1
|
Li Y, Wang W, Xu D, Liang H, Yu H, Zhou Y, Liang J, Sun H, Liu X, Xue M, Ling B, Feng D. PIWIL2/PDK1 Axis Promotes the Progression of Cervical Epithelial Lesions via Metabolic Reprogramming to Maintain Tumor-Initiating Cell Stemness. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410756. [PMID: 39499767 DOI: 10.1002/advs.202410756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/26/2024] [Indexed: 11/07/2024]
Abstract
When PIWIL2 expression is restored via heterogeneous integration of human papillomavirus, cellular reprogramming is initiated to form tumor-initiating cells (TICs), which triggers cervical squamous intraepithelial lesions (SIL). TIC stemness is critical for the prognosis of SIL. However, the mechanisms underlying TIC stemness maintenance and tumorigenicity remain unclear. Here, it is revealed that aberrant pyruvate dehydrogenase kinase 1 (PDK1) expression is closely related to aerobic glycolysis in SIL and poor survival in patients with cervical cancer. Mechanistically, that PIWIL2, which induced by stable transfection of either PIWIL2 or HPV16 oncogene E6 in human primary cervical basal epithelial cells and keratinocyte cell line HaCaT, upregulates PDK1 expression via the LIN28/let-7 axis, hence reprogramming metabolism to activate glycolysis and synchronize with TIC formation. It is further demonstrate that PDK1 is critical for TIC stemness maintenance and tumorigenicity via the PI3K/AKT/mTOR pathway both in vitro and in vivo, revealing a previously unclear mechanism for SIL progression, regression or relapse. Therefore, this findings suggest a potential rationale for prognostic predictions and selecting targeted therapy for cervical lesions.
Collapse
Affiliation(s)
| | - Wenhui Wang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Dongkui Xu
- VIP Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Haiyan Liang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Huan Yu
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001, China
| | - Jing Liang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Heming Sun
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xiaodie Liu
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Ming Xue
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Bin Ling
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Dingqing Feng
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029, China
| |
Collapse
|
2
|
Chen KG, Park K, Maric D, Johnson KR, Robey PG, Mallon BS. Metabolic Quadrivalency in RSeT Human Embryonic Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.21.581486. [PMID: 38496581 PMCID: PMC10942463 DOI: 10.1101/2024.02.21.581486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
One of the most important properties of human embryonic stem cells (hESCs) is related to their pluripotent states. In our recent study, we identified a previously unrecognized pluripotent state induced by RSeT medium. This state makes primed hESCs resistant to conversion to naïve pluripotent state. In this study, we have further characterized the metabolic features in these RSeT hESCs, including metabolic gene expression, metabolomic analysis, and various functional assays. The commonly reported metabolic modes include glycolysis or both glycolysis and oxidative phosphorylation (i.e., metabolic bivalency) in pluripotent stem cells. However, besides the presence of metabolic bivalency, RSeT hESCs exhibited a unique metabolome with additional fatty acid oxidation and imbalanced nucleotide metabolism. This metabolic quadrivalency is linked to hESC growth independent of oxygen tension and restricted capacity for naïve reprogramming in these cells. Thus, this study provides new insights into pluripotent state transitions and metabolic stress-associated hPSC growth in vitro.
Collapse
Affiliation(s)
- Kevin G. Chen
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kyeyoon Park
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kory R. Johnson
- Intramural IT and Bioinformatics Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Pamela G. Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Barbara S. Mallon
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
3
|
Nguyen J, Win PW, Nagano TS, Shin EH, Newcomb C, Arking DE, Castellani CA. Mitochondrial DNA copy number reduction via in vitro TFAM knockout remodels the nuclear epigenome and transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577835. [PMID: 38352513 PMCID: PMC10862824 DOI: 10.1101/2024.01.29.577835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Mitochondrial DNA copy number (mtDNA-CN) is associated with several age-related chronic diseases and is a predictor of all-cause mortality. Here, we examine site-specific differential nuclear DNA (nDNA) methylation and differential gene expression resulting from in vitro reduction of mtDNA-CN to uncover shared genes and biological pathways mediating the effect of mtDNA-CN on disease. Epigenome and transcriptome profiles were generated for three independent human embryonic kidney (HEK293T) cell lines harbouring a mitochondrial transcription factor A (TFAM) heterozygous knockout generated via CRISPR-Cas9, and matched control lines. We identified 4,242 differentially methylated sites, 228 differentially methylated regions, and 179 differentially expressed genes associated with mtDNA-CN. Integrated analysis uncovered 381 Gene-CpG pairs. GABAA receptor genes and related pathways, the neuroactive ligand receptor interaction pathway, ABCD1/2 gene activity, and cell signalling processes were overrepresented, providing insight into the underlying biological mechanisms facilitating these associations. We also report evidence implicating chromatin state regulatory mechanisms as modulators of mtDNA-CN effect on gene expression. We demonstrate that mitochondrial DNA variation signals to the nuclear DNA epigenome and transcriptome and may lead to nuclear remodelling relevant to development, aging, and complex disease.
