Álvarez-Buylla
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
8
|
Oproescu AM, Han S, Schuurmans C. New Insights Into the Intricacies of Proneural Gene Regulation in the Embryonic and Adult Cerebral Cortex. Front Mol Neurosci 2021; 14:642016. [PMID: 33658912 PMCID: PMC7917194 DOI: 10.3389/fnmol.2021.642016] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
Historically, the mammalian brain was thought to lack stem cells as no new neurons were found to be made in adulthood. That dogma changed ∼25 years ago with the identification of neural stem cells (NSCs) in the adult rodent forebrain. However, unlike rapidly self-renewing mature tissues (e.g., blood, intestinal crypts, skin), the majority of adult NSCs are quiescent, and those that become 'activated' are restricted to a few neurogenic zones that repopulate specific brain regions. Conversely, embryonic NSCs are actively proliferating and neurogenic. Investigations into the molecular control of the quiescence-to-proliferation-to-differentiation continuum in the embryonic and adult brain have identified proneural genes encoding basic-helix-loop-helix (bHLH) transcription factors (TFs) as critical regulators. These bHLH TFs initiate genetic programs that remove NSCs from quiescence and drive daughter neural progenitor cells (NPCs) to differentiate into specific neural cell subtypes, thereby contributing to the enormous cellular diversity of the adult brain. However, new insights have revealed that proneural gene activities are context-dependent and tightly regulated. Here we review how proneural bHLH TFs are regulated, with a focus on the murine cerebral cortex, drawing parallels where appropriate to other organisms and neural tissues. We discuss upstream regulatory events, post-translational modifications (phosphorylation, ubiquitinylation), protein-protein interactions, epigenetic and metabolic mechanisms that govern bHLH TF expression, stability, localization, and consequent transactivation of downstream target genes. These tight regulatory controls help to explain paradoxical findings of changes to bHLH activity in different cellular contexts.
Collapse
Affiliation(s)
- Ana-Maria Oproescu
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sisu Han
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Grisé KN, Bautista NX, Jacques K, Coles BLK, van der Kooy D. Glucocorticoid agonists enhance retinal stem cell self-renewal and proliferation. Stem Cell Res Ther 2021; 12:83. [PMID: 33494791 PMCID: PMC7831262 DOI: 10.1186/s13287-021-02136-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/01/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Adult mammalian retinal stem cells (RSCs) readily proliferate, self-renew, and generate progeny that differentiate into all retinal cell types in vitro. RSC-derived progeny can be induced to differentiate into photoreceptors, making them a potential source for retinal cell transplant therapies. Despite their proliferative propensity in vitro, RSCs in the adult mammalian eye do not proliferate and do not have a regenerative response to injury. Thus, identifying and modulating the mechanisms that regulate RSC proliferation may enhance the capacity to produce RSC-derived progeny in vitro and enable RSC activation in vivo. METHODS Here, we used medium-throughput screening to identify small molecules that can expand the number of RSCs and their progeny in culture. In vitro differentiation assays were used to assess the effects of synthetic glucocorticoid agonist dexamethasone on RSC-derived progenitor cell fate. Intravitreal injections of dexamethasone into adult mouse eyes were used to investigate the effects on endogenous RSCs. RESULTS We discovered that high-affinity synthetic glucocorticoid agonists increase RSC self-renewal and increase retinal progenitor proliferation up to 6-fold without influencing their differentiation in vitro. Intravitreal injection of synthetic glucocorticoid agonist dexamethasone induced in vivo proliferation in the ciliary epithelium-the niche in which adult RSCs reside. CONCLUSIONS Together, our results identify glucocorticoids as novel regulators of retinal stem and progenitor cell proliferation in culture and provide evidence that GCs may activate endogenous RSCs.
