1
|
Chu K, Crawford AN, Krah BS, Thamilselvan V, Malik A, Aitas NA, Martinez‐Hackert E. Cripto-1 acts as a molecular bridge linking nodal to ALK4 via distinct structural domains. Protein Sci 2025; 34:e70034. [PMID: 39840816 PMCID: PMC11751877 DOI: 10.1002/pro.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/20/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025]
Abstract
The TGF-β family ligand Nodal is an essential regulator of embryonic development, orchestrating key processes such as germ layer specification and body axis formation through activation of SMAD2/3-mediated signaling. Significantly, this activation requires the co-receptor Cripto-1. However, despite their essential roles in embryogenesis, the molecular mechanism through which Cripto-1 enables Nodal to activate the SMAD2/3 pathway has remained elusive. Intriguingly, Cripto-1 also has been shown to antagonize other TGF-β family ligands, raising questions about its diverse functions. To clarify how Cripto-1 modulates TGF-β signaling, we integrated AlphaFold3 modeling, surface plasmon resonance (SPR)-based protein-protein interaction analysis, domain-specific anti-Cripto-1 antibodies, and functional studies in NTERA-2 cells. In contrast to canonical TGF-β signaling, where ligands bridge type I and type II receptors for activation, Nodal, bound to the type II receptor, utilizes Cripto-1 to recruit the type I receptor ALK4, forming a unique ternary complex for SMAD2/3 activation. Our molecular characterization of Cripto-1-mediated Nodal signaling clarifies the unique role of this enigmatic co-receptor and advances our understanding of signaling regulation within the TGF-β family. These insights have potential implications for both developmental biology and cancer research.
Collapse
Affiliation(s)
- Kit‐Yee Chu
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Amberly N. Crawford
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Bradon S. Krah
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | | | - Anjali Malik
- Department of Structural BiologyVan Andel InstituteGrand RapidsMichiganUSA
| | - Nina A. Aitas
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Erik Martinez‐Hackert
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
2
|
Zhong J, Li L, Zhang Q, Zou J, Liu W, Xu CH. Expression and prognostic value of Cripto-1 in early non-small cell lung cancer. THE CLINICAL RESPIRATORY JOURNAL 2023; 17:1203-1208. [PMID: 37528674 PMCID: PMC10730460 DOI: 10.1111/crj.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/24/2023] [Accepted: 07/23/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVE We aim to explore the expression of Cripto-1 (CR-1) protein in patients with early stage non-small cell lung cancer (NSCLC). METHODS We investigated CR-1 expression status in specimens obtained from 240 patients with resected NSCLC and 30 cases of para-carcinous normal lung tissues. RESULTS Compared with normal lung tissue, the positive expression of CR-1 protein in NSCLC was significantly increased (p < 0.005). Cox multivariate regression analysis showed that the expression of CR-1 protein was an independent prognostic factor for early stage NSCLC (p = 0.002). CONCLUSION Detecting CR-1 protein can predict the prognosis and recurrence in patients with NSCLC.
Collapse
Affiliation(s)
- Jian Zhong
- Department of Thoracic SurgeryAffiliated Nanjing Brain Hospital, Nanjing Medical UniversityNanjingChina
| | - Li Li
- Department of Respiratory MedicineAffiliated Nanjing Brain Hospital, Nanjing Medical UniversityNanjingChina
- Clinical Center of Nanjing Respiratory Diseases and ImagingNanjingChina
| | - Qian Zhang
- Department of Respiratory MedicineAffiliated Nanjing Brain Hospital, Nanjing Medical UniversityNanjingChina
- Clinical Center of Nanjing Respiratory Diseases and ImagingNanjingChina
| | - Jue Zou
- Department of PathologyAffiliated Nanjing Brain Hospital, Nanjing Medical UniversityNanjingChina
| | - Wei Liu
- Department of Respiratory MedicineAffiliated Nanjing Brain Hospital, Nanjing Medical UniversityNanjingChina
| | - Chun Hua Xu
- Department of Respiratory MedicineAffiliated Nanjing Brain Hospital, Nanjing Medical UniversityNanjingChina
- Clinical Center of Nanjing Respiratory Diseases and ImagingNanjingChina
| |
Collapse
|
3
|
Understanding the role of Cripto-1 in cancer progression and therapeutic strategies. Clin Transl Oncol 2022; 25:1135-1144. [PMID: 36456761 DOI: 10.1007/s12094-022-03023-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022]
Abstract
During the initial stages of gastrulation during embryonic differentiation and wound healing, Cripto-1 is a critical protein for human growth. The epithelial adhesion molecules' downregulation, the mesenchymal overexpression, and mobile proteins are important mechanisms by which Cripto-1 initiates epithelial to mesenchymal transition (EMT). As a result, the function of Cripto-1 for inducing EMT to increase cell migration is advantageous during embryogenesis; however, it is deleterious during the formation, growth, and malignant tumor metastasis. The majority of malignancies are reported to have elevated levels of Cripto-1. Cripto-1 can modify cancerous cells through its function in EMT, which enables these cells to migrate via the extracellular matrix, bloodstream, and lymphatic vessels, on their way for metastasizing to other organs. The goal of this review is to explain what role Cripto-1 plays in common cancers and to summarize how therapeutic strategies are used to interfere with this molecule to target cancers.
