1
|
Quach H, Farrell S, Wu MJM, Kanagarajah K, Leung JWH, Xu X, Kallurkar P, Turinsky AL, Bear CE, Ratjen F, Kalish B, Goyal S, Moraes TJ, Wong AP. Early human fetal lung atlas reveals the temporal dynamics of epithelial cell plasticity. Nat Commun 2024; 15:5898. [PMID: 39003323 PMCID: PMC11246468 DOI: 10.1038/s41467-024-50281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/05/2024] [Indexed: 07/15/2024] Open
Abstract
Studying human fetal lungs can inform how developmental defects and disease states alter the function of the lungs. Here, we sequenced >150,000 single cells from 19 healthy human pseudoglandular fetal lung tissues ranging between gestational weeks 10-19. We capture dynamic developmental trajectories from progenitor cells that express abundant levels of the cystic fibrosis conductance transmembrane regulator (CFTR). These cells give rise to multiple specialized epithelial cell types. Combined with spatial transcriptomics, we show temporal regulation of key signalling pathways that may drive the temporal and spatial emergence of specialized epithelial cells including ciliated and pulmonary neuroendocrine cells. Finally, we show that human pluripotent stem cell-derived fetal lung models contain CFTR-expressing progenitor cells that capture similar lineage developmental trajectories as identified in the native tissue. Overall, this study provides a comprehensive single-cell atlas of the developing human lung, outlining the temporal and spatial complexities of cell lineage development and benchmarks fetal lung cultures from human pluripotent stem cell differentiations to similar developmental window.
Collapse
Affiliation(s)
- Henry Quach
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Spencer Farrell
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Ming Jia Michael Wu
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kayshani Kanagarajah
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Wai-Hin Leung
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xiaoqiao Xu
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Prajkta Kallurkar
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrei L Turinsky
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christine E Bear
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Felix Ratjen
- Program in Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brian Kalish
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Division of Neonatology, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sidhartha Goyal
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Theo J Moraes
- Program in Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amy P Wong
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Cho HJ, Chung YW, Moon S, Seo JH, Kang M, Nam JS, Lee SN, Kim CH, Choi AMK, Yoon JH. IL-4 drastically decreases deuterosomal and multiciliated cells via alteration in progenitor cell differentiation. Allergy 2023. [PMID: 36883528 DOI: 10.1111/all.15705] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Allergic inflammation affects the epithelial cell populations resulting in goblet cell hyperplasia and decreased ciliated cells. Recent advances in single-cell RNA sequencing (scRNAseq) have enabled the identification of new cell subtypes and genomic features of single cells. In this study, we aimed to investigate the effect of allergic inflammation in nasal epithelial cell transcriptomes at the single-cell level. METHODS We performed scRNAseq in cultured primary human nasal epithelial (HNE) cells and in vivo nasal epithelium. The transcriptomic features and epithelial cell subtypes were determined under IL-4 stimulation, and cell-specific marker genes and proteins were identified. RESULTS We confirmed that cultured HNE cells were similar to in vivo epithelial cells through scRNAseq. Cell-specific marker genes were utilized to cluster the cell subtypes, and FOXJ1+ -ciliated cells were sub-classified into multiciliated and deuterosomal cells. PLK4 and CDC20B were specific for deuterosomal cells, and SNTN, CPASL, and GSTA2 were specific for multiciliated cells. IL-4 altered the proportions of cell subtypes, resulting in a decrease in multiciliated cells and loss of deuterosomal cells. The trajectory analysis revealed deuterosomal cells as precursor cells of multiciliated cells and deuterosomal cells function as a bridge between club and multiciliated cells. A decrease in deuterosomal cell marker genes was observed in nasal tissue samples with type 2 inflammation. CONCLUSION The effects of IL-4 appear to be mediated through the loss of the deuterosomal population, resulting in the reduction in multiciliated cells. This study also newly suggests cell-specific markers that might be pivotal for investigating respiratory inflammatory diseases.