Collapse
Affiliation(s)
- Kenneth N Grisé
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
| | - Nelson X Bautista
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Krystal Jacques
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Brenda L K Coles
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Derek van der Kooy
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
10
|
Oorschot V, Lindsey BW, Kaslin J, Ramm G. TEM, SEM, and STEM-based immuno-CLEM workflows offer complementary advantages. Sci Rep 2021; 11:899. [PMID: 33441723 PMCID: PMC7806999 DOI: 10.1038/s41598-020-79637-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
Identifying endogenous tissue stem cells remains a key challenge in developmental and regenerative biology. To distinguish and molecularly characterise stem cell populations in large heterogeneous tissues, the combination of cytochemical cell markers with ultrastructural morphology is highly beneficial. Here, we realise this through workflows of multi-resolution immuno-correlative light and electron microscopy (iCLEM) methodologies. Taking advantage of the antigenicity preservation of the Tokuyasu technique, we have established robust protocols and workflows and provide a side-by-side comparison of iCLEM used in combination with scanning EM (SEM), scanning TEM (STEM), or transmission EM (TEM). Evaluation of the applications and advantages of each method highlights their practicality for the identification, quantification, and characterization of heterogeneous cell populations in small organisms, organs, or tissues in healthy and diseased states. The iCLEM techniques are broadly applicable and can use either genetically encoded or cytochemical markers on plant, animal and human tissues. We demonstrate how these protocols are particularly suited for investigating neural stem and progenitor cell populations of the vertebrate nervous system.
Collapse
Affiliation(s)
- Viola Oorschot
- Ramaciotti Centre for Cryo EM, Monash University, Melbourne, VIC, 3800, Australia
- European Molecular Biology Laboratory, Electron Microscopy Core Facility, Heidelberg, Germany
| | - Benjamin W Lindsey
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, R3E 0J9, Canada
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia.
| | - Georg Ramm
- Ramaciotti Centre for Cryo EM, Monash University, Melbourne, VIC, 3800, Australia.
- Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
11
|
Gilbert EAB, Morshead CM. Stem cell heterogeneity and regenerative competence: the enormous potential of rare cells. Neural Regen Res 2021; 16:285-286. [PMID: 32859777 PMCID: PMC7896223 DOI: 10.4103/1673-5374.290891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Emily A B Gilbert
- Terrence Donnelly Centre for Cellular and Biomolecular Research; Division of Anatomy, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Cindi M Morshead
- Terrence Donnelly Centre for Cellular and Biomolecular Research; Division of Anatomy, Department of Surgery, University of Toronto; Institute of Biomedical and Biochemical Engineering, Institute of Medical Science, University of Toronto; KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
12
|
Li P, Gao Y, Li X, Tian F, Wang F, Wang Y, Zhao B, Zhang R, Wang C. mRNA and miRNA expression profile reveals the role of miR-31 overexpression in neural stem cell. Sci Rep 2020; 10:17537. [PMID: 33067542 PMCID: PMC7568549 DOI: 10.1038/s41598-020-74541-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
A detailed understanding of the character and differentiation mechanism of neural stem cells (NSCs) will help us to effectively utilize their transplantation to treat spinal cord injury. In previous studies, we found that compared with motor neurons (MNs), miR-31 was significantly high-expressed in NSCs and might play an important role in the proliferation of NSCs and the differentiation into MNs. To better understand the role of miR-31, we characterized the mRNA and miRNAs expression profiles in the early stage of spinal cord-derived NSCs after miR-31 overexpression. There were 35 mRNAs and 190 miRNAs differentially expressed between the miR-31 overexpression group and the control group. Compared with the control group, both the up-regulated mRNAs and miRNAs were associated with the stemness maintenance of NSCs and inhibited their differentiation, especially to MNs, whereas the down-regulated had the opposite effect. Further analysis of the inhibition of miR-31 in NSCs showed that interfering with miR-31 could increase the expression of MNs-related genes and produce MNs-like cells. All these indicated that miR-31 is a stemness maintenance gene of NSCs and has a negative regulatory role in the differentiation of NSCs into MNs. This study deepens our understanding of the role of miR-31 in NSCs, provides an effective candidate target for effectively inducing the differentiation of NSCs into MNs, and lays a foundation for the effective application of NSCs in clinic.