Collapse
|
4
|
Francescangeli F, De Angelis ML, Rossi R, Sette G, Eramo A, Boe A, Guardiola O, Tang T, Yu SC, Minchiotti G, Zeuner A. CRIPTO Is a Marker of Chemotherapy-Induced Stem Cell Expansion in Non-Small Cell Lung Cancer. Front Oncol 2022; 12:830873. [PMID: 35719935 PMCID: PMC9200964 DOI: 10.3389/fonc.2022.830873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/28/2022] [Indexed: 01/15/2023] Open
Abstract
Chemotherapy is the mainstay for the treatment of non-small cell lung cancer (NSCLC). However, NSCLC cells are either intrinsically chemoresistant or rapidly develop therapy resistance. Cancer stem cells (CSCs) are widely recognized as the cell population responsible for resistance to systemic therapies, but the molecular responses of CSCs to chemotherapeutic agents are largely unknown. We identified the embryonic protein CRIPTO in stem cell-enriched spheroid cultures of adenocarcinoma (AC) and squamous cell carcinoma (SCC) derived from NSCLC surgical specimens. The CRIPTO-positive population had increased clonogenic capacity and expression of stem cell-related factors. Stemness-related properties were also obtained with forced CRIPTO expression, whereas CRIPTO downregulation resulted in cell cycle blockade and CSCs death. Cell populations positive and negative for CRIPTO expression were interconvertible, and interfering with their reciprocal equilibrium resulted in altered homeostasis of cell expansion both in spheroid cultures and in tumor xenografts. Chemotherapy treatment of NSCLC cells resulted in reduction of cell number followed by increased CRIPTO expression and selective survival of CRIPTO-positive cells. In NSCLC tumor xenografts, chemotherapeutic agents induced partial cell death and tumor stabilization followed by CRIPTO overexpression and tumor progression. Altogether, these findings indicate CRIPTO as a marker of lung CSCs possibly implicated in cancer cell plasticity and post-chemotherapy tumor progression.
Collapse
Affiliation(s)
| | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Rachele Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Sette
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Adriana Eramo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Boe
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Ombretta Guardiola
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Tao Tang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, ChongQing, China.,International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, ChongQing, China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, ChongQing, China.,International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, ChongQing, China
| | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Ann Zeuner
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
5
|
CRIPTO-1 Is Immunolocalized in the Syncytiotrophoblast of Ampullary Pregnancies. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4769790. [PMID: 35434129 PMCID: PMC9012632 DOI: 10.1155/2022/4769790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/25/2022] [Indexed: 12/02/2022]
Abstract
Introduction Controlling the invasive activity of trophoblastic tissue has not been elucidated. In the accreta placenta, the invasion of placental tissue is directly related to the expression of CRIPTO-1 at the maternal-fetal interface. The aim of this study is to evaluate if the expression of the CRIPTO-1 is related to different degrees of trophoblast invasion into the tube wall in ampullary pregnancy. Methods Prospective study with 21 patients with ampullary tubal pregnancy undergoing salpingectomy. Anatomopathological evaluation determined the degree of invasion of trophoblast tissues into the tubal wall and grouped the samples into invasive degrees I, II, or III. The groups were compared for tissue expression of CRIPTO-1 using the Kruskal-Wallis nonparametric test. p values lower than 0.05 were considered significant. Results Quantitative expression of CRIPTO-1 differed in each of the three groups of trophoblast invasion in the tubal wall in ampullary pregnancies (p < 0.001). There is a difference between groups when grade I + grade II versus grade III (p < 0.001) and grade I versus grade II + grade III (p < 0.001). The tissue expression of CRIPTO-1 in ectopic trophoblasts showed that deeper invasion of the tubal wall was associated with stronger expression than in shallow invasion (p < 0.001). Discussion. In ampullary pregnancies, the depth of penetration of trophoblast tissue in the tubal wall is related to CRIPTO-1 tissue expression.