Collapse
Affiliation(s)
- Julia Nguyen
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Phyo W. Win
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Tyler Shin Nagano
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Elly H. Shin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Charles Newcomb
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Dan E. Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Christina A. Castellani
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Children’s Health Research Institute, Lawson Research Institute, London, Ontario, Canada
| |
Collapse
|
4
|
Jasra IT, Cuesta-Gomez N, Verhoeff K, Marfil-Garza BA, Dadheech N, Shapiro AMJ. Mitochondrial regulation in human pluripotent stem cells during reprogramming and β cell differentiation. Front Endocrinol (Lausanne) 2023; 14:1236472. [PMID: 37929027 PMCID: PMC10623316 DOI: 10.3389/fendo.2023.1236472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Mitochondria are the powerhouse of the cell and dynamically control fundamental biological processes including cell reprogramming, pluripotency, and lineage specification. Although remarkable progress in induced pluripotent stem cell (iPSC)-derived cell therapies has been made, very little is known about the role of mitochondria and the mechanisms involved in somatic cell reprogramming into iPSC and directed reprogramming of iPSCs in terminally differentiated cells. Reprogramming requires changes in cellular characteristics, genomic and epigenetic regulation, as well as major mitochondrial metabolic changes to sustain iPSC self-renewal, pluripotency, and proliferation. Differentiation of autologous iPSC into terminally differentiated β-like cells requires further metabolic adaptation. Many studies have characterized these alterations in signaling pathways required for the generation and differentiation of iPSC; however, very little is known regarding the metabolic shifts that govern pluripotency transition to tissue-specific lineage differentiation. Understanding such metabolic transitions and how to modulate them is essential for the optimization of differentiation processes to ensure safe iPSC-derived cell therapies. In this review, we summarize the current understanding of mitochondrial metabolism during somatic cell reprogramming to iPSCs and the metabolic shift that occurs during directed differentiation into pancreatic β-like cells.
Collapse
Affiliation(s)
- Ila Tewari Jasra
- Clinical Islet Transplant Program, Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Nerea Cuesta-Gomez
- Clinical Islet Transplant Program, Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Kevin Verhoeff
- Clinical Islet Transplant Program, Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Braulio A. Marfil-Garza
- Clinical Islet Transplant Program, Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Nuevo Leon, Mexico
| | - Nidheesh Dadheech
- Clinical Islet Transplant Program, Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - A. M. James Shapiro
- Clinical Islet Transplant Program, Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Nakashima Y, Iguchi H, Shimizu E, Le MN, Takakura K, Nakamura Y, Yanagisawa T, Sanghavi R, Haneda S, Tsukahara M. Improved Production of Induced Pluripotent Stem Cells Using Dot Pattern Culture Plates. Tissue Eng Part C Methods 2023; 29:410-423. [PMID: 37427413 PMCID: PMC10517333 DOI: 10.1089/ten.tec.2023.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
The rate of cell proliferation is a crucial factor in cell production under good manufacturing practice (GMP) control. In this study, we identified a culture system for induced pluripotent cells (iPSCs) that supports cell proliferation and viability and maintains the cells in an undifferentiated state even at 8 days after seeding. This system involves the use of dot pattern culture plates that have been coated with a chemically defined scaffold which has high biocompatibility. Under cell starvation conditions, where medium exchange was not performed for 7 days or where the amount of medium exchange was reduced to half or a quarter, iPSC viability and lack of differentiation were maintained. The rate of cell viability in this culture system was greater than generally obtained by standard culture methods. The cells in this compartmentalized culture system could be induced to differentiate in a controlled and consistent manner: differentiation of endoderm occurred in a controlled and consistent manner: endoderm, mesoderm, and ectoderm could be consistently induced to differentiate in the cultures. In conclusion, we have developed a culture system that supports high viability in iPSCs and allows their controlled differentiation. This system has the potential for use in GMP-based production of iPSCs for clinical purposes.