Collapse
Affiliation(s)
- Pengfei Li
- Translational Medicine Research Center, Shanxi Medical University, Xinjian South Road 56, Taiyuan, 030001, Shanxi, People's Republic of China.,Laboratory Animal Center, Shanxi Medical University, Xinjian South Road 56, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yuantao Gao
- Nanchang University, Nanchang, 330000, People's Republic of China
| | - Xiao Li
- Laboratory Animal Center, Shanxi Medical University, Xinjian South Road 56, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Feng Tian
- Laboratory Animal Center, Shanxi Medical University, Xinjian South Road 56, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Fei Wang
- Laboratory Animal Center, Shanxi Medical University, Xinjian South Road 56, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yali Wang
- Laboratory Animal Center, Shanxi Medical University, Xinjian South Road 56, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Bichun Zhao
- Laboratory Animal Center, Shanxi Medical University, Xinjian South Road 56, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Ruxin Zhang
- Laboratory Animal Center, Shanxi Medical University, Xinjian South Road 56, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Chunfang Wang
- Laboratory Animal Center, Shanxi Medical University, Xinjian South Road 56, Taiyuan, 030001, Shanxi, People's Republic of China.
| |
Collapse
|
13
|
Joppé SE, Cochard LM, Levros LC, Hamilton LK, Ameslon P, Aumont A, Barnabé-Heider F, Fernandes KJ. Genetic targeting of neurogenic precursors in the adult forebrain ventricular epithelium. Life Sci Alliance 2020; 3:3/7/e202000743. [PMID: 32482782 PMCID: PMC7266992 DOI: 10.26508/lsa.202000743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 01/31/2023] Open
Abstract
In vivo evidence for precursors that produce neurons independent of neurosphere-forming neural stem cells suggests the adult forebrain, like the developing brain, has two distinct neurogenic pathways. The ventricular epithelium of the adult forebrain is a heterogeneous cell population that is a source of both quiescent and activated neural stem cells (qNSCs and aNSCs, respectively). We genetically targeted a subset of ventricle-contacting, glial fibrillary acidic protein (GFAP)-expressing cells, to study their involvement in qNSC/aNSC–mediated adult neurogenesis. Ventricle-contacting GFAP+ cells were lineage-traced beginning in early adulthood using adult brain electroporation and produced small numbers of olfactory bulb neuroblasts until at least 21 mo of age. Notably, electroporated GFAP+ neurogenic precursors were distinct from both qNSCs and aNSCs: they did not give rise to neurosphere-forming aNSCs in vivo or after extended passaging in vitro and they were not recruited during niche regeneration. GFAP+ cells with these properties included a FoxJ1+GFAP+ subset, as they were also present in an inducible FoxJ1 transgenic lineage-tracing model. Transiently overexpressing Mash1 increased the neurogenic output of electroporated GFAP+ cells in vivo, identifying them as a potentially recruitable population. We propose that the qNSC/aNSC lineage of the adult forebrain coexists with a distinct, minimally expanding subset of GFAP+ neurogenic precursors.