Collapse
|
6
|
Li H, Xu W, Xiang S, Tao L, Fu W, Liu J, Liu W, Xiao Y, Peng L. Defining the Pluripotent Marker Genes for Identification of Teleost Fish Cell Pluripotency During Reprogramming. Front Genet 2022; 13:819682. [PMID: 35222539 PMCID: PMC8874021 DOI: 10.3389/fgene.2022.819682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Pluripotency is a transient state in early embryos, which is regulated by an interconnected network of pluripotency-related genes. The pluripotent state itself seems to be highly dynamic, which leads to significant differences in the description of induced pluripotent stem cells from different species at the molecular level. With the application of cell reprogramming technology in fish, the establishment of a set of molecular standards for defining pluripotency will be important for the research and potential application of induced pluripotent stem cells in fish. In this study, by BLAST search and expression pattern analysis, we screen out four pluripotent genes (Oct4, Nanog, Tdgf1, and Gdf3) in zebrafish (Danio rerio) and crucian carp (Carassius). These genes were highly expressed in the short period of early embryonic development, but significantly down-regulated after differentiation. Moreover, three genes (Oct4, Nanog and Tdgf1) have been verified that are suitable for identifying the pluripotency of induced pluripotent stem cells in zebrafish and crucian carp. Our study expands the understanding of the pluripotent markers of induced pluripotent stem cells in fish.
Collapse
Affiliation(s)
- Huajin Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Wenting Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Sijia Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Leiting Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Wen Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Jinhui Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Wenbin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Liangyue Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
- *Correspondence: Liangyue Peng,
| |
Collapse
|
7
|
Freeman DW, Rodrigues Sousa E, Karkampouna S, Zoni E, Gray PC, Salomon DS, Kruithof-de Julio M, Spike BT. Whence CRIPTO: The Reemergence of an Oncofetal Factor in 'Wounds' That Fail to Heal. Int J Mol Sci 2021; 22:10164. [PMID: 34576327 PMCID: PMC8472190 DOI: 10.3390/ijms221810164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023] Open
Abstract
There exists a set of factors termed oncofetal proteins that play key roles in ontogeny before they decline or disappear as the organism's tissues achieve homeostasis, only to then re-emerge in cancer. Although the unique therapeutic potential presented by such factors has been recognized for more than a century, their clinical utility has yet to be fully realized1. This review highlights the small signaling protein CRIPTO encoded by the tumor derived growth factor 1 (TDGF1/Tdgf1) gene, an oft cited oncofetal protein whose presence in the cancer literature as a tumor promoter, diagnostic marker and viable therapeutic target continues to grow. We touch lightly on features well established and well-reviewed since its discovery more than 30 years ago, including CRIPTO's early developmental roles and modulation of SMAD2/3 activation by a selected set of transforming growth factor β (TGF-β) family ligands. We predominantly focus instead on more recent and less well understood additions to the CRIPTO signaling repertoire, on its potential upstream regulators and on new conceptual ground for understanding its mode of action in the multicellular and often stressful contexts of neoplastic transformation and progression. We ask whence it re-emerges in cancer and where it 'hides' between the time of its fetal activity and its oncogenic reemergence. In this regard, we examine CRIPTO's restriction to rare cells in the adult, its potential for paracrine crosstalk, and its emerging role in inflammation and tissue regeneration-roles it may reprise in tumorigenesis, acting on subsets of tumor cells to foster cancer initiation and progression. We also consider critical gaps in knowledge and resources that stand between the recent, exciting momentum in the CRIPTO field and highly actionable CRIPTO manipulation for cancer therapy and beyond.
Collapse
Affiliation(s)
- David W. Freeman
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT 84113, USA;
| | - Elisa Rodrigues Sousa
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
| | - Sofia Karkampouna
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
| | - Eugenio Zoni
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
| | - Peter C. Gray
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA;
| | - David S. Salomon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 20893, USA;
| | - Marianna Kruithof-de Julio
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
- Translational Organoid Models, Department for BioMedical Research, University of Bern, 3012 Bern, Switzerland
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland
- Department of Urology, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland
| | - Benjamin T. Spike
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT 84113, USA;
| |
Collapse
|
8
|
Garcia de Vinuesa A, Sanchez-Duffhues G, Blaney-Davidson E, van Caam A, Lodder K, Ramos Y, Kloppenburg M, Meulenbelt I, van der Kraan P, Goumans MJ, Ten Dijke P. Cripto favors chondrocyte hypertrophy via TGF-β SMAD1/5 signaling during development of osteoarthritis. J Pathol 2021; 255:330-342. [PMID: 34357595 PMCID: PMC9292799 DOI: 10.1002/path.5774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/29/2021] [Accepted: 08/03/2021] [Indexed: 11/11/2022]
Abstract
Chondrocytes in mice developing osteoarthritis (OA) exhibit an aberrant response to the secreted cytokine transforming growth factor (TGF)‐β, consisting in a potentiation of intracellular signaling downstream of the transmembrane type I receptor kinase activin receptor‐like kinase (ALK)1 against canonical TGF‐β receptor ALK5‐mediated signaling. Unfortunately, the underlying mechanisms remain elusive. In order to identify novel druggable targets for OA, we aimed to investigate novel molecules regulating the ALK1/ALK5 balance in OA chondrocytes. We performed gene expression analysis of TGF‐β signaling modulators in joints from three different mouse models of OA and found an upregulated expression of the TGF‐β co‐receptor Cripto (Tdgf1), which was validated in murine and human cartilage OA samples at the protein level. In vitro and ex vivo, elevated expression of Cripto favors the hypertrophic differentiation of chondrocytes, eventually contributing to tissue calcification. Furthermore, we found that Cripto participates in a TGF‐β–ALK1–Cripto receptor complex in the plasma membrane, thereby inducing catabolic SMAD1/5 signaling in chondrocytes. In conclusion, we demonstrate that Cripto is expressed in OA and plays a functional role promoting chondrocyte hypertrophy, thereby becoming a novel potential therapeutic target in OA, for which there is no efficient cure or validated biomarker. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Amaya Garcia de Vinuesa
- Department of Cell and Chemical Biology, Leiden University Medical Center, Oncode Institute, Leiden, The Netherlands
| | - Gonzalo Sanchez-Duffhues
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg Leiden, The Netherlands
| | - Esmeralda Blaney-Davidson
- Experimental Rheumatology & Advanced Therapeutics, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Arjan van Caam
- Experimental Rheumatology & Advanced Therapeutics, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Kirsten Lodder
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg Leiden, The Netherlands
| | - Yolande Ramos
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Margreet Kloppenburg
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter van der Kraan
- Experimental Rheumatology & Advanced Therapeutics, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Leiden University Medical Center, Oncode Institute, Leiden, The Netherlands
| |
Collapse
|
9
|
Arboretto P, Cillo M, Leonardi A. New Insights into Cancer Targeted Therapy: Nodal and Cripto-1 as Attractive Candidates. Int J Mol Sci 2021; 22:ijms22157838. [PMID: 34360603 PMCID: PMC8345935 DOI: 10.3390/ijms22157838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
The transforming growth factor beta (TGF-β) signaling is fundamental for correct embryonic development. However, alterations of this pathway have been correlated with oncogenesis, tumor progression and sustaining of cancer stem cells (CSCs). Cripto-1 (CR-1) and Nodal are two embryonic proteins involved in TGF-β signaling. Their expression is almost undetectable in terminally differentiated cells, but they are often re-expressed in tumor cells, especially in CSCs. Moreover, cancer cells that show high levels of CR-1 and/or Nodal display more aggressive phenotypes in vitro, while in vivo their expression correlates with a worse prognosis in several human cancers. The ability to target CSCs still represents an unmet medical need for the complete eradication of certain types of tumors. Given the prognostic role and the selective expression of CR-1 and Nodal on cancer cells, they represent archetypes for targeted therapy. The aim of this review is to clarify the role of CR-1 and Nodal in cancer stem populations and to summarize the current therapeutic strategy to target CSCs using monoclonal antibodies (mAbs) or other molecular tools to interfere with these two proteins.
Collapse
|
10
|
Ishii H, Afify SM, Hassan G, Salomon DS, Seno M. Cripto-1 as a Potential Target of Cancer Stem Cells for Immunotherapy. Cancers (Basel) 2021; 13:cancers13102491. [PMID: 34065315 PMCID: PMC8160785 DOI: 10.3390/cancers13102491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cancer immunotherapy is gaining attention as a potential fourth treatment following surgery, chemotherapy, and radiation therapy. Cancer stem cells have recently been recognized and validated as a key target for cancer treatment. Cripto-1, which is a GPI-anchored membrane-bound protein that functions as a co-receptor of Nodal, is a marker of cancer stem cells. Since Nodal is a member of the TGF-β family, which performs an important role in stem cells and cancer stem cells, the inhibition of Cripto-1 could be a strategy by which to block Nodal signaling and thereby suppress cancer stem cells. We propose that Cripto-1 may be a novel target for cancer immunotherapy. Abstract The immune system has been found to be suppressed in cancer patients. Cancer cells are extremely resistant to chemotherapeutic drugs, conventional immunotherapy, or cancer antigen vaccine therapy. Cancer immunotherapy, which is mainly based on immune checkpoint inhibitors, such as those for PD-1, PD-L1, and CTLA4, is an effective treatment method. However, no immunotherapeutic target has been found that retains validity in the face of tumor diversity. The transforming growth factor (TGF)-β cytokine family possesses broad biological activity and is involved in the induction and/or transdifferentiation of helper T cells, which are important in immunotherapy. Nodal is a member of the TGF-β family playing important roles in tissue stem cells and cancer stem cells (CSCs), interacting with the co-receptor Cripto-1, as well as with Activin type IB (Alk4) and Activin typeIIreceptors, and maintaining stemness and Notch and Wnt/β-catenin signaling in CSCs. In recent years, it has been reported that Cripto-1 could be a potential therapeutic target in CSCs. Here, we review the accumulated literature on the molecular mechanisms by which Cripto-1 functions in CSCs and discuss the potential of Cripto-1 as an immunotherapeutic target in CSCs.
Collapse
Affiliation(s)
- Hiroko Ishii
- GSP Enterprise, Inc., 1-4-38 12F Minato-machi, Naniwa-ku, Osaka 556-0017, Japan;
| | - Said M. Afify
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (S.M.A.); (G.H.)
- Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Shebin ElKoum Menoufia 32511, Egypt
| | - Ghmkin Hassan
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (S.M.A.); (G.H.)
| | - David S. Salomon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Masaharu Seno
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (S.M.A.); (G.H.)
- Correspondence: ; Tel.: +81-86-251-8216
| |
Collapse
|
11
|
Du T, Jiang J, Chen Y, Zhang N, Chen G, Wang X, Long X, Feng X. MiR-138-1-3p alters the stemness and radiosensitivity of tumor cells by targeting CRIPTO and the JAK2/STAT3 pathway in nasopharyngeal carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:485. [PMID: 33850882 PMCID: PMC8039661 DOI: 10.21037/atm-21-521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Tumor resistance to radiotherapy is one of the main obstacles to the clinical treatment of nasopharyngeal carcinoma (NPC). Improving the radiosensitivity of tumor cells has an important clinical significance in treatment of clinical NPC. This study aimed to identify that miR-138-1-3p as a novel therapeutic target in radioresistant NPC cells and found its targets, CRIPTO and the JAK2/STAT3 pathway. Methods Radioresistant C666-IR and HK-1R cells were derived from the NPC cell lines C666-1 and HK-1. The different microRNAs (miRNAs) and their targeting genes were analyzed between C666-1 and C666-IR cells using microarray bioinformatics. Western blot, qRT-PCR, gene transfection, Luciferase reporter assay, and confocal laser scanning microscopy were applied for the analysis of the different genes. Results MiR-138-1-3p was found to target CRIPTO, which involved in the epithelial-mesenchymal transition (EMT) and JAK2/STAT3 signaling pathways. The luciferase reporter assay confirmed that miR-138-1-3p targeted CRIPTO and downregulated the expression of CRIPTO. Furthermore, miR-138-1-3p affected the stability of the CRIPTO-GRP78 complex on the cell membrane and also reversed the radioresistant characteristics of NPC stem cells, which affected EMT and the JAK2/STAT3 signaling pathway. Conclusions The miR-138-1-3p is a small molecule that can modulate radiosensitivity in the radioresistant C666-IR and HK-1R NPC cell lines by inhibiting EMT and targeting CRIPTO to reduce the activation of the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Tao Du
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China.,Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jiahui Jiang
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China
| | - Yiting Chen
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Nengwei Zhang
- Department of General Surgery, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Guanyang Chen
- Department of General Surgery, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Xingwei Wang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xueying Long
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xueping Feng
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China.,Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Apoptosis in the fetal testis eliminates developmentally defective germ cell clones. Nat Cell Biol 2020; 22:1423-1435. [DOI: 10.1038/s41556-020-00603-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 10/12/2020] [Indexed: 01/22/2023]
|
13
|
Rodrigues Sousa E, Zoni E, Karkampouna S, La Manna F, Gray PC, De Menna M, Kruithof-de Julio M. A Multidisciplinary Review of the Roles of Cripto in the Scientific Literature Through a Bibliometric Analysis of its Biological Roles. Cancers (Basel) 2020; 12:cancers12061480. [PMID: 32517087 PMCID: PMC7352664 DOI: 10.3390/cancers12061480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Cripto is a small glycosylphosphatidylinisitol (GPI)-anchored and secreted oncofetal protein