1
|
Sarkar S, Ghosh SS. Synergistic Effect of Salinomycin With Budesonide on TNBC Regression via EMT Reversal and Autophagy Induction. J Biochem Mol Toxicol 2024; 38:e70045. [PMID: 39526549 DOI: 10.1002/jbt.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its aggressive nature, lack of specific therapeutic targets, and drug resistance. Chemotherapy resistance in TNBC is largely driven by the abnormal activation of epithelial-to-mesenchymal transition (EMT) and the associated cancer stem cell-like characteristics. The combination of multiple chemotherapeutic drugs has shown promise as a treatment approach for TNBC. This study evaluates the efficacy of a novel combination therapy involving the anti-inflammatory drug Budesonide and Salinomycin, which targets cancer stem cells. Co-administration of Budesonide and Salinomycin demonstrated a synergistic effect in inhibiting TNBC cell growth by activating the intrinsic apoptosis pathway. It induced a 2- to 3-fold increase in intracellular reactive oxygen species (ROS) generation and a 25%-30% rise in mitochondrial membrane depolarization. Additionally, extensive signaling studies revealed that the co-treatment specifically targeted multiple signaling nodes, limiting downstream crosstalk. The combination also enhanced autophagic activity by inhibiting the AKT/mTOR pathway and reduced cell migration and stemness by suppressing the EMT process. Therefore, the combination of Budesonide and Salinomycin offers a novel therapeutic approach for TNBC.
Collapse
Affiliation(s)
- Shilpi Sarkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
2
|
Durrani IA, John P, Bhatti A, Khan JS. Network medicine based approach for identifying the type 2 diabetes, osteoarthritis and triple negative breast cancer interactome: Finding the hub of hub genes. Heliyon 2024; 10:e36650. [PMID: 39281650 PMCID: PMC11401126 DOI: 10.1016/j.heliyon.2024.e36650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
The increasing prevalence of multi-morbidities, particularly the incidence of breast cancer in diabetic/osteoarthritic patients emphasize on the need for exploring the underlying molecular mechanisms resulting in carcinogenesis. To address this, present study employed a systems biology approach to identify switch genes pivotal to the crosstalk between diseased states resulting in multi-morbid conditions. Hub genes previously reported for type 2 diabetes mellitus (T2DM), osteoarthritis (OA), and triple negative breast cancer (TNBC), were extracted from published literature and fed into an integrated bioinformatics analyses pipeline. Thirty-one hub genes common to all three diseases were identified. Functional enrichment analyses showed these were mainly enriched for immune and metabolism associated terms including advanced glycation end products (AGE) pathways, cancer pathways, particularly breast neoplasm, immune system signalling and adipose tissue. The T2DM-OA-TNBC interactome was subjected to protein-protein interaction network analyses to identify meta hub/clustered genes. These were prioritized and wired into a three disease signalling map presenting the enriched molecular crosstalk on T2DM-OA-TNBC axes to gain insight into the molecular mechanisms underlying disease-disease interactions. Deciphering the molecular bases for the intertwined metabolic and immune states may potentiate the discovery of biomarkers critical for identifying and targeting the immuno-metabolic origin of disease.
Collapse
Affiliation(s)
- Ilhaam Ayaz Durrani
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Peter John
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Attya Bhatti
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | | |
Collapse
|
3
|
Murthy D, Dutta D, Attri KS, Samanta T, Yang S, Jung KH, Latario SG, Putluri V, Huang S, Putluri N, Park JH, Kaipparettu BA. CD24 negativity reprograms mitochondrial metabolism to PPARα and NF-κB-driven fatty acid β-oxidation in triple-negative breast cancer. Cancer Lett 2024; 587:216724. [PMID: 38373689 PMCID: PMC11068061 DOI: 10.1016/j.canlet.2024.216724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/21/2024]
Abstract
CD24 is a well-characterized breast cancer (BC) stem cell (BCSC) marker. Primary breast tumor cells having CD24-negativity together with CD44-positivity is known to maintain high metastatic potential. However, the functional role of CD24 gene in triple-negative BC (TNBC), an aggressive subtype of BC, is not well understood. While the significance of CD24 in regulating immune pathways is well recognized in previous studies, the significance of CD24 low expression in onco-signaling and metabolic rewiring is largely unknown. Using CD24 knock-down and over-expression TNBC models, our in vitro and in vivo analysis suggest that CD24 is a tumor suppressor in metastatic TNBC. Comprehensive in silico gene expression analysis of breast tumors followed by lipidomic and metabolomic analyses of CD24-modulated cells revealed that CD24 negativity induces mitochondrial oxidative phosphorylation and reprograms TNBC metabolism toward the fatty acid beta-oxidation (FAO) pathway. CD24 silencing activates PPARα-mediated regulation of FAO in TNBC cells. Further analysis using reverse-phase protein array and its validation using CD24-modulated TNBC cells and xenograft models nominated CD24-NF-κB-CPT1A signaling pathway as the central regulatory mechanism of CD24-mediated FAO activity. Overall, our study proposes a novel role of CD24 in metabolic reprogramming that can open new avenues for the treatment strategies for patients with metastatic TNBC.