Collapse
Affiliation(s)
- Yoshiki Nakashima
- Research and Development Center, Kyoto University Center for iPS Cell Research and Application Foundation (CiRA Foundation), Kyoto, Japan
| | - Hiroki Iguchi
- Life Science Development Center Advanced Technology Institute R&D Center Corporate, SEKISUI CHEMICAL CO., LTD., Osaka, Japan
| | - Eiko Shimizu
- Research and Development Center, Kyoto University Center for iPS Cell Research and Application Foundation (CiRA Foundation), Kyoto, Japan
- Kyoto University iCeMS Institute for Integrated Cell-Material Sciences, Kyoto, Japan
| | - Minh N.T. Le
- Kyoto University iCeMS Institute for Integrated Cell-Material Sciences, Kyoto, Japan
| | - Kenta Takakura
- Life Science Development Center Advanced Technology Institute R&D Center Corporate, SEKISUI CHEMICAL CO., LTD., Osaka, Japan
| | - Yuta Nakamura
- Life Science Development Center Advanced Technology Institute R&D Center Corporate, SEKISUI CHEMICAL CO., LTD., Osaka, Japan
| | - Teruhiko Yanagisawa
- Life Science Development Center Advanced Technology Institute R&D Center Corporate, SEKISUI CHEMICAL CO., LTD., Osaka, Japan
| | - Rutvi Sanghavi
- Life Science Development Center Advanced Technology Institute R&D Center Corporate, SEKISUI CHEMICAL CO., LTD., Osaka, Japan
| | - Satoshi Haneda
- Life Science Development Center Advanced Technology Institute R&D Center Corporate, SEKISUI CHEMICAL CO., LTD., Osaka, Japan
| | - Masayoshi Tsukahara
- Research and Development Center, Kyoto University Center for iPS Cell Research and Application Foundation (CiRA Foundation), Kyoto, Japan
| |
Collapse
|
6
|
Alva R, Moradi F, Liang P, Stuart JA. Culture of Cancer Cells at Physiological Oxygen Levels Affects Gene Expression in a Cell-Type Specific Manner. Biomolecules 2022; 12:1684. [PMID: 36421698 PMCID: PMC9688152 DOI: 10.3390/biom12111684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 02/26/2024] Open
Abstract
Standard cell culture is routinely performed at supraphysiological oxygen levels (~18% O2). Conversely, O2 levels in most mammalian tissues range from 1-6% (physioxia). Such hyperoxic conditions in cell culture can alter reactive oxygen species (ROS) production, metabolism, mitochondrial networks, and response to drugs and hormones. The aim of this study was to investigate the transcriptional response to different O2 levels and determine whether it is similar across cell lines, or cell line-specific. Using RNA-seq, we performed differential gene expression and functional enrichment analyses in four human cancer cell lines, LNCaP, Huh-7, PC-3, and SH-SY5Y cultured at either 5% or 18% O2 for 14 days. We found that O2 levels affected transcript abundance of thousands of genes, with the affected genes having little overlap between cell lines. Functional enrichment analysis also revealed different processes and pathways being affected by O2 in each cell line. Interestingly, most of the top differentially expressed genes are involved in cancer biology, which highlights the importance of O2 levels in cancer cell research. Further, we observed several hypoxia-inducible factor (HIF) targets, HIF-2α targets particularly, upregulated at 5% O2, consistent with a role for HIFs in physioxia. O2 levels also differentially induced the transcription of mitochondria-encoded genes in most cell lines. Finally, by comparing our transcriptomic data from LNCaP and PC-3 with datasets from the Prostate Cancer Transcriptome Atlas, a correlation between genes upregulated at 5% O2 in LNCaP cells and the in vivo prostate cancer transcriptome was found. We conclude that the transcriptional response to O2 over the range from 5-18% is robust and highly cell-type specific. This latter finding indicates that the effects of O2 levels are difficult to predict and thus highlights the importance of regulating O2 in cell culture.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Fereshteh Moradi
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Biotechnology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Jeffrey A. Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Biotechnology, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
7
|
Alva R, Gardner GL, Liang P, Stuart JA. Supraphysiological Oxygen Levels in Mammalian Cell Culture: Current State and Future Perspectives. Cells 2022; 11:3123. [PMID: 36231085 PMCID: PMC9563760 DOI: 10.3390/cells11193123] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Most conventional incubators used in cell culture do not regulate O2 levels, making the headspace O2 concentration ~18%. In contrast, most human tissues are exposed to 2-6% O2 (physioxia) in vivo. Accumulating evidence has shown that such hyperoxic conditions in standard cell culture practices affect a variety of biological processes. In this review, we discuss how supraphysiological O2 levels affect reactive oxygen species (ROS) metabolism and redox homeostasis, gene expression, replicative lifespan, cellular respiration, and mitochondrial dynamics. Furthermore, we present evidence demonstrating how hyperoxic cell culture conditions fail to recapitulate the physiological and pathological behavior of tissues in vivo, including cases of how O2 alters the cellular response to drugs, hormones, and toxicants. We conclude that maintaining physioxia in cell culture is imperative in order to better replicate in vivo-like tissue physiology and pathology, and to avoid artifacts in research involving cell culture.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | | | | | | |
Collapse
|
8
|
Harnessing conserved signaling and metabolic pathways to enhance the maturation of functional engineered tissues. NPJ Regen Med 2022; 7:44. [PMID: 36057642 PMCID: PMC9440900 DOI: 10.1038/s41536-022-00246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The development of induced-pluripotent stem cell (iPSC)-derived cell types offers promise for basic science, drug testing, disease modeling, personalized medicine, and translatable cell therapies across many tissue types. However, in practice many iPSC-derived cells have presented as immature in physiological function, and despite efforts to recapitulate adult maturity, most have yet to meet the necessary benchmarks for the intended tissues. Here, we summarize the available state of knowledge surrounding the physiological mechanisms underlying cell maturation in several key tissues. Common signaling consolidators, as well as potential synergies between critical signaling pathways are explored. Finally, current practices in physiologically relevant tissue engineering and experimental design are critically examined, with the goal of integrating greater decision paradigms and frameworks towards achieving efficient maturation strategies, which in turn may produce higher-valued iPSC-derived tissues.
Collapse
|
9
|
Morin AL, Win PW, Lin AZ, Castellani CA. Mitochondrial genomic integrity and the nuclear epigenome in health and disease. Front Endocrinol (Lausanne) 2022; 13:1059085. [PMID: 36419771 PMCID: PMC9678080 DOI: 10.3389/fendo.2022.1059085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Bidirectional crosstalk between the nuclear and mitochondrial genomes is essential for proper cell functioning. Mitochondrial DNA copy number (mtDNA-CN) and heteroplasmy influence mitochondrial function, which can influence the nuclear genome and contribute to health and disease. Evidence shows that mtDNA-CN and heteroplasmic variation are associated with aging, complex disease, and all-cause mortality. Further, the nuclear epigenome may mediate the effects of mtDNA variation on disease. In this way, mitochondria act as an environmental biosensor translating vital information about the state of the cell to the nuclear genome. Cellular communication between mtDNA variation and the nuclear epigenome can be achieved by modification of metabolites and intermediates of the citric acid cycle and oxidative phosphorylation. These essential molecules (e.g. ATP, acetyl-CoA, ɑ-ketoglutarate and S-adenosylmethionine) act as substrates and cofactors for enzymes involved in epigenetic modifications. The role of mitochondria as an environmental biosensor is emerging as a critical modifier of disease states. Uncovering the mechanisms of these dynamics in disease processes is expected to lead to earlier and improved treatment for a variety of diseases. However, the influence of mtDNA-CN and heteroplasmy variation on mitochondrially-derived epigenome-modifying metabolites and intermediates is poorly understood. This perspective will focus on the relationship between mtDNA-CN, heteroplasmy, and epigenome modifying cofactors and substrates, and the influence of their dynamics on the nuclear epigenome in health and disease.
Collapse
Affiliation(s)
- Amanda L. Morin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Phyo W. Win
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Angela Z. Lin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Christina A. Castellani
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- *Correspondence: Christina A. Castellani,
| |
Collapse
|
10
|
Willemen NGA, Hassan S, Gurian M, Li J, Allijn IE, Shin SR, Leijten J. Oxygen-Releasing Biomaterials: Current Challenges and Future Applications. Trends Biotechnol 2021; 39:1144-1159. [PMID: 33602609 PMCID: PMC9078202 DOI: 10.1016/j.tibtech.2021.01.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/22/2022]
Abstract
Oxygen is essential for the survival, function, and fate of mammalian cells. Oxygen tension controls cellular behaviour via metabolic programming, which in turn controls tissue regeneration, stem cell differentiation, drug metabolism, and numerous pathologies. Thus, oxygen-releasing biomaterials represent a novel and unique strategy to gain control over a variety of in vivo processes. Consequently, numerous oxygen-generating or carrying materials have been developed in recent years, which offer innovative solutions in the field of drug efficiency, regenerative medicine, and engineered living systems. In this review, we discuss the latest trends, highlight current challenges and solutions, and provide a future perspective on the field of oxygen-releasing materials.