Collapse
Affiliation(s)
- Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Youn Wook Chung
- Global Research Laboratory for Allergic Airway Disease, Yonsei University College of Medicine, Seoul, South Korea
| | - Sungmin Moon
- Global Research Laboratory for Allergic Airway Disease, Yonsei University College of Medicine, Seoul, South Korea
| | - Ju Hee Seo
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Miran Kang
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Sung Nam
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Nam Lee
- Global Research Laboratory for Allergic Airway Disease, Yonsei University College of Medicine, Seoul, South Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Augustine M K Choi
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, New York, USA
| | - Joo-Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, South Korea.,Global Research Laboratory for Allergic Airway Disease, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
3
|
Gautam LK, Harriott NC, Caceres AM, Ryan AL. Basic Science Perspective on Engineering and Modeling the Large Airways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:73-106. [PMID: 37195527 DOI: 10.1007/978-3-031-26625-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The airway epithelium provides a physical and biochemical barrier playing a key role in protecting the lung from infiltration of pathogens and irritants and is, therefore, crucial in maintaining tissue homeostasis and regulating innate immunity. Due to continual inspiration and expiration of air during breathing, the epithelium is exposed to a plethora of environmental insults. When severe or persistent, these insults lead to inflammation and infection. The effectiveness of the epithelium as a barrier is reliant upon its capacity for mucociliary clearance, immune surveillance, and regeneration upon injury. These functions are accomplished by the cells that comprise the airway epithelium and the niche in which they reside. Engineering of new physiological and pathological models of the proximal airways requires the generation of complex structures comprising the surface airway epithelium, submucosal gland epithelium, extracellular matrix, and niche cells, including smooth muscle cells, fibroblasts, and immune cells. This chapter focuses on the structure-function relationships in the airways and the challenges of developing complex engineered models of the human airway.
Collapse
Affiliation(s)
- Lalit K Gautam
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Noa C Harriott
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Adrian M Caceres
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Amy L Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
4
|
Abstract
Acute and chronic lung diseases are a leading cause of morbidity and mortality globally. Unfortunately, these diseases are increasing in frequency and we have limited treatment options for severe lung diseases. New therapies are needed that not only treat symptoms or slow disease progression, but also enable the regeneration of functional lung tissue. Both airways and alveoli contain populations of epithelial stem cells with the potential to self-renew and produce differentiated progeny. Understanding the mechanisms that determine the behaviour of these cells, and their interactions with their niches, will allow future generations of respiratory therapies that protect the lungs from disease onset, promote regeneration from endogenous stem cells or enable regeneration through the delivery of exogenous cells. This review summarises progress towards each of these goals, highlighting the challenges and opportunities of developing pro-regenerative (bio)pharmaceutical, gene and cell therapies for respiratory diseases.
Collapse
Affiliation(s)
- Robert E. Hynds
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1DZ, UK
- UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| |
Collapse
|
5
|
Ievlev V, Jensen-Cody CC, Lynch TJ, Pai AC, Park S, Shahin W, Wang K, Parekh KR, Engelhardt JF. Sox9 and Lef1 Regulate the Fate and Behavior of Airway Glandular Progenitors in Response to Injury. Stem Cells 2022; 40:778-790. [PMID: 35639980 PMCID: PMC9406614 DOI: 10.1093/stmcls/sxac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/12/2022] [Indexed: 11/12/2022]
Abstract
Cartilaginous airways of larger mammals and the mouse trachea contain at least 3 well-established stem cell compartments, including basal cells of the surface airway epithelium (SAE) and ductal and myoepithelial cells of the submucosal glands (SMG). Here we demonstrate that glandular Sox9-expressing progenitors capable of SAE repair decline with age in mice. Notably, Sox9-lineage glandular progenitors produced basal and ciliated cells in the SAE, but failed to produce secretory cells. Lef1 was required for glandular Sox9 lineage contribution to SAE repair, and its deletion significantly reduced proliferation following injury. By contrast, in vivo deletion of Sox9 enhanced proliferation of progenitors in both the SAE and SMG shortly following injury, but these progenitors failed to proliferate in vitro in the absence of Sox9, similar to that previously shown for Lef1 deletion. In cystic fibrosis ferret airways, Sox9 expression inversely correlated with Ki67 proliferative marker expression in SMG and the SAE. Using in vitro and ex vivo models, we demonstrate that Sox9 is extinguished as glandular progenitors exit ducts and proliferate on the airway surface and that Sox9 is required for migration and proper differentiation of SMG, but not surface airway, progenitors. We propose a model whereby Wnt/Lef1 and Sox9 signals differentially regulate the proliferative and migratory behavior of glandular progenitors, respectively.
Collapse
Affiliation(s)
- Vitaly Ievlev
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | | | - Thomas J Lynch
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | - Albert C Pai
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Soo Park
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | - Weam Shahin
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | - Kai Wang
- Department of Biostatistics, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Kalpaj R Parekh
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
6
|
Wu M, Zhang X, Lin Y, Zeng Y. Roles of airway basal stem cells in lung homeostasis and regenerative medicine. Respir Res 2022; 23:122. [PMID: 35562719 PMCID: PMC9102684 DOI: 10.1186/s12931-022-02042-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/01/2022] [Indexed: 11/10/2022] Open
Abstract
Airway basal stem cells (BSCs) in the proximal airways are recognized as resident stem cells capable of self-renewing and differentiating to virtually every pseudostratified epithelium cell type under steady-state and after acute injury. In homeostasis, BSCs typically maintain a quiescent state. However, when exposed to acute injuries by either physical insults, chemical damage, or pathogen infection, the remaining BSCs increase their proliferation rate apace within the first 24 h and differentiate to restore lung homeostasis. Given the progenitor property of airway BSCs, it is attractive to research their biological characteristics and how they maintain homeostatic airway structure and respond to injury. In this review, we focus on the roles of BSCs in lung homeostasis and regeneration, detail the research progress in the characteristics of airway BSCs, the cellular and molecular signaling communications involved in BSCs-related airway repair and regeneration, and further discuss the in vitro models for airway BSC propagation and their applications in lung regenerative medicine therapy.
Collapse
Affiliation(s)
- Meirong Wu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian Province, People's Republic of China
| | - Xiaojing Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian Province, People's Republic of China
| | - Yijian Lin
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian Province, People's Republic of China
| | - Yiming Zeng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China. .,Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China. .,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian Province, People's Republic of China.
| |
Collapse
|
7
|
Abstract
The lung is the primary site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced immunopathology whereby the virus enters the host cells by binding to angiotensin-converting enzyme 2 (ACE2). Sophisticated regeneration and repair programs exist in the lungs to replenish injured cell populations. However, known resident stem/progenitor cells have been demonstrated to express ACE2, raising a substantial concern regarding the long-term consequences of impaired lung regeneration after SARS-CoV-2 infection. Moreover, clinical treatments may also affect lung repair from antiviral drug candidates to mechanical ventilation. In this review, we highlight how SARS-CoV-2 disrupts a program that governs lung homeostasis. We also summarize the current efforts of targeted therapy and supportive treatments for COVID-19 patients. In addition, we discuss the pros and cons of cell therapy with mesenchymal stem cells or resident lung epithelial stem/progenitor cells in preventing post-acute sequelae of COVID-19. We propose that, in addition to symptomatic treatments being developed and applied in the clinic, targeting lung regeneration is also essential to restore lung homeostasis in COVID-19 patients.
Collapse
Affiliation(s)
- Fuxiaonan Zhao
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Qingwen Ma
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Qing Yue
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin, China
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| |
Collapse
|