Collapse
Affiliation(s)
- Divya Murthy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Debasmita Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kuldeep S Attri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Tagari Samanta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sukjin Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kwang Hwa Jung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sarah G Latario
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Vasanta Putluri
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA
| | - Shixia Huang
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Department of Education, Innovation, and Technology, Baylor College of Medicine, Houston, TX, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Benny Abraham Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Dong J, Kong L, Wang S, Xia M, Zhang Y, Wu J, Yang F, Zuo S, Wei J. Oncolytic adenovirus encoding apolipoprotein A1 suppresses metastasis of triple-negative breast cancer in mice. J Exp Clin Cancer Res 2024; 43:102. [PMID: 38566092 PMCID: PMC10988920 DOI: 10.1186/s13046-024-03011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Dysregulation of cholesterol metabolism is associated with the metastasis of triple-negative breast cancer (TNBC). Apolipoprotein A1 (ApoA1) is widely recognized for its pivotal role in regulating cholesterol efflux and maintaining cellular cholesterol homeostasis. However, further exploration is needed to determine whether it inhibits TNBC metastasis by affecting cholesterol metabolism. Additionally, it is necessary to investigate whether ApoA1-based oncolytic virus therapy can be used to treat TNBC. METHODS In vitro experiments and mouse breast cancer models were utilized to evaluate the molecular mechanism of ApoA1 in regulating cholesterol efflux and inhibiting breast cancer progression and metastasis. The gene encoding ApoA1 was inserted into the adenovirus genome to construct a recombinant adenovirus (ADV-ApoA1). Subsequently, the efficacy of ADV-ApoA1 in inhibiting the growth and metastasis of TNBC was evaluated in several mouse models, including orthotopic breast cancer, spontaneous breast cancer, and human xenografts. In addition, a comprehensive safety assessment of Syrian hamsters and rhesus monkeys injected with oncolytic adenovirus was conducted. RESULTS This study found that dysregulation of cholesterol homeostasis is critical for the progression and metastasis of TNBC. In a mouse orthotopic model of TNBC, a high-cholesterol diet promoted lung and liver metastasis, which was associated with keratin 14 (KRT14), a protein responsible for TNBC metastasis. Furthermore, studies have shown that ApoA1, a cholesterol reverse transporter, inhibits TNBC metastasis by regulating the cholesterol/IKBKB/FOXO3a/KRT14 axis. Moreover, ADV-ApoA1 was found to promote cholesterol efflux, inhibit tumor growth, reduce lung metastasis, and prolonged the survival of mice with TNBC. Importantly, high doses of ADV-ApoA1 administered intravenously and subcutaneously were well tolerated in rhesus monkeys and Syrian hamsters. CONCLUSIONS This study provides a promising oncolytic virus treatment strategy for TNBC based on targeting dysregulated cholesterol metabolism. It also establishes a basis for subsequent clinical trials of ADV-ApoA1 in the treatment of TNBC.
Collapse
Affiliation(s)
- Jie Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, P.R. China
| | - Lingkai Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, P.R. China
| | - Shiqun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, P.R. China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Mao Xia
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, P.R. China
| | - Yenan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, P.R. China
| | - Jingyi Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, P.R. China
| | - Fuming Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, P.R. China.
| | - Shuguang Zuo
- Liuzhou Key Laboratory of Molecular Diagnosis, Guangxi Key Laboratory of Molecular Diagnosis and Application, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, Guangxi, China.
| | - Jiwu Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, P.R. China.
| |
Collapse
|
5
|
Abduh MS, Alwassil OI, Aldaqal SM, Alfwuaires MA, Farhan M, Hanieh H. A pyrazolopyridine as a novel AhR signaling activator with anti-breast cancer properties in vitro and in vivo. Biochem Pharmacol 2024; 222:116079. [PMID: 38402910 DOI: 10.1016/j.bcp.2024.116079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/29/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Breast cancer is one of the main causes of malignancy-related deaths globally and has a significant impact on women's quality of life. Despite significant therapeutic advances, there is a medical need for targeted therapies in breast cancer. Aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor mediates responses to environment stimuli, is emerging as a unique pleiotropic target. Herein, a combined molecular simulation and in vitro investigations identified 3-(3-fluorophenyl)-1H-pyrazolo[3,4-b]pyridine (3FPP) as a novel AhR ligand in T47D and MDA-MB-231 breast cancer cells. Its agonistic effects induced formation of the AhR-AhR nuclear translocator (Arnt) heterodimer and prompted its binding to the penta-nucleotide sequence, called xenobiotic-responsive element (XRE) motif. Moreover, 3FPP augmented the promoter-driven luciferase activities and expression of AhR-regulated genes encoding cytochrome P450 1A1 (CYP1A1) and microRNA (miR)-212/132 cluster. It reduced cell viability, migration, and invasion of both cell lines through AhR signaling. These anticancer properties were concomitant with reduced levels of B-cell lymphoma 2 (BCL-2), SRY-related HMG-box4 (SOX4), snail family zinc finger 2 (SNAI2), and cadherin 2 (CDH2). In vivo, 3FPP suppressed tumor growth and activated AhR signaling in an orthotopic mouse model. In conclusion, our results introduce the fused pyrazolopyridine 3FPP as a novel AhR agonist with AhR-specific anti-breast cancer potential in vitro and in vivo.