Collapse
Affiliation(s)
- Sandra E Joppé
- Research Center of the University of Montreal Hospital (CRCHUM), Montreal, Canada.,Department of Pathology and Cell Biology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Loïc M Cochard
- Research Center of the University of Montreal Hospital (CRCHUM), Montreal, Canada.,Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Louis-Charles Levros
- Research Center of the University of Montreal Hospital (CRCHUM), Montreal, Canada.,Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Laura K Hamilton
- Research Center of the University of Montreal Hospital (CRCHUM), Montreal, Canada.,Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Pierre Ameslon
- Research Center of the University of Montreal Hospital (CRCHUM), Montreal, Canada.,Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Anne Aumont
- Research Center of the University of Montreal Hospital (CRCHUM), Montreal, Canada
| | - Fanie Barnabé-Heider
- Research Center of the University of Montreal Hospital (CRCHUM), Montreal, Canada
| | - Karl Jl Fernandes
- Research Center of the University of Montreal Hospital (CRCHUM), Montreal, Canada .,Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, Canada
| |
Collapse
|
14
|
Upadhya R, Zingg W, Shetty S, Shetty AK. Astrocyte-derived extracellular vesicles: Neuroreparative properties and role in the pathogenesis of neurodegenerative disorders. J Control Release 2020; 323:225-239. [PMID: 32289328 DOI: 10.1016/j.jconrel.2020.04.017] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) released by neural cells play an essential role in brain homeostasis and the crosstalk between neural cells and the periphery. EVs are diverse, nano-sized vesicles, which transport proteins, nucleic acids, and lipids between cells over short and long expanses and hence are proficient for modulating the target cells. EVs released from neural cells are implicated in synaptic plasticity, neuron-glia interface, neuroprotection, neuroregeneration, and the dissemination of neuropathological molecules. This review confers the various properties of EVs secreted by astrocytes and their potential role in health and disease with a focus on evolving concepts. Naïve astrocytes shed EVs containing a host of neuroprotective compounds, which include fibroblast growth factor-2, vascular endothelial growth factor, and apolipoprotein-D. Stimulated astrocytes secrete EVs with neuroprotective molecules including heat shock proteins, synapsin 1, unique microRNAs, and glutamate transporters. Well-characterized astrocyte-derived EVs (ADEVs) generated in specific culture conditions and ADEVs that are engineered to carry the desired miRNAs or proteins are likely useful for treating brain injury and neurogenerative diseases. On the other hand, in conditions such as Alzheimer's disease (AD), stroke, Parkinson's disease, Amyotrophic lateral sclerosis (ALS), and other neuroinflammatory conditions, EVs released by activated astrocytes appear to mediate or exacerbate the pathological processes. The examples include ADEVs spreading the dysregulated complement system in AD, mediating motoneuron toxicity in ALS, and stimulating peripheral leukocyte migration into the brain in inflammatory conditions. Strategies restraining the release of EVs by activated astrocytes or modulating the composition of ADEVs are likely beneficial for treating neurodegenerative diseases. Also, periodic analyses of ADEVs in the blood is useful for detecting astrocyte-specific biomarkers in different neurological conditions and for monitoring disease progression and remission with distinct therapeutic approaches.
Collapse
Affiliation(s)
- Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Winston Zingg
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Siddhant Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
| |
Collapse
|
15
|
Quiescent Neural Stem Cells for Brain Repair and Regeneration: Lessons from Model Systems. Trends Neurosci 2020; 43:213-226. [PMID: 32209453 DOI: 10.1016/j.tins.2020.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/26/2020] [Accepted: 02/05/2020] [Indexed: 12/29/2022]
Abstract
Neural stem cells (NSCs) are multipotent progenitors that are responsible for producing all of the neurons and macroglia in the nervous system. In adult mammals, NSCs reside predominantly in a mitotically dormant, quiescent state, but they can proliferate in response to environmental inputs such as feeding or exercise. It is hoped that quiescent NSCs could be activated therapeutically to contribute towards repair in humans. This will require an understanding of quiescent NSC heterogeneities and regulation during normal physiology and following brain injury. Non-mammalian vertebrates (zebrafish and salamanders) and invertebrates (Drosophila) offer insights into brain repair and quiescence regulation that are difficult to obtain using rodent models alone. We review conceptual progress from these various models, a first step towards harnessing quiescent NSCs for therapeutic purposes.
Collapse
|
16
|
Lineage tracing reveals the hierarchical relationship between neural stem cell populations in the mouse forebrain. Sci Rep 2019; 9:17730. [PMID: 31776378 PMCID: PMC6881290 DOI: 10.1038/s41598-019-54143-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 11/04/2019] [Indexed: 11/25/2022] Open
Abstract
Since the original isolation of neural stem cells (NSCs) in the adult mammalian brain, further work has revealed a heterogeneity in the NSC pool. Our previous work characterized a distinct, Oct4 expressing, NSC population in the periventricular region, through development and into adulthood. We hypothesized that this population is upstream in lineage to the more abundant, well documented, GFAP expressing NSC. Herein, we show that Oct4 expressing NSCs give rise to neurons, astrocytes and oligodendrocytes throughout the developing brain. Further, transgenic inducible mouse models demonstrate that the rare Oct4 expressing NSCs undergo asymmetric divisions to give rise to GFAP expressing NSCs in naïve and injured brains. This lineage relationship between distinct NSC pools contributes significantly to an understanding of neural development, the NSC lineage in vivo and has implications for neural repair.
Collapse
|
17
|
Functions of subventricular zone neural precursor cells in stroke recovery. Behav Brain Res 2019; 376:112209. [PMID: 31493429 DOI: 10.1016/j.bbr.2019.112209] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/11/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022]
Abstract
The proliferation and ectopic migration of neural precursor cells (NPCs) in response to ischemic brain injury was first reported two decades ago. Since then, studies of brain injury-induced subventricular zone cytogenesis, primarily in rodent models, have provided insight into the cellular and molecular determinants of this phenomenon and its modulation by various factors. However, despite considerable correlational evidence-and some direct evidence-to support contributions of NPCs to behavioral recovery after stroke, the causal mechanisms have not been identified. Here we discuss the subventricular zone cytogenic response and its possible roles in brain injury and disease, focusing on rodent models of stroke. Emerging evidence suggests that NPCs can modulate harmful responses and enhance reparative responses to neurologic diseases. We speculatively identify four broad functions of NPCs in the context of stroke: cell replacement, cytoprotection, remodeling of residual tissue, and immunomodulation. Thus, NPCs may have pleiotropic functions in supporting behavioral recovery after stroke.
Collapse
|
18
|
Zarco N, Norton E, Quiñones-Hinojosa A, Guerrero-Cázares H. Overlapping migratory mechanisms between neural progenitor cells and brain tumor stem cells. Cell Mol Life Sci 2019; 76:3553-3570. [PMID: 31101934 PMCID: PMC6698208 DOI: 10.1007/s00018-019-03149-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/16/2019] [Accepted: 05/13/2019] [Indexed: 01/18/2023]
Abstract
Neural stem cells present in the subventricular zone (SVZ), the largest neurogenic niche of the mammalian brain, are able to self-renew as well as generate neural progenitor cells (NPCs). NPCs are highly migratory and traverse the rostral migratory stream (RMS) to the olfactory bulb, where they terminally differentiate into mature interneurons. NPCs from the SVZ are some of the few cells in the CNS that migrate long distances during adulthood. The migratory process of NPCs is highly regulated by intracellular pathway activation and signaling from the surrounding microenvironment. It involves modulation of cell volume, cytoskeletal rearrangement, and isolation from compact extracellular matrix. In malignant brain tumors including high-grade gliomas, there are cells called brain tumor stem cells (BTSCs) with similar stem cell characteristics to NPCs but with uncontrolled cell proliferation and contribute to tumor initiation capacity, tumor progression, invasion, and tumor maintenance. These BTSCs are resistant to chemotherapy and radiotherapy, and their presence is believed to lead to tumor recurrence at distal sites from the original tumor location, principally due to their high migratory capacity. BTSCs are able to invade the brain parenchyma by utilizing many of the migratory mechanisms used by NPCs. However, they have an increased ability to infiltrate the tight brain parenchyma and utilize brain structures such as myelin tracts and blood vessels as migratory paths. In this article, we summarize recent findings on the mechanisms of cellular migration that overlap between NPCs and BTSCs. A better understanding of the intersection between NPCs and BTSCs will to provide a better comprehension of the BTSCs' invasive capacity and the molecular mechanisms that govern their migration and eventually lead to the development of new therapies to improve the prognosis of patients with malignant gliomas.
Collapse
Affiliation(s)
- Natanael Zarco
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Emily Norton
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Alfredo Quiñones-Hinojosa
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Hugo Guerrero-Cázares
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
19
|
Jiang Y, Zhu D, Liu W, Qin Q, Fang Z, Pan Z. Hedgehog pathway inhibition causes primary follicle atresia and decreases female germline stem cell proliferation capacity or stemness. Stem Cell Res Ther 2019; 10:198. [PMID: 31277696 PMCID: PMC6612207 DOI: 10.1186/s13287-019-1299-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/23/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023] Open
Abstract
Background Follicle depletion is one of the causes of premature ovarian failure (POF) and primary ovarian insufficiency (POI). Hence, maintenance of a certain number of female germline stem cells (FGSCs) is optimal to produce oocytes and replenish the primordial follicle pool. The mechanism that regulates proliferation or stemness of FGSCs could contribute to restoring ovarian function, but it remains uncharacterized in postnatal mammalian ovaries. This study aims to investigate the mechanism by which inhibiting the activity of the hedgehog (Hh) signaling pathway regulates follicle development and FGSC proliferation. Methods and results To understand the role of the Hh pathway in ovarian aging, we measured Hh signaling activity at different reproductive ages and the correlation between them in physiological and pathological mice. Furthermore, we evaluated the follicle number and development and the changes in FGSC proliferation or stemness after blocking the Hh pathway in vitro and in vivo. In addition, we aimed to explain one of the mechanisms for the FGSC phenotype changes induced by treatment with the Hh pathway-specific inhibitor GANT61 via oxidative stress and apoptosis. The results show that the activity of Hh signaling is decreased in the ovaries in physiological aging and POF models, which is consistent with the trend of expression levels of the germline stem cell markers Mvh and Oct4. In vitro, blocking the Hh pathway causes follicular developmental disorders and depletes ovarian germ cells and FGSCs after treating ovaries with GANT61. The proliferation or stemness of cultured primary FGSCs is reduced when Hh activity is blocked. Our results show that the antioxidative enzyme level and the ratio of Bcl-2/Bax decrease, the expression level of caspase 3 increases, the mitochondrial membrane potential is abnormal, and ROS accumulate in this system. Conclusions We observed that the inhibition of the Hh signaling pathway with GANT61 could reduce primordial follicle number and decrease FGSC reproductive capacity or stemness through oxidative damage and apoptosis. Electronic supplementary material The online version of this article (10.1186/s13287-019-1299-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Jiang
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Dantian Zhu
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Wenfeng Liu
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Qiushi Qin
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhi Fang
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zezheng Pan
- Faculty of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China. .,Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
20
|
Adams KV, Morshead CM. Neural stem cell heterogeneity in the mammalian forebrain. Prog Neurobiol 2018; 170:2-36. [PMID: 29902499 DOI: 10.1016/j.pneurobio.2018.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 05/23/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022]
Abstract
The brain was long considered an organ that underwent very little change after development. It is now well established that the mammalian central nervous system contains neural stem cells that generate progeny that are capable of making new neurons, astrocytes, and oligodendrocytes throughout life. The field has advanced rapidly as it strives to understand the basic biology of these precursor cells, and explore their potential to promote brain repair. The purpose of this review is to present current knowledge about the diversity of neural stem cells in vitro and in vivo, and highlight distinctions between neural stem cell populations, throughout development, and within the niche. A comprehensive understanding of neural stem cell heterogeneity will provide insights into the cellular and molecular regulation of neural development and lifelong neurogenesis, and will guide the development of novel strategies to promote regeneration and neural repair.
Collapse
Affiliation(s)
- Kelsey V Adams
- Institute of Medical Science, Terrence Donnelly Centre, University of Toronto, Toronto ON, M5S 3E2, Canada.
| | - Cindi M Morshead
- Institute of Medical Science, Terrence Donnelly Centre, University of Toronto, Toronto ON, M5S 3E2, Canada; Department of Surgery, Division of Anatomy, Canada; Institute of Biomaterials and Biomedical Engineering, Canada; Rehabilitation Science Institute, University of Toronto, Canada.
| |
Collapse
|