Collapse
Affiliation(s)
- Niels G A Willemen
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands; Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA 02139, USA
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA 02139, USA
| | - Melvin Gurian
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Jinghang Li
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA 02139, USA; School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Iris E Allijn
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA 02139, USA.
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands.
| |
Collapse
|
11
|
Retention of Somatic Memory Associated with Cell Identity, Age and Metabolism in Induced Pluripotent Stem (iPS) Cells Reprogramming. Stem Cell Rev Rep 2021; 16:251-261. [PMID: 32016780 DOI: 10.1007/s12015-020-09956-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The discovery of induced pluripotent stem (iPS) cells in 2006 marked a major breakthrough in regenerative medicine, enabling reversal of terminally differentiated somatic cells into pluripotent stem cells. The embryonic stem (ES) cells-like pluripotency and unlimited self-renewal capability of iPS cells have granted them enormous potential in many applications, particularly regenerative therapy. Unlike ES cells, however, iPS cells exhibit somatic memories which were carried over from the tissue of origin thus limited its translation in clinical applications. This review provides an updated overview of the retention of various somatic memories associated with the cellular identity, age and metabolism of tissue of origin in iPS cells. The influence of cell types, stage of maturation, age and various other factors on the retention of somatic memory has been discussed. Recent evidence of somatic memory in the form of epigenetic, transcriptomic, metabolic signatures and its functional manifestations in both in vitro and in vivo settings also have been reviewed. The increasing number of studies which had adopted isogenic cell lines for comparisons in recent years had facilitated the identification of genuine somatic memories. These memories functionally affect iPS cells and its derivatives and are potentially tumorigenic thus, raising concerns on their safety in clinical application. Various approaches for memory erasure had since being reported and their efficacies were highlighted in this review.
Collapse
|
12
|
Winship A, Donoghue J, Houston BJ, Martin JH, Lord T, Adwal A, Gonzalez M, Desroziers E, Ahmad G, Richani D, Bromfield EG. Reproductive health research in Australia and New Zealand: highlights from the Annual Meeting of the Society for Reproductive Biology, 2019. Reprod Fertil Dev 2021; 32:637-647. [PMID: 32234188 DOI: 10.1071/rd19449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 12/19/2022] Open
Abstract
The 2019 meeting of the Society for Reproductive Biology (SRB) provided a platform for the dissemination of new knowledge and innovations to improve reproductive health in humans, enhance animal breeding efficiency and understand the effect of the environment on reproductive processes. The effects of environment and lifestyle on fertility and animal behaviour are emerging as the most important modern issues facing reproductive health. Here, we summarise key highlights from recent work on endocrine-disrupting chemicals and diet- and lifestyle-induced metabolic changes and how these factors affect reproduction. This is particularly important to discuss in the context of potential effects on the reproductive potential that may be imparted to future generations of humans and animals. In addition to key summaries of new work in the male and female reproductive tract and on the health of the placenta, for the first time the SRB meeting included a workshop on endometriosis. This was an important opportunity for researchers, healthcare professionals and patient advocates to unite and provide critical updates on efforts to reduce the effect of this chronic disease and to improve the welfare of the women it affects. These new findings and directions are captured in this review.
Collapse
Affiliation(s)
- Amy Winship
- Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Stem Cells and Development Program, Monash University, Vic. 3800, Australia
| | - Jacqueline Donoghue
- The University of Melbourne, Department of Obstetrics and Gynaecology, Gynaecology Research Centre, Royal Women's Hospital, Parkville, Vic. 3052, Australia
| | - Brendan J Houston
- School of Biological Sciences, Monash University, Vic. 3800, Australia
| | - Jacinta H Martin
- Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW 2305, Australia
| | - Tessa Lord
- Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW 2305, Australia; and Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2300, Australia
| | - Alaknanda Adwal
- The University of Adelaide Robinson Research Institute, Adelaide Medical School, North Adelaide, SA 5005, Australia
| | - Macarena Gonzalez
- The University of Adelaide Robinson Research Institute, School of Medicine, Faculty of Health and Medical Sciences, Adelaide, SA 5005, Australia
| | - Elodie Desroziers
- Department of Physiology and Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Gulfam Ahmad
- The University of Sydney Medical School, Discipline of Pathology, School of Medical Sciences, Sydney, NSW 2006, Australia
| | - Dulama Richani
- School of Women's and Children's Health, Fertility and Research Centre, University of New South Wales, Sydney, NSW 2052 Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2300, Australia; and Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Netherlands; and Corresponding author:
| |
Collapse
|
13
|
"Betwixt Mine Eye and Heart a League Is Took": The Progress of Induced Pluripotent Stem-Cell-Based Models of Dystrophin-Associated Cardiomyopathy. Int J Mol Sci 2020; 21:ijms21196997. [PMID: 32977524 PMCID: PMC7582534 DOI: 10.3390/ijms21196997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
The ultimate goal of precision disease modeling is to artificially recreate the disease of affected people in a highly controllable and adaptable external environment. This field has rapidly advanced which is evident from the application of patient-specific pluripotent stem-cell-derived precision therapies in numerous clinical trials aimed at a diverse set of diseases such as macular degeneration, heart disease, spinal cord injury, graft-versus-host disease, and muscular dystrophy. Despite the existence of semi-adequate treatments for tempering skeletal muscle degeneration in dystrophic patients, nonischemic cardiomyopathy remains one of the primary causes of death. Therefore, cardiovascular cells derived from muscular dystrophy patients' induced pluripotent stem cells are well suited to mimic dystrophin-associated cardiomyopathy and hold great promise for the development of future fully effective therapies. The purpose of this article is to convey the realities of employing precision disease models of dystrophin-associated cardiomyopathy. This is achieved by discussing, as suggested in the title echoing William Shakespeare's words, the settlements (or "leagues") made by researchers to manage the constraints ("betwixt mine eye and heart") distancing them from achieving a perfect precision disease model.
Collapse
|
14
|
Development of a High-Efficacy Reprogramming Method for Generating Human Induced Pluripotent Stem (iPS) Cells from Pathologic and Senescent Somatic Cells. Int J Mol Sci 2020; 21:ijms21186764. [PMID: 32942642 PMCID: PMC7555779 DOI: 10.3390/ijms21186764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/10/2020] [Indexed: 11/17/2022] Open
Abstract
Induced pluripotent stem (iPS) cells are a type of artificial pluripotent stem cell induced by the epigenetic silencing of somatic cells by the Yamanaka factors. Advances in iPS cell reprogramming technology will allow aging or damaged cells to be replaced by a patient's own rejuvenated cells. However, tissue that is senescent or pathologic has a relatively low reprogramming efficiency as compared with juvenile or robust tissue, resulting in incomplete reprogramming; iPS cells generated from such tissue types do not have sufficient differentiation ability and are therefore difficult to apply clinically. Here, we develop a new reprogramming method and examine it using myofibroblasts, which are pathologic somatic cells, from patient skin tissue and from each of the four heart chambers of a recipient heart in heart transplant surgery. By adjusting the type and amount of vectors containing transcriptional factors for iPS cell reprogramming, as well as adjusting the transfection load and culture medium, the efficiency of iPS cell induction from aged patient skin-derived fibroblasts was increased, and we successfully induced iPS cells from myocardial fibroblasts isolated from the pathologic heart of a heart transplant recipient.
Collapse
|
15
|
Kozlov AM, Lone A, Betts DH, Cumming RC. Lactate preconditioning promotes a HIF-1α-mediated metabolic shift from OXPHOS to glycolysis in normal human diploid fibroblasts. Sci Rep 2020; 10:8388. [PMID: 32433492 PMCID: PMC7239882 DOI: 10.1038/s41598-020-65193-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Recent evidence has emerged that cancer cells can use various metabolites as fuel sources. Restricting cultured cancer cells to sole metabolite fuel sources can promote metabolic changes leading to enhanced glycolysis or mitochondrial OXPHOS. However, the effect of metabolite-restriction on non-transformed cells remains largely unexplored. Here we examined the effect of restricting media fuel sources, including glucose, pyruvate or lactate, on the metabolic state of cultured human dermal fibroblasts. Fibroblasts cultured in lactate-only medium exhibited reduced PDH phosphorylation, indicative of OXPHOS, and a concurrent elevation of ROS. Lactate exposure primed fibroblasts to switch to glycolysis by increasing transcript abundance of genes encoding glycolytic enzymes and, upon exposure to glucose, increasing glycolytic enzyme levels. Furthermore, lactate treatment stabilized HIF-1α, a master regulator of glycolysis, in a manner attenuated by antioxidant exposure. Our findings indicate that lactate preconditioning primes fibroblasts to switch from OXPHOS to glycolysis metabolism, in part, through ROS-mediated HIF-1α stabilization. Interestingly, we found that lactate preconditioning results in increased transcript abundance of MYC and SNAI1, key facilitators of early somatic cell reprogramming. Defined metabolite treatment may represent a novel approach to increasing somatic cell reprogramming efficiency by amplifying a critical metabolic switch that occurs during iPSC generation.
Collapse
Affiliation(s)
- Alexandra M Kozlov
- Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Asad Lone
- Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Dean H Betts
- Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada. .,Department of Physiology and Pharmacology, Schulich School of Medicine and Density, The University of Western Ontario, London, Ontario, N6A 5C1, Canada. .,Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, N6A 5W9, Canada.
| | - Robert C Cumming
- Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
16
|
Tsogtbaatar E, Landin C, Minter-Dykhouse K, Folmes CDL. Energy Metabolism Regulates Stem Cell Pluripotency. Front Cell Dev Biol 2020; 8:87. [PMID: 32181250 PMCID: PMC7059177 DOI: 10.3389/fcell.2020.00087] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/31/2020] [Indexed: 12/19/2022] Open
Abstract
Pluripotent stem cells (PSCs) are characterized by their unique capacity for both unlimited self-renewal and their potential to differentiate to all cell lineages contained within the three primary germ layers. While once considered a distinct cellular state, it is becoming clear that pluripotency is in fact a continuum of cellular states, all capable of self-renewal and differentiation, yet with distinct metabolic, mitochondrial and epigenetic features dependent on gestational stage. In this review we focus on two of the most clearly defined states: “naïve” and “primed” PSCs. Like other rapidly dividing cells, PSCs have a high demand for anabolic precursors necessary to replicate their genome, cytoplasm and organelles, while concurrently consuming energy in the form of ATP. This requirement for both anabolic and catabolic processes sufficient to supply a highly adapted cell cycle in the context of reduced oxygen availability, distinguishes PSCs from their differentiated progeny. During early embryogenesis PSCs adapt their substrate preference to match the bioenergetic requirements of each specific developmental stage. This is reflected in different mitochondrial morphologies, membrane potentials, electron transport chain (ETC) compositions, and utilization of glycolysis. Additionally, metabolites produced in PSCs can directly influence epigenetic and transcriptional programs, which in turn can affect self-renewal characteristics. Thus, our understanding of the role of metabolism in PSC fate has expanded from anabolism and catabolism to include governance of the pluripotent epigenetic landscape. Understanding the roles of metabolism and the factors influencing metabolic pathways in naïve and primed pluripotent states provide a platform for understanding the drivers of cell fate during development. This review highlights the roles of the major metabolic pathways in the acquisition and maintenance of the different states of pluripotency.
Collapse
Affiliation(s)
- Enkhtuul Tsogtbaatar
- Stem Cell and Regenerative Metabolism Laboratory, Departments of Cardiovascular Diseases and Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, United States
| | - Chelsea Landin
- Stem Cell and Regenerative Metabolism Laboratory, Departments of Cardiovascular Diseases and Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, United States
| | - Katherine Minter-Dykhouse
- Stem Cell and Regenerative Metabolism Laboratory, Departments of Cardiovascular Diseases and Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, United States
| | - Clifford D L Folmes
- Stem Cell and Regenerative Metabolism Laboratory, Departments of Cardiovascular Diseases and Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, United States
| |
Collapse
|
17
|
Mitochondrial Fusion by M1 Promotes Embryoid Body Cardiac Differentiation of Human Pluripotent Stem Cells. Stem Cells Int 2019; 2019:6380135. [PMID: 31641358 PMCID: PMC6770295 DOI: 10.1155/2019/6380135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/31/2019] [Accepted: 08/17/2019] [Indexed: 02/06/2023] Open
Abstract
Human induced pluripotent stem cells (iPSCs) can be differentiated in vitro into bona fide cardiomyocytes for disease modelling and personalized medicine. Mitochondrial morphology and metabolism change dramatically as iPSCs differentiate into mesodermal cardiac lineages. Inhibiting mitochondrial fission has been shown to promote cardiac differentiation of iPSCs. However, the effect of hydrazone M1, a small molecule that promotes mitochondrial fusion, on cardiac mesodermal commitment of human iPSCs is unknown. Here, we demonstrate that treatment with M1 promoted mitochondrial fusion in human iPSCs. Treatment of iPSCs with M1 during embryoid body formation significantly increased the percentage of beating embryoid bodies and expression of cardiac-specific genes. The pro-fusion and pro-cardiogenic effects of M1 were not associated with changes in expression of the α and β subunits of adenosine triphosphate (ATP) synthase. Our findings demonstrate for the first time that hydrazone M1 is capable of promoting cardiac differentiation of human iPSCs, highlighting the important role of mitochondrial dynamics in cardiac mesoderm lineage specification and cardiac development. M1 and other mitochondrial fusion promoters emerge as promising molecular targets to generate lineages of the heart from human iPSCs for patient-specific regenerative medicine.
Collapse
|
18
|
Li N, Qian S, Li B, Zhan X. Quantitative analysis of the human ovarian carcinoma mitochondrial phosphoproteome. Aging (Albany NY) 2019; 11:6449-6468. [PMID: 31442208 PMCID: PMC6738437 DOI: 10.18632/aging.102199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/10/2019] [Indexed: 05/02/2023]
Abstract
To investigate the existence and their potential biological roles of mitochondrial phosphoproteins (mtPPs) in human ovarian carcinoma (OC), mitochondria purified from OC and control tissues were analyzed with TiO2 enrichment-based iTRAQ quantitative proteomics. Totally 67 mtPPs with 124 phosphorylation sites were identified, which of them included 48 differential mtPPs (mtDPPs). Eighteen mtPPs were reported previously in OCs, and they were consistent in this study compared to previous literature. GO analysis revealed those mtPPs were involved in multiple cellular processes. PPI network indicated that those mtPPs were correlated mutually, and some mtPPs acted as hub molecules, such as EIF2S2, RPLP0, RPLP2, CFL1, MYH10, HSP90, HSPD1, PSMA3, TMX1, VDAC2, VDAC3, TOMM22, and TOMM20. Totally 32 mtPP-pathway systems (p<0.05) were enriched and clustered into 15 groups, including mitophagy, apoptosis, deubiquitination, signaling by VEGF, RHO-GTPase effectors, mitochondrial protein import, translation initiation, RNA transport, cellular responses to stress, and c-MYC transcriptional activation. Totally 29 mtPPs contained a certain protein domains. Upstream regulation analysis showed that TP53, TGFB1, dexamethasone, and thapsigargin might act as inhibitors, and L-dopa and forskolin might act as activators. This study provided novel insights into mitochondrial protein phosphorylations and their potential roles in OC pathogenesis and offered new biomarker resource for OCs.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| | - Shehua Qian
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| | - Biao Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| |
Collapse
|
19
|
Spyrou J, Gardner DK, Harvey AJ. Metabolism Is a Key Regulator of Induced Pluripotent Stem Cell Reprogramming. Stem Cells Int 2019; 2019:7360121. [PMID: 31191682 PMCID: PMC6525803 DOI: 10.1155/2019/7360121] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/15/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022] Open
Abstract
Reprogramming to pluripotency involves drastic restructuring of both metabolism and the epigenome. However, induced pluripotent stem cells (iPSC) retain transcriptional memory, epigenetic memory, and metabolic memory from their somatic cells of origin and acquire aberrant characteristics distinct from either other pluripotent cells or parental cells, reflecting incomplete reprogramming. As a critical link between the microenvironment and regulation of the epigenome, nutrient availability likely plays a significant role in the retention of somatic cell memory by iPSC. Significantly, relative nutrient availability impacts iPSC reprogramming efficiency, epigenetic regulation and cell fate, and differentially alters their ability to respond to physiological stimuli. The significance of metabolites during the reprogramming process is central to further elucidating how iPSC retain somatic cell characteristics and optimising culture conditions to generate iPSC with physiological phenotypes to ensure their reliable use in basic research and clinical applications. This review serves to integrate studies on iPSC reprogramming, memory retention and metabolism, and identifies areas in which current knowledge is limited.
Collapse
Affiliation(s)
- James Spyrou
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - David K. Gardner
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexandra J. Harvey
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|