Collapse
Affiliation(s)
- Maisa S Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Osama I Alwassil
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11451, Saudi Arabia.
| | - Saleh M Aldaqal
- Immune Responses in Different Diseases Research Group, Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Manal A Alfwuaires
- Department of Biological Sciences, College of Science, King Faisal University, Hofuf 31982, Saudi Arabia.
| | - Mahdi Farhan
- International Medical Research Center (iMReC), Aqaba 77110, Jordan; Drug Development Department, UniTechPharma, Fribourg 1700, Switzerland.
| | - Hamza Hanieh
- International Medical Research Center (iMReC), Aqaba 77110, Jordan; Basic Medical Sciences Department, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba 77110, Jordan.
| |
Collapse
|
6
|
Sahu P, Camarillo IG, Sundararajan R. Efficacy of metformin and electrical pulses in breast cancer MDA-MB-231 cells. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:54-73. [PMID: 38464382 PMCID: PMC10918234 DOI: 10.37349/etat.2024.00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/30/2023] [Indexed: 03/12/2024] Open
Abstract
Aim Triple-negative breast cancer (TNBC) is a very aggressive subset of breast cancer, with limited treatment options, due to the lack of three commonly targeted receptors, which merits the need for novel treatments for TNBC. Towards this need, the use of metformin (Met), the most widely used type-2 diabetes drug worldwide, was explored as a repurposed anticancer agent. Cancer being a metabolic disease, the modulation of two crucial metabolites, glucose, and reactive oxygen species (ROS), is studied in MDA-MB-231 TNBC cells, using Met in the presence of electrical pulses (EP) to enhance the drug efficacy. Methods MDA-MB-231, human TNBC cells were treated with Met in the presence of EP, with various concentrations Met of 1 mmol/L, 2.5 mmol/L, 5 mmol/L, and 10 mmol/L. EP of 500 V/cm, 800 V/cm, and 1,000 V/cm (with a pulse width of 100 µs at 1 s intervals) were applied to TNBC and the impact of these two treatments was studied. Various assays, including cell viability, microscopic inspection, glucose, ROS, and wound healing assay, were performed to characterize the response of the cells to the combination treatment. Results Combining 1,000 V/cm with 5 mmol/L Met yielded cell viability as low as 42.6% at 24 h. The glucose level was reduced by 5.60-fold and the ROS levels were increased by 9.56-fold compared to the control, leading to apoptotic cell death. Conclusions The results indicate the enhanced anticancer effect of Met in the presence of electric pulses. The cell growth is inhibited by suppressing glucose levels and elevated ROS. This shows a synergistic interplay between electroporation, Met, glucose, and ROS metabolic alterations. The results show promises for combinational therapy in TNBC patients.
Collapse
Affiliation(s)
- Praveen Sahu
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Ignacio G. Camarillo
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Raji Sundararajan
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
7
|
Ilari A, Cogliati V, Sherif N, Grassilli E, Ramazzotti D, Cordani N, Cazzaniga G, Di Bella C, Lavitrano M, Cazzaniga ME, Cerrito MG. Differential Expression of NOTCH-1 and Its Molecular Targets in Response to Metronomic Followed by Conventional Therapy in a Patient with Advanced Triple-Negative Breast Cancer. Biomedicines 2024; 12:272. [PMID: 38397874 PMCID: PMC10886740 DOI: 10.3390/biomedicines12020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
A group of 27 patients diagnosed with metastatic triple-negative breast cancer (mTNBC) was randomly distributed into two groups and underwent different lines of metronomic treatment (mCHT). The former group (N 14) received first-line mCHT and showed a higher overall survival rate than the second group (N 13), which underwent second-line mCHT. Analysis of one patient still alive from the first group, diagnosed with mTNBC in 2019, showed a complete metabolic response (CMR) after a composite approach implicating first-line mCHT followed by second-line epirubicin and third-line nab-paclitaxel, and was chosen for subsequent molecular characterization. We found altered expression in the cancer stemness-associated gene NOTCH-1 and its corresponding protein. Additionally, we found changes in the expression of oncogenes, such as MYC and AKT, along with their respective proteins. Overall, our data suggest that a first-line treatment with mCHT followed by MTD might be effective by negatively regulating stemness traits usually associated with the emergence of drug resistance.
Collapse
Affiliation(s)
- Alice Ilari
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy; (A.I.); (N.S.); (E.G.); (D.R.); (N.C.); (M.L.); (M.E.C.)
| | - Viola Cogliati
- Phase 1 Research Centre, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy;
| | - Noorhan Sherif
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy; (A.I.); (N.S.); (E.G.); (D.R.); (N.C.); (M.L.); (M.E.C.)
| | - Emanuela Grassilli
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy; (A.I.); (N.S.); (E.G.); (D.R.); (N.C.); (M.L.); (M.E.C.)
| | - Daniele Ramazzotti
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy; (A.I.); (N.S.); (E.G.); (D.R.); (N.C.); (M.L.); (M.E.C.)
| | - Nicoletta Cordani
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy; (A.I.); (N.S.); (E.G.); (D.R.); (N.C.); (M.L.); (M.E.C.)
| | - Giorgio Cazzaniga
- Department of Pathology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy; (G.C.); (C.D.B.)
| | - Camillo Di Bella
- Department of Pathology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy; (G.C.); (C.D.B.)
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy; (A.I.); (N.S.); (E.G.); (D.R.); (N.C.); (M.L.); (M.E.C.)
| | - Marina Elena Cazzaniga
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy; (A.I.); (N.S.); (E.G.); (D.R.); (N.C.); (M.L.); (M.E.C.)
- Phase 1 Research Centre, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy;
| | - Maria Grazia Cerrito
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy; (A.I.); (N.S.); (E.G.); (D.R.); (N.C.); (M.L.); (M.E.C.)
| |
Collapse
|
8
|
Guo Z, Han S. Targeting cancer stem cell plasticity in triple-negative breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1165-1181. [PMID: 38213533 PMCID: PMC10776602 DOI: 10.37349/etat.2023.00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/15/2023] [Indexed: 01/13/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype with limited treatment options. Cancer stem cells (CSCs) are thought to play a crucial role in TNBC progression and resistance to therapy. CSCs are a small subpopulation of cells within tumors that possess self-renewal and differentiation capabilities and are responsible for tumor initiation, maintenance, and metastasis. CSCs exhibit plasticity, allowing them to switch between states and adapt to changing microenvironments. Targeting CSC plasticity has emerged as a promising strategy for TNBC treatment. This review summarizes recent advances in understanding the molecular mechanisms underlying CSC plasticity in TNBC and discusses potential therapeutic approaches targeting CSC plasticity.
Collapse
Affiliation(s)
- Zhengwang Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Shuyan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
9
|
Ji S, Yu H, Zhou D, Fan X, Duan Y, Tan Y, Lang M, Shao G. Cancer stem cell-derived CHI3L1 activates the MAF/CTLA4 signaling pathway to promote immune escape in triple-negative breast cancer. J Transl Med 2023; 21:721. [PMID: 37838657 PMCID: PMC10576881 DOI: 10.1186/s12967-023-04532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/17/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) development may be associated with tumor immune escape. This study explores whether the CHI3L1/MAF/CTLA4/S100A4 axis affects immune escape in TNBC through interplay with triple-negative breast cancer stem cells (TN-BCSCs). OBJECTIVE The aim of this study is to utilize single-cell transcriptome sequencing (scRNA-seq) to uncover the molecular mechanisms by which the CHI3L1/MAF/CTLA4 signaling pathway may mediate immune evasion in triple-negative breast cancer through the interaction between tumor stem cells (CSCs) and immune cells. METHODS Cell subsets in TNBC tissues were obtained through scRNA-seq, followed by screening differentially expressed genes in TN-BCSCs and B.C.s (CD44+ and CD24-) and predicting the transcription factor regulated by CHI3L1. Effect of CHI3L1 on the stemness phenotype of TNBC cells investigated. Effects of BCSCs-231-derived CHI3L1 on CTLA4 expression in T cells were explored after co-culture of BCSCs-231 cells obtained from microsphere culture of TN-BCSCs with T cells. BCSCs-231-treated T cells were co-cultured with CD8+ T cells to explore the resultant effect on T cell cytotoxicity. An orthotopic B.C. transplanted tumor model in mice with humanized immune systems was constructed, in which the Role of CHI3L1/MAF/CTLA4 in the immune escape of TNBC was explored. RESULTS Eight cell subsets were found in the TNBC tissues, and the existence of TN-BCSCs was observed in the epithelial cell subset. CHI3L1 was related to the stemness phenotype of TNBC cells. TN-BCSC-derived CHI3L1 increased CTLA4 expression in T cells through MAF, inhibiting CD8+ T cell cytotoxicity and inducing immunosuppression. Furthermore, the CTLA4+ T cells might secrete S100A4 to promote the stemness phenotype of TNBC cells. CONCLUSIONS TN-BCSC-derived CHI3L1 upregulates CTLA4 expression in T cells through MAF, suppressing the function of CD8+ T cells, which promotes the immune escape of TNBC.
Collapse
Affiliation(s)
- Shufeng Ji
- Special Medical Service Center, General Surgery, Zhujiang Hospital of Southern Medical University, No. 253, Middle Gongye Avenue, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China
| | - Hao Yu
- Special Medical Service Center, General Surgery, Zhujiang Hospital of Southern Medical University, No. 253, Middle Gongye Avenue, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China
| | - Dan Zhou
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528000, People's Republic of China
| | - Xulong Fan
- Department of Breast Surgery, Maternity and Children's Healthcare Hospital of Foshan, Foshan, 528000, People's Republic of China
| | - Yan Duan
- Special Medical Service Center, General Surgery, Zhujiang Hospital of Southern Medical University, No. 253, Middle Gongye Avenue, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China
| | - Yijiang Tan
- Special Medical Service Center, General Surgery, Zhujiang Hospital of Southern Medical University, No. 253, Middle Gongye Avenue, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China
| | - Min Lang
- Special Medical Service Center, General Surgery, Zhujiang Hospital of Southern Medical University, No. 253, Middle Gongye Avenue, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China
| | - Guoli Shao
- Special Medical Service Center, General Surgery, Zhujiang Hospital of Southern Medical University, No. 253, Middle Gongye Avenue, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China.
| |
Collapse
|
10
|
Liao CP, Hsieh YC, Lu CH, Dai WC, Yang WT, Cheng KT, Ramani MV, Subbaraju GV, Chang CC. Methoxyhispolon Methyl Ether, a Hispolon Analog, Thwarts the SRC/STAT3/BCL-2 Axis to Provoke Human Triple-Negative Breast Cancer Cell Apoptosis In Vitro. Biomedicines 2023; 11:2742. [PMID: 37893115 PMCID: PMC10604664 DOI: 10.3390/biomedicines11102742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with few treatment options. A promising TNBC treatment approach is targeting the oncogenic signaling pathways pivotal to TNBC initiation and progression. Deregulated activation of signal transducer and activator of transcription 3 (STAT3) is fundamental to driving TNBC malignant transformation, highlighting STAT3 as a promising TNBC therapeutic target. Methoxyhispolon Methyl Ether (MHME) is an analog of Hispolon, an anti-cancer polyphenol found in the medicinal mushroom Phellinus linteus. Still, MHME's anti-cancer effects and mechanisms remain unknown. Herein, we present the first report about MHME's anti-TNBC effect and its action mechanism. We first revealed that MHME is proapoptotic and cytotoxic against human TNBC cell lines HS578T, MDA-MB-231, and MDA-MB-463 and displayed a more potent cytotoxicity than Hispolon's. Mechanistically, MHME suppressed both constitutive and interleukin 6 (IL-6)-induced activation of STAT3 represented by the extent of tyrosine 705-phosphorylated STAT3 (p-STAT3). Notably, MHME-evoked apoptosis and clonogenicity impairment were abrogated in TNBC cells overexpressing a dominant-active mutant of STAT3 (STAT3-C); supporting the blockade of STAT3 activation is an integral mechanism of MHME's cytotoxic action on TNBC cells. Moreover, MHME downregulated BCL-2 in a STAT3-dependent manner, and TNBC cells overexpressing BCL-2 were refractory to MHME-induced apoptosis, indicating that BCL-2 downregulation is responsible for MHME's proapoptotic effect on TNBC cells. Finally, MHME suppressed SRC activation, while v-src overexpression rescued p-STAT3 levels and downregulated apoptosis in MHME-treated TNBC cells. Collectively, we conclude that MHME provokes TNBC cell apoptosis through the blockade of the SRC/STAT3/BCL-2 pro-survival axis. Our findings suggest the potential of applying MHME as a TNBC chemotherapy agent.
Collapse
Affiliation(s)
- Chih-Pin Liao
- Division of General Surgery, Department of Surgery, Kuang Tien General Hospital, Taichung 433401, Taiwan;
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan;
| | - Ya-Chu Hsieh
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 402202, Taiwan;
| | - Chien-Hsing Lu
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan;
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Wen-Chi Dai
- Doctoral Program in Biotechnology Industrial Innovation and Management, National Chung Hsing University, Taichung 402202, Taiwan;
| | - Wei-Ting Yang
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Kur-Ta Cheng
- Department of Biochemistry and Molecular Cell Biology, Taipei Medical University, Taipei 110301, Taiwan;
| | - Modukuri V. Ramani
- Department of Organic Chemistry, Andhra University, Visakhapatnam 530003, India; (M.V.R.); (G.V.S.)
| | | | - Chia-Che Chang
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan;
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 402202, Taiwan;
- Doctoral Program in Biotechnology Industrial Innovation and Management, National Chung Hsing University, Taichung 402202, Taiwan;
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
- Graduate Institute of Biomedical Sciences, Rong Hsing Translational Medicine Research Center, The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| |
Collapse
|
11
|
Prokakis E, Jansari S, Boshnakovska A, Wiese M, Kusch K, Kramm C, Dullin C, Rehling P, Glatzel M, Pantel K, Wikman H, Johnsen SA, Gallwas J, Wegwitz F. RNF40 epigenetically modulates glycolysis to support the aggressiveness of basal-like breast cancer. Cell Death Dis 2023; 14:641. [PMID: 37770435 PMCID: PMC10539310 DOI: 10.1038/s41419-023-06157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most difficult breast cancer subtype to treat due to the lack of targeted therapies. Cancer stem cells (CSCs) are strongly enriched in TNBC lesions and are responsible for the rapid development of chemotherapy resistance and metastasis. Ubiquitin-based epigenetic circuits are heavily exploited by CSCs to regulate gene transcription and ultimately sustain their aggressive behavior. Therefore, therapeutic targeting of these ubiquitin-driven dependencies may reprogram the transcription of CSC and render them more sensitive to standard therapies. In this work, we identified the Ring Finger Protein 40 (RNF40) monoubiquitinating histone 2B at lysine 120 (H2Bub1) as an indispensable E3 ligase for sustaining the stem-cell-like features of the growing mammary gland. In addition, we found that the RNF40/H2Bub1-axis promotes the CSC properties and drug-tolerant state by supporting the glycolytic program and promoting pro-tumorigenic YAP1-signaling in TNBC. Collectively, this study unveils a novel tumor-supportive role of RNF40 and underpins its high therapeutic value to combat the malignant behavior of TNBC.
Collapse
Affiliation(s)
- Evangelos Prokakis
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany.
- Department of General, Visceral & Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| | - Shaishavi Jansari
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Angela Boshnakovska
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Maria Wiese
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Kathrin Kusch
- Institute for Auditory Neuroscience, Functional Auditory Genomics Group, University Medical Center Göttingen, Göttingen, Germany
| | - Christof Kramm
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Dullin
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harriet Wikman
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Steven A Johnsen
- Department of General, Visceral & Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
- The Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Julia Gallwas
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Florian Wegwitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany.
- Department of General, Visceral & Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
12
|
FBXL2 promotes E47 protein instability to inhibit breast cancer stemness and paclitaxel resistance. Oncogene 2023; 42:339-350. [PMID: 36460773 DOI: 10.1038/s41388-022-02559-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with a high risk of metastasis and recurrence. Although chemotherapy has greatly improved the clinical outcome of TNBC patients, acquired drug resistance remains a huge challenge for TNBC treatment. Breast cancer stem cells (BCSCs) play a critical role in breast cancer development, metastasis, recurrence, and chemotherapy resistance. Thus, it is of great importance to decipher the underlying molecular mechanism of BCSCs regulation for TNBC drug resistance. In this study, we demonstrate that the F-box protein FBXL2 is a critical negative regulator of BCSCs stemness and that downregulation of FBXL2 plays a causal role in TNBC drug resistance. We show that expression levels of FBXL2 significantly influence CD44high/CD24low subpopulation and the mammosphere formation ability of TNBC cells. Ectopic expression of FBXL2 inhibits initiation of TNBC and overcomes paclitaxel resistance in vivo. In addition, activation of FBXL2 by nebivolol, a clinically used small-molecule inhibitor of the beta-1 receptor, markedly overcomes BCSCs-induced paclitaxel resistance. Mechanistically, we show that FBXL2 targets transcriptional factor E47 for polyubiquitin- and proteasome-mediated degradation, resulting in inhibition of BCSC stemness. Clinical analyses indicate that low expression of FBXL2 correlates with high expression of E47 as well as with high stemness features, and is associated with poor clinical outcomes of breast cancer patients. Taken together, these results highlight that the FBXL2-E47 axis plays a critical role in the regulation of BCSC stemness and paclitaxel resistance. Thus, targeting FBXL2 might be a potential therapeutic strategy for drug-resistant TNBC.
Collapse
|
13
|
Wu J, Liu H, Zhao X, Hong H, Werner J. Editorial: Cell signaling status alteration in development and disease. Front Cell Dev Biol 2022; 10:1068887. [PMID: 36531965 PMCID: PMC9752079 DOI: 10.3389/fcell.2022.1068887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 07/29/2023] Open
Affiliation(s)
- Jun Wu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Haipeng Liu
- Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huixiao Hong
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | - Johannes Werner
- Center for Data Processing, University of Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
Dimethyl Fumarate Induces Apoptosis via Inhibition of NF-κB and Enhances the Effect of Paclitaxel and Adriamycin in Human TNBC Cells. Int J Mol Sci 2022; 23:ijms23158681. [PMID: 35955813 PMCID: PMC9369077 DOI: 10.3390/ijms23158681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 02/05/2023] Open
Abstract
Triple-negative breast cancer (TNBC) has the poorest prognosis of all breast cancer subtypes. Recently, the activation of NF-κB, which is involved in the growth and survival of malignant tumors, has been demonstrated in TNBC, suggesting that NF-κB may serve as a new therapeutic target. In the present study, we examined whether dimethyl fumarate (DMF), an NF-κB inhibitor, induces apoptosis in TNBC cells and enhances the apoptosis-inducing effect of paclitaxel and adriamycin. Cell survival was analyzed by the trypan blue assay and apoptosis assay. Protein detection was examined by immunoblotting. The activation of NF-κB p65 was correlated with poor prognosis in patients with TNBC. DMF induced apoptosis in MDA-MB-231 and BT-549 cells at concentrations that were non-cytotoxic to the normal mammary cell line MCF-10A. Furthermore, DMF inhibited NF-κB nuclear translocation and Survivin, XIAP, Bcl-xL, and Bcl-2 expression in MDA-MB-231 and BT-549 cells. Moreover, DMF enhanced the apoptosis-inducing effect of paclitaxel and adriamycin in MDA-MB-231 cells. These findings suggest that DMF may be an effective therapeutic agent for the treatment of TNBC, in which NF-κB is constitutively active. DMF may also be useful as an adjuvant therapy to conventional anticancer drugs.
Collapse
|
15
|
Yamashita N, Kufe D. Addiction of Cancer Stem Cells to MUC1-C in Triple-Negative Breast Cancer Progression. Int J Mol Sci 2022; 23:8219. [PMID: 35897789 PMCID: PMC9331006 DOI: 10.3390/ijms23158219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive malignancy with limited treatment options. TNBC progression is associated with expansion of cancer stem cells (CSCs). Few insights are available regarding druggable targets that drive the TNBC CSC state. This review summarizes the literature on TNBC CSCs and the compelling evidence that they are addicted to the MUC1-C transmembrane protein. In normal epithelia, MUC1-C is activated by loss of homeostasis and induces reversible wound-healing responses of inflammation and repair. However, in settings of chronic inflammation, MUC1-C promotes carcinogenesis. MUC1-C induces EMT, epigenetic reprogramming and chromatin remodeling in TNBC CSCs, which are dependent on MUC1-C for self-renewal and tumorigenicity. MUC1-C-induced lineage plasticity in TNBC CSCs confers DNA damage resistance and immune evasion by chronic activation of inflammatory pathways and global changes in chromatin architecture. Of therapeutic significance, an antibody generated against the MUC1-C extracellular domain has been advanced in a clinical trial of anti-MUC1-C CAR T cells and in IND-enabling studies for development as an antibody-drug conjugate (ADC). Agents targeting the MUC1-C cytoplasmic domain have also entered the clinic and are undergoing further development as candidates for advancing TNBC treatment. Eliminating TNBC CSCs will be necessary for curing this recalcitrant cancer and MUC1-C represents a promising druggable target for achieving that goal.
Collapse
Affiliation(s)
- Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
16
|
De Francesco EM, Cirillo F, Vella V, Belfiore A, Maggiolini M, Lappano R. Triple-negative breast cancer drug resistance, durable efficacy, and cure: How advanced biological insights and emerging drug modalities could transform progress. Expert Opin Ther Targets 2022; 26:513-535. [PMID: 35761781 DOI: 10.1080/14728222.2022.2094762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by the lack of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2) and often associated with poor survival outcomes. The backbone of current treatments for TNBC relies on chemotherapy; however, resistance to cytotoxic agents is a commonly encountered hurdle to overcome. AREAS COVERED : Current understanding on the mechanisms involved in TNBC chemoresistance is evaluated and novel potential actionable targets and recently explored modalities for carrying and delivering chemotherapeutics are highlighted. EXPERT OPINION : A comprehensive identification of both genomic and functional TNBC signatures is required for a more definite categorization of the patients in order to prevent insensitivity to chemotherapy and therefore realize the full potential of precision-medicine approaches. In this scenario, cell-line-derived xenografts (CDX), patient-derived xenografts (PDX), patient-derived orthotopic xenografts (PDOX) and patient-derived organoids (PDO) are indispensable experimental models for evaluating the efficacy of drug candidates and predicting the therapeutic response. The combination of increasingly sensitive "omics" technologies, computational algorithms and innovative drug modalities may accelerate the successful translation of novel candidate TNBC targets from basic research to clinical settings, thus contributing to reach optimal clinical output, with lower side effects and reduced resistance.
Collapse
Affiliation(s)
- Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
17
|
Xie X, Lee J, Iwase T, Kai M, Ueno NT. Emerging drug targets for triple-negative breast cancer: A guided tour of the preclinical landscape. Expert Opin Ther Targets 2022; 26:405-425. [PMID: 35574694 DOI: 10.1080/14728222.2022.2077188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is the most fatal molecular subtype of breast cancer because of its aggressiveness and resistance to chemotherapy. FDA-approved therapies for TNBC are limited to poly(ADP-ribose) polymerase inhibitors, immune checkpoint inhibitors, and trophoblast cell surface antigen 2-targeted antibody-drug conjugate. Therefore, developing a novel effective targeted therapy for TNBC is an urgent unmet need. AREAS COVERED In this narrative review, we discuss emerging targets for TNBC treatment discovered in early translational studies. We focus on cancer cell membrane molecules, hyperactive intracellular signaling pathways, and the tumor microenvironment (TME) based on their druggability, therapeutic potency, specificity to TNBC, and application in immunotherapy. EXPERT OPINION The significant challenges in the identification and validation of TNBC-associated targets are 1) application of appropriate genetic, molecular, and immunological approaches for modulating the target, 2) establishment of a proper mouse model that accurately represents the human immune TME, 3) TNBC molecular heterogeneity, and 4) failure translation of preclinical findings to clinical practice. To overcome those difficulties, future research needs to apply novel technology, such as single-cell RNA sequencing, thermostable group II intron reverse transcriptase sequencing, and humanized mouse models. Further, combination treatment targeting multiple pathways in both the TNBC tumor and its TME is essential for effective disease control.
Collapse
Affiliation(s)
- Xuemei Xie
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jangsoon Lee
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Toshiaki Iwase
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Megumi Kai
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naoto T Ueno
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
18
|
Chen Y, Wang MH, Wu JY, Zhu JY, Xie CF, Li XT, Wu JS, Geng SS, Li YD, Han HY, Zhong CY. ΔNp63α mediates sulforaphane suppressed colorectal cancer stem cell properties through transcriptional regulation of Nanog/Oct4/Sox2. J Nutr Biochem 2022; 107:109067. [DOI: 10.1016/j.jnutbio.2022.109067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/30/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
|
19
|
Yang X, Cao D, Ma W, Gao S, Wen G, Zhong J. Wnt signaling in triple-negative breast cancers: Its roles in molecular subtyping and cancer cell stemness and its crosstalk with non-coding RNAs. Life Sci 2022; 300:120565. [DOI: 10.1016/j.lfs.2022.120565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/20/2022]
|
20
|
Singh D, Khan MA, Siddique HR. Specific targeting of cancer stem cells by immunotherapy: A possible stratagem to restrain cancer recurrence and metastasis. Biochem Pharmacol 2022; 198:114955. [PMID: 35181312 DOI: 10.1016/j.bcp.2022.114955] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs), the tumor-initiating cells playing a crucial role in cancer progression, recurrence, and metastasis, have the intrinsic property of self-renewal and therapy resistance. The tumorigenic properties of these cells include generation of cellular heterogeneity and immuno-suppressive tumor microenvironment (TME), conferring them the capability to resist a variety of anti-cancer therapeutics. Further, CSCs possess several unique immunological properties that help them escape recognition by the innate and adaptive immune system and shape a TME into a pro-tumorigenic and immunosuppressive landscape. In this context, immunotherapy is considered one of the best therapeutic options for eliminating CSCs to halt cancer recurrence and metastasis. In this review, we discuss the various immunomodulatory properties of CSCs and the interaction of CSCs with the immune system enabling immune evasion. In addition, we also highlight the present research update on immunotherapeutic targeting of CSCs and the possible further scope of research on this topic. We believe that a deeper understanding of CSCs' immunological properties and the crosstalk between CSCs and the immune system can develop better innovative immune-therapeutics and enhance the efficacy of current therapy-resistant cancer treatments.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
21
|
CHFR regulates chemoresistance in triple-negative breast cancer through destabilizing ZEB1. Cell Death Dis 2021; 12:820. [PMID: 34462429 PMCID: PMC8405615 DOI: 10.1038/s41419-021-04114-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 12/31/2022]
Abstract
Failures to treat triple-negative breast cancer (TNBC) are mainly due to chemoresistance or radioresistance. We and others previously discovered that zinc finger E-box-binding homeobox 1 (ZEB1) is a massive driver causing these resistance. However, how to dynamically modulate the intrinsic expression of ZEB1 during cell cycle progression is elusive. Here integrated affinity purification combined with mass spectrometry and TCGA analysis identify a cell cycle-related E3 ubiquitin ligase, checkpoint with forkhead and ring finger domains (CHFR), as a key negative regulator of ZEB1 in TNBC. Functional studies reveal that CHFR associates with and decreases ZEB1 expression in a ubiquitinating-dependent manner and that CHFR represses fatty acid synthase (FASN) expression through ZEB1, leading to significant cell death of TNBC under chemotherapy. Intriguingly, a small-molecule inhibitor of HDAC under clinical trial, Trichostatin A (TSA), increases the expression of CHFR independent of histone acetylation, thereby destabilizes ZEB1 and sensitizes the resistant TNBC cells to conventional chemotherapy. In patients with basal-like breast cancers, CHFR levels significantly correlates with survival. These findings suggest the therapeutic potential for targeting CHFR-ZEB1 signaling in resistant malignant breast cancers.
Collapse
|
22
|
Targeting cancer stem cells by nutraceuticals for cancer therapy. Semin Cancer Biol 2021; 85:234-245. [PMID: 34273521 DOI: 10.1016/j.semcancer.2021.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Accumulating evidence has demonstrated that cancer stem cells (CSCs) play an essential role in tumor progression and reoccurrence and drug resistance. Multiple signaling pathways have been revealed to be critically participated in CSC development and maintenance. Emerging evidence indicates that numerous chemopreventive compounds, also known as nutraceuticals, could eliminate CSCs in part via regulating several signaling pathways. Therefore, in this review, we will describe the some natural chemopreventive agents that target CSCs in a variety of human malignancies, including soy isoflavone, curcumin, resveratrol, tea polyphenols, sulforaphane, quercetin, indole-3-carbinol, 3,3'-diindolylmethane, withaferin A, apigenin, etc. Moreover, we discuss that eliminating CSCs by nutraceuticals might be a promising strategy for treating human cancer via overcoming drug resistance and reducing tumor reoccurrence.
Collapse
|
23
|
Katanaev VL, Blagodatski A, Xu J, Khotimchenko Y, Koval A. Mining Natural Compounds to Target WNT Signaling: Land and Sea Tales. Handb Exp Pharmacol 2021; 269:215-248. [PMID: 34455487 DOI: 10.1007/164_2021_530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
WNT signaling plays paramount roles in organism development, physiology, and disease, representing a highly attractive target for drug development. However, no WNT-modulating drugs have been approved, with several candidates trudging through the early clinical trials. This delay instigates alternative approaches to discover WNT-modulating drugs. Natural products were the source of therapeutics for centuries, but the chemical diversity they offer, especially when looking at different taxonomic groups and habitats, is still to a large extent unexplored. These considerations urge researchers to screen natural compounds for the WNT-modulatory activities. Since several reviews on such endeavors exist, we here have attempted to present these efforts as "Land and sea tales" (citing the book title by Rudyard Kipling) superimposing them onto the traditional pipeline of drug discovery and early development. In doing so, we illustrate each step of the pipeline with case studies stemming from our own research. It will become obvious that several steps of the pipeline need to be modified when applied to natural products rather than to synthetic libraries. Yet the main message of this chapter is that natural compounds represent a powerful source for the WNT signaling modulators and can be developed towards drug candidates against WNT-dependent maladies.
Collapse
Affiliation(s)
- Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Centre in Oncohaematology, University of Geneva, Geneva, Switzerland.
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia.
| | - Artem Blagodatski
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences Pushchino, Moscow, Russia
| | - Jiabin Xu
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Centre in Oncohaematology, University of Geneva, Geneva, Switzerland
| | - Yuri Khotimchenko
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- National Scientific Center for Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Centre in Oncohaematology, University of Geneva, Geneva, Switzerland
| |
Collapse
|