1
|
Aly RM, Aglan HA, Eldeen GN, Ahmed HH. Optimization of differentiation protocols of dental tissues stem cells to pancreatic β-cells. BMC Mol Cell Biol 2022; 23:41. [PMID: 36123594 PMCID: PMC9487116 DOI: 10.1186/s12860-022-00441-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/06/2022] [Indexed: 11/14/2022] Open
Abstract
Background Despite the recent progress in the differentiation strategies of stem cells into pancreatic beta cell lineage, current protocols are not optimized for different cell types. The purpose of this study is to investigate and compare the ability of stem cells derived from dental pulp (DPSCs) and periodontal ligament (PDLSCs) as two anatomically different dental tissues to differentiate into pancreatic beta cells while assessing the most suitable protocol for each cell type. Methods DPSCs & PDLSCs were isolated and characterized morphologically and phenotypically and then differentiated into pancreatic beta cells using two protocols. Differentiated cells were assessed by qRT-PCR for the expression of pancreatic related markers Foxa-2, Sox-17, PDX-1, Ngn-3, INS and Gcg. Functional assessment of differentiation was performed by quantification of Insulin release via ELISA. Results Protocol 2 implementing Geltrex significantly enhanced the expression levels of all tested genes both in DPSCs & PDLSCs. Both DPSCs & PDLSCs illustrated improved response to increased glucose concentration in comparison to undifferentiated cells. Moreover, DPSCs demonstrated an advanced potency towards pancreatic lineage differentiation over PDLSCs under both protocols. Conclusion In conclusion, the current study reports the promising potential of dental derived stem cells in differentiating into pancreatic lineage through selection of the right protocol.
Collapse
|
2
|
Abberton KM, McDonald TL, Diviney M, Holdsworth R, Leslie S, Delatycki MB, Liu L, Klamer G, Johnson P, Elwood NJ. Identification and Re-consent of Existing Cord Blood Donors for Creation of Induced Pluripotent Stem Cell Lines for Potential Clinical Applications. Stem Cells Transl Med 2022; 11:1052-1060. [PMID: 36073721 PMCID: PMC9585951 DOI: 10.1093/stcltm/szac060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
We aim to create a bank of clinical grade cord blood-derived induced pluripotent stem cell lines in order to facilitate clinical research leading to the development of new cellular therapies. Here we present a clear pathway toward the creation of such a resource, within a strong quality framework, and with the appropriate regulatory, government and ethics approvals, along with a dynamic follow-up and re-consent process of cord blood donors from the public BMDI Cord Blood Bank. Interrogation of the cord blood bank inventory and next generation sequencing was used to identify and confirm 18 donors with suitable HLA homozygous haplotypes. Regulatory challenges that may affect global acceptance of the cell lines, along with the quality standards required to operate as part of a global network, are being met by working in collaboration with bodies such as the International Stem Cell Banking Initiative (ISCBI) and the Global Alliance for iPSC Therapies (GAiT). Ethics approval was granted by an Institutional Human Research Ethics Committee, and government approval has been obtained to use banked cord blood for this purpose. New issues of whole-genome sequencing and the relevant donor safeguards and protections were considered with input from clinical genetics services, including the rights and information flow to donors, and commercialization aspects. The success of these processes has confirmed feasibility and utility of using banked cord blood to produce clinical-grade iPSC lines for potential cellular therapies.
Collapse
Affiliation(s)
- Keren M Abberton
- BMDI Cord Blood Bank, Melbourne, Australia.,Murdoch Children's Research Institute, Melbourne, Australia.,Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Tricia L McDonald
- BMDI Cord Blood Bank, Melbourne, Australia.,Murdoch Children's Research Institute, Melbourne, Australia
| | - Mary Diviney
- VTIS at Australian Red Cross Lifeblood, Melbourne, Australia
| | | | - Stephen Leslie
- Schools of Mathematics and Statistics, and BioSciences, Melbourne Integrative Genomics, University of Melbourne, Melbourne, Australia
| | - Martin B Delatycki
- Murdoch Children's Research Institute, Melbourne, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, Australia.,Victorian Clinical Genetics Services, Melbourne, Australia
| | - Lin Liu
- BMDI Cord Blood Bank, Melbourne, Australia.,Murdoch Children's Research Institute, Melbourne, Australia
| | - Guy Klamer
- Sydney Cord Blood Bank, Sydney Children's Hospitals Network, Sydney, Australia
| | - Phillip Johnson
- Queensland Cord Blood Bank At The Mater, Brisbane, Australia
| | - Ngaire J Elwood
- BMDI Cord Blood Bank, Melbourne, Australia.,Murdoch Children's Research Institute, Melbourne, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
3
|
Tan LS, Chen JT, Lim LY, Teo AKK. Manufacturing clinical-grade human induced pluripotent stem cell-derived beta cells for diabetes treatment. Cell Prolif 2022; 55:e13232. [PMID: 35474596 PMCID: PMC9357357 DOI: 10.1111/cpr.13232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/26/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
The unlimited proliferative capacity of human pluripotent stem cells (hPSCs) fortifies it as one of the most attractive sources for cell therapy application in diabetes. In the past two decades, vast research efforts have been invested in developing strategies to differentiate hPSCs into clinically suitable insulin‐producing endocrine cells or functional beta cells (β cells). With the end goal being clinical translation, it is critical for hPSCs and insulin‐producing β cells to be derived, handled, stored, maintained and expanded with clinical compliance. This review focuses on the key processes and guidelines for clinical translation of human induced pluripotent stem cell (hiPSC)‐derived β cells for diabetes cell therapy. Here, we discuss the (1) key considerations of manufacturing clinical‐grade hiPSCs, (2) scale‐up and differentiation of clinical‐grade hiPSCs into β cells in clinically compliant conditions and (3) mandatory quality control and product release criteria necessitated by various regulatory bodies to approve the use of the cell‐based products.
Collapse
Affiliation(s)
- Lay Shuen Tan
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Juin Ting Chen
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lillian Yuxian Lim
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Manzini P, Peli V, Rivera-Ordaz A, Budelli S, Barilani M, Lazzari L. Validation of an automated cell counting method for cGMP manufacturing of human induced pluripotent stem cells. BIOTECHNOLOGY REPORTS 2022; 33:e00708. [PMID: 35198419 PMCID: PMC8851089 DOI: 10.1016/j.btre.2022.e00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/18/2022] [Accepted: 02/06/2022] [Indexed: 11/24/2022]
|
5
|
Shibamiya A, Schulze E, Krauß D, Augustin C, Reinsch M, Schulze ML, Steuck S, Mearini G, Mannhardt I, Schulze T, Klampe B, Werner T, Saleem U, Knaust A, Laufer SD, Neuber C, Lemme M, Behrens CS, Loos M, Weinberger F, Fuchs S, Eschenhagen T, Hansen A, Ulmer BM. Cell Banking of hiPSCs: A Practical Guide to Cryopreservation and Quality Control in Basic Research. ACTA ACUST UNITED AC 2021; 55:e127. [PMID: 32956561 DOI: 10.1002/cpsc.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The reproducibility of stem cell research relies on the constant availability of quality-controlled cells. As the quality of human induced pluripotent stem cells (hiPSCs) can deteriorate in the course of a few passages, cell banking is key to achieve consistent results and low batch-to-batch variation. Here, we provide a cost-efficient route to generate master and working cell banks for basic research projects. In addition, we describe minimal protocols for quality assurance including tests for sterility, viability, pluripotency, and genetic integrity. © 2020 The Authors. Basic Protocol 1: Expansion of hiPSCs Basic Protocol 2: Cell banking of hiPSCs Support Protocol 1: Pluripotency assessment by flow cytometry Support Protocol 2: Thawing control: Viability and sterility Support Protocol 3: Potency, viral clearance, and pluripotency: Spontaneous differentiation and qRT-PCR Support Protocol 4: Identity: Short tandem repeat analysis.
Collapse
Affiliation(s)
- Aya Shibamiya
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Elisabeth Schulze
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Dana Krauß
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Current address: Institute of Cancer Research, Department of Medicine I, Medical University of Vienna and Comprehensive Cancer Center, Vienna, Austria
| | - Christa Augustin
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marina Reinsch
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Mirja Loreen Schulze
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Simone Steuck
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Giulia Mearini
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Ingra Mannhardt
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Schulze
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Birgit Klampe
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Tessa Werner
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Umber Saleem
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Anika Knaust
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sandra D Laufer
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Christiane Neuber
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Marta Lemme
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Charlotta Sophie Behrens
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Malte Loos
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Florian Weinberger
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sigrid Fuchs
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Bärbel Maria Ulmer
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
6
|
Fan BS, Liu Y, Zhang JY, Chen YR, Yang M, Yu JK. Principles for establishment of the stem cell bank and its applications on management of sports injuries. Stem Cell Res Ther 2021; 12:307. [PMID: 34051865 PMCID: PMC8164236 DOI: 10.1186/s13287-021-02360-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The stem cells of the stem cell banks have prominent problems for insufficient sources, easy contamination, unstable biological characteristics after serial subcultivations, and high cost. METHODS After collecting the construction processes of the existing stem cell banks and suggestions from authoritative experts in the past 10 years, 230 reference principles were obtained, and finally, the principles of "5C" for the establishment of modern standardized stem cell banks were summarized, and their related applications on the management of sports injuries were reviewed as well. RESULTS The basic principles of "5C" for the establishment of modern standardized stem cell banks include (1) principle of informed consent, (2) confidentiality principle, (3) conformity principle, (4) contamination-free principle, and (5) commonweal principle. The applications of stem cells on repairs, reconstructions, and regenerations of sports injuries were also reviewed, especially in tissue-engineered cartilage, tissue-engineered meniscus, and tissue-engineered ligament. CONCLUSIONS The proposal of the basic principles of "5C" is conducive to relevant stem cell researchers and clinical medical experts to build modern stem cell banks in a more standardized and efficient manner while avoiding some major mistakes or problems that may occur in the future. On this basis, stem cells from stem cell banks would be increasingly used in the management of sports injuries. More importantly, these days, getting stem cell samples are difficult in a short time, and such banks with proper legal consent may help the scientific community.
Collapse
Affiliation(s)
- Bao-Shi Fan
- Sports Medicine Department of the Institution of Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, No. 49 North Garden Road, Beijing, 100191, China.,Institute of Sports Medicine of Peking University, No. 49 North Garden Road, Beijing, 100191, China.,School of Clinical Medicine, Weifang Medical University, No.7166 West, Baotong Road, Weifang, 261053, Shandong, China
| | - Yang Liu
- Sports Medicine Department of the Institution of Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, No. 49 North Garden Road, Beijing, 100191, China.,Institute of Sports Medicine of Peking University, No. 49 North Garden Road, Beijing, 100191, China
| | - Ji-Ying Zhang
- Sports Medicine Department of the Institution of Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, No. 49 North Garden Road, Beijing, 100191, China.,Institute of Sports Medicine of Peking University, No. 49 North Garden Road, Beijing, 100191, China
| | - You-Rong Chen
- Sports Medicine Department of the Institution of Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, No. 49 North Garden Road, Beijing, 100191, China.,Institute of Sports Medicine of Peking University, No. 49 North Garden Road, Beijing, 100191, China
| | - Meng Yang
- Sports Medicine Department of the Institution of Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, No. 49 North Garden Road, Beijing, 100191, China.,Institute of Sports Medicine of Peking University, No. 49 North Garden Road, Beijing, 100191, China.,School of Clinical Medicine, Weifang Medical University, No.7166 West, Baotong Road, Weifang, 261053, Shandong, China
| | - Jia-Kuo Yu
- Sports Medicine Department of the Institution of Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, No. 49 North Garden Road, Beijing, 100191, China. .,Institute of Sports Medicine of Peking University, No. 49 North Garden Road, Beijing, 100191, China.
| |
Collapse
|
7
|
Kim JH, Jo HY, Ha HY, Kim YO. Korea National Stem Cell Bank. Stem Cell Res 2021; 53:102270. [PMID: 33714852 DOI: 10.1016/j.scr.2021.102270] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/17/2021] [Indexed: 10/22/2022] Open
Abstract
The Korea National Stem Cell Bank has been banking pluripotent stem cell (PSC) lines since 2012. Quality-controlled and ethically sourced cell lines were developed for distribution. Currently (as of 2020), among the 69 deposited lines, 4 research-grade human embryonic stem cell (hESC) lines and 19 induced pluripotent stem cell (iPSC) lines have been distributed. Good manufacturing practices (GMP)-compliant homozygous iPSC lines for regenerative medicine with homozygous HLA haplotypes that cover 51% of the Korean population have been deposited as well. To ensure the quality of the cell lines, we performed eighteen different quality tests on the identity, sterility, consistency, stability and safety of the cell lines. Regarding genetic stability, we are collecting SNPchip, WES, Methyl-seq, and RNA-seq data, which are open to the public.
Collapse
Affiliation(s)
- Jung-Hyun Kim
- Korea National Stem Cell Bank, South Korea; Division of Intractable Diseases Research, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Osong Health Technology Administration Complex 202, South Korea.
| | - Hye-Yeong Jo
- Korea National Stem Cell Bank, South Korea; Division of Intractable Diseases Research, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Osong Health Technology Administration Complex 202, South Korea
| | - Hye-Yeong Ha
- Korea National Stem Cell Bank, South Korea; Division of Intractable Diseases Research, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Osong Health Technology Administration Complex 202, South Korea
| | - Yong-Ou Kim
- Korea National Stem Cell Bank, South Korea; Division of Intractable Diseases Research, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Osong Health Technology Administration Complex 202, South Korea
| |
Collapse
|
8
|
Stacey GN, Healy L. The International Stem Cell Banking Initiative (ISCBI). Stem Cell Res 2021; 53:102265. [PMID: 33799275 DOI: 10.1016/j.scr.2021.102265] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/17/2021] [Indexed: 10/22/2022] Open
Abstract
The International Stem Cell Banking Initiative(ISCBI) was started in 2007 to bring together the leading stem cell banks distributing human pluripotent stem cell (hPSC) lines for research and development, to discuss best practice across a range of issues from donor consent to delivery of cells for use in research, diagnostics and cell-based medicines. ISCBI holds workshops around the world and on-line and regularly publishes summaries of discussions and consensus amongst experts in stem cell biology, biobanking technology, regulation and policy making. To date, experts from more than 28 countries have contributed to ISCBI activities which are frequently run in collaboration with other stem cell organisations and has co-ordinated closely with the International Stem Cell Initiative and the hPSCreg European Commission funded database of hPSC lines and clincal trials.
Collapse
Affiliation(s)
- Glyn N Stacey
- International Stem Cell Banking Initiative, 2 High Street, Barley, UK; National Stem Cell Resource Centre, Institute of Zoology, Chinese Academy of Sciences, Beijing 100190, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Lyn Healy
- Francis Crick Institute, 1 Midland Road, London, UK.
| |
Collapse
|
9
|
Uçkan-Çetinkaya D, Haider KH. Induced Pluripotent Stem Cells in Pediatric Research and Clinical Translation. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Master Z, Crowley AP, Smith C, Wigle D, Terzic A, Sharp RR. Stem cell preservation for regenerative therapies: ethical and governance considerations for the health care sector. NPJ Regen Med 2020; 5:23. [PMID: 33298936 PMCID: PMC7708480 DOI: 10.1038/s41536-020-00108-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
The stem cell preservation industry has grown substantially with private businesses, public hospitals, and academic medical centers considering preserving induced pluripotent stem cells, mesenchymal stem cells, and other cell types of patients and the public in order to potentially use them for stem cell therapy should such an intervention exist in the future. Despite this growth and interest among private firms and academic centers, no study has yet considered the bioethical issues of such platforms. In this article, we explore several ethical and social issues related to the biopreservation of stem cells for future regenerative therapies. We analyze a range of bioethical considerations that public and private institutions should bear in mind as they develop stem cell preservation platforms. These include medical validation of regenerative interventions and their influence on the public understanding of stem cell therapies, the impact of public trust of organizations creating a private, for-profit venture of stem cell preservation, and logistical issues in the governance of the collection including ownership and dispositional authority, informed consent and access, and withdrawal and non-payment. These considerations should be incorporated into current and future stem cell preservation platforms in order to promote the responsible translation of regenerative medicine.
Collapse
Affiliation(s)
- Zubin Master
- Biomedical Ethics Research Program, Mayo Clinic, Rochester, MN, 55905, USA.
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Aidan P Crowley
- College of Science, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Cambray Smith
- Biomedical Ethics Research Program, Mayo Clinic, Rochester, MN, 55905, USA
- School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Dennis Wigle
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Andre Terzic
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Richard R Sharp
- Biomedical Ethics Research Program, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
11
|
Sullivan S, Ginty P, McMahon S, May M, Solomon SL, Kurtz A, Stacey GN, Bennaceur Griscelli A, Li RA, Barry J, Song J, Turner ML. The Global Alliance for iPSC Therapies (GAiT). Stem Cell Res 2020; 49:102036. [PMID: 33212350 DOI: 10.1016/j.scr.2020.102036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
The Global Alliance for iPSC Therapies (GAiT) is a new initiative to support the implementation and clinical application of therapies derived from pluripotent stem cells to the benefit of patients globally. GAiT's mission is to serve as a central, international resource for those organisations developing therapies from clinical-grade induced pluripotent stem cells, and to support the expansion of this nascent field. With the support of its international partners, GAiT already has an early position on manufacturing, regulatory and quality standards. This article details GAiT's development, its mission and structure, as well as how, and by whom, it is funded. The article ends with brief overview of current and upcoming activities.
Collapse
Affiliation(s)
- Stephen Sullivan
- Global Alliance for iPSC Therapies (GAiT), Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK.
| | - Patrick Ginty
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, UK
| | - Siofradh McMahon
- Centre for Commercialization of Regenerative Medicine, 661 University Ave #1002, Toronto, Canada
| | - Michael May
- Centre for Commercialization of Regenerative Medicine, 661 University Ave #1002, Toronto, Canada
| | - Susan L Solomon
- New York Stem Cell Foundation Research Institute, 619 W 54th St, New York, New York, USA
| | - Andreas Kurtz
- BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Glyn N Stacey
- International Stem Cell Banking Initiative, 2 High St, Barley, Hertfordshire, UK
| | | | - Ronald A Li
- Dr. Li Dak Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong; Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jacqueline Barry
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, UK
| | - Jihwan Song
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Marc L Turner
- Global Alliance for iPSC Therapies (GAiT), Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK; Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, UK; Advanced Therapeutics, Scottish National Blood Transfusion Service, Edinburgh, UK
| |
Collapse
|
12
|
"Betwixt Mine Eye and Heart a League Is Took": The Progress of Induced Pluripotent Stem-Cell-Based Models of Dystrophin-Associated Cardiomyopathy. Int J Mol Sci 2020; 21:ijms21196997. [PMID: 32977524 PMCID: PMC7582534 DOI: 10.3390/ijms21196997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
The ultimate goal of precision disease modeling is to artificially recreate the disease of affected people in a highly controllable and adaptable external environment. This field has rapidly advanced which is evident from the application of patient-specific pluripotent stem-cell-derived precision therapies in numerous clinical trials aimed at a diverse set of diseases such as macular degeneration, heart disease, spinal cord injury, graft-versus-host disease, and muscular dystrophy. Despite the existence of semi-adequate treatments for tempering skeletal muscle degeneration in dystrophic patients, nonischemic cardiomyopathy remains one of the primary causes of death. Therefore, cardiovascular cells derived from muscular dystrophy patients' induced pluripotent stem cells are well suited to mimic dystrophin-associated cardiomyopathy and hold great promise for the development of future fully effective therapies. The purpose of this article is to convey the realities of employing precision disease models of dystrophin-associated cardiomyopathy. This is achieved by discussing, as suggested in the title echoing William Shakespeare's words, the settlements (or "leagues") made by researchers to manage the constraints ("betwixt mine eye and heart") distancing them from achieving a perfect precision disease model.
Collapse
|
13
|
Karanu F, Ott L, Webster DA, Stehno-Bittel L. Improved harmonization of critical characterization assays across cell therapies. Regen Med 2020; 15:1661-1678. [PMID: 32589107 DOI: 10.2217/rme-2020-0003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The field of cell therapy has blossomed, providing exciting new options for treating a variety of diseases. While few cell therapy products have US FDA approval, there are thousands of cell treatments at various stages of development, pointing to a potential revolutionary shift in patient care. The expanding number and nature of cellular therapies necessitate greater standardization. Several international organizations are collaborating to pursue some level of global standardization, especially concerning cell banking. However, less harmonization surrounds assays used for critical quality characterization including: identity, purity, safety and potency. Frequently, there is divergence regarding the terms describing the characterization assays across regulatory authorities and guidances. This review summarizes the critical quality assays currently used for different categories of cell therapies. Areas of harmonization and an absence of standardization are highlighted. We propose potential solutions to facilitate harmonization of critical quality characterization assays and the language used to describe them.
Collapse
Affiliation(s)
- Francis Karanu
- Likarda, LLC, 10330 Hickman Mills Drive, Kansas City, MO, USA
| | - Lindsey Ott
- Likarda, LLC, 10330 Hickman Mills Drive, Kansas City, MO, USA
| | - Debra Aub Webster
- Cardinal Health Regulatory Sciences, 7400 West 100th Street, Overland Park, KS 66210, USA
| | - Lisa Stehno-Bittel
- Likarda, LLC, 10330 Hickman Mills Drive, Kansas City, MO, USA.,Department of Rehabilitation Science, University of Kansas Medical Center, MS 2002, 3901 Rainbow Blvd, Kansas City, KC, USA
| |
Collapse
|
14
|
Development of genetic quality tests for good manufacturing practice-compliant induced pluripotent stem cells and their derivatives. Sci Rep 2020; 10:3939. [PMID: 32127560 PMCID: PMC7054319 DOI: 10.1038/s41598-020-60466-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Although human induced pluripotent stem cell (hiPSC) lines are karyotypically normal, they retain the potential for mutation in the genome. Accordingly, intensive and relevant quality controls for clinical-grade hiPSCs remain imperative. As a conceptual approach, we performed RNA-seq-based broad-range genetic quality tests on GMP-compliant human leucocyte antigen (HLA)-homozygous hiPSCs and their derivatives under postdistribution conditions to investigate whether sequencing data could provide a basis for future quality control. We found differences in the degree of single-nucleotide polymorphism (SNP) occurring in cells cultured at three collaborating institutes. However, the cells cultured at each centre showed similar trends, in which more SNPs occurred in late-passage hiPSCs than in early-passage hiPSCs after differentiation. In eSNP karyotyping analysis, none of the predicted copy number variations (CNVs) were identified, which confirmed the results of SNP chip-based CNV analysis. HLA genotyping analysis revealed that each cell line was homozygous for HLA-A, HLA-B, and DRB1 and heterozygous for HLA-DPB type. Gene expression profiling showed a similar differentiation ability of early- and late-passage hiPSCs into cardiomyocyte-like, hepatic-like, and neuronal cell types. However, time-course analysis identified five clusters showing different patterns of gene expression, which were mainly related to the immune response. In conclusion, RNA-seq analysis appears to offer an informative genetic quality testing approach for such cell types and allows the early screening of candidate hiPSC seed stocks for clinical use by facilitating safety and potential risk evaluation.
Collapse
|
15
|
Li S, Wang M, Zhou J. Brain Organoids: A Promising Living Biobank Resource for Neuroscience Research. Biopreserv Biobank 2020; 18:136-143. [PMID: 31977235 DOI: 10.1089/bio.2019.0111] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Biobanking plays an important role between clinical practice and translational research. In addition to the traditional biomolecular-based biobanks, there is a growing interest in establishing living biobanks, including organoid biobanks that can collect and store viable and functional tissues and proliferative cell types for long periods of time. An organoid is a three-dimensional cell complex derived by self-organization of small tissue blocks or stem cells, which can recapitulate the phenotypic and genetic characteristics of targeted human organs. Publications on brain organoids have increased recently, and several types of brain organoids have been reported to model normal and abnormal neural development, as well as different neurodegenerative diseases, neuropsychiatric disorders, and other neural conditions. Based on the current status of research, more exploration on brain organoids is needed, through technical advancements, to improve the reproducibility and scalability, as well as to decrease the diversity. Moreover, given their natural characteristics, more attention to ethical considerations is needed, considering the extent of maturation and complexity of brain organoids. Living biobanks that are engaged in collecting categories of brain organoids possessing different genetic backgrounds, and with spatial and temporal characteristics, will eventually contribute to the understanding of neural conditions and ultimately facilitate innovative treatment development.
Collapse
Affiliation(s)
- Shuang Li
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Min Wang
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Pediatric Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junmei Zhou
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Wang D, Gilbert JR, Zhang X, Zhao B, Ker DFE, Cooper GM. Calvarial Versus Long Bone: Implications for Tailoring Skeletal Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2019; 26:46-63. [PMID: 31588853 DOI: 10.1089/ten.teb.2018.0353] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tissue-engineered graft substitutes have shown great potential to treat large bone defects. While we usually assume that therapeutic approaches developed for appendicular bone healing could be similarly translated for application in craniofacial reconstruction and vice versa, this is not necessarily accurate. In addition to those more well-known healing-associated factors, such as age, lifestyle (e.g., nutrition and smoking), preexisting disease (e.g., diabetes), medication, and poor blood supply, the developmental origins and surrounding tissue of the wound sites can largely affect the fracture healing outcome as well as designed treatments. Therefore, the strategies developed for long bone fracture repair might not be suitable or directly applicable to skull bone repair. In this review, we discuss aspects of development, healing process, structure, and tissue engineering considerations between calvarial and long bones to assist in designing the tailored bone repair strategies. Impact Statement We summarized, in this review, the existing body of knowledge between long bone and calvarial bone with regard to their development and healing, tissue structure, and consideration of current tissue engineering strategies. By highlighting their similarities and differences, we propose that tailored tissue engineering strategies, such as scaffold features, growth factor usage, and the source of cells for tissue or region-specific bone repair, are necessary to ensure an optimized healing outcome.
Collapse
Affiliation(s)
- Dan Wang
- Department of Stomatology, Tenth People's Hospital of Tongji University, Shanghai, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James R Gilbert
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingkun Zhao
- Department of Stomatology, Tenth People's Hospital of Tongji University, Shanghai, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Gregory M Cooper
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Kubiak CA, Grochmal J, Kung TA, Cederna PS, Midha R, Kemp SWP. Stem-cell-based therapies to enhance peripheral nerve regeneration. Muscle Nerve 2019; 61:449-459. [PMID: 31725911 DOI: 10.1002/mus.26760] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 10/31/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
Peripheral nerve injury remains a major cause of morbidity in trauma patients. Despite advances in microsurgical techniques and improved understanding of nerve regeneration, obtaining satisfactory outcomes after peripheral nerve injury remains a difficult clinical problem. There is a growing body of evidence in preclinical animal studies demonstrating the supportive role of stem cells in peripheral nerve regeneration after injury. The characteristics of both mesoderm-derived and ectoderm-derived stem cell types and their role in peripheral nerve regeneration are discussed, specifically focusing on the presentation of both foundational laboratory studies and translational applications. The current state of clinical translation is presented, with an emphasis on both ethical considerations of using stems cells in humans and current governmental regulatory policies. Current advancements in cell-based therapies represent a promising future with regard to supporting nerve regeneration and achieving significant functional recovery after debilitating nerve injuries.
Collapse
Affiliation(s)
- Carrie A Kubiak
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan
| | - Joey Grochmal
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Theodore A Kung
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan
| | - Paul S Cederna
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Rajiv Midha
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stephen W P Kemp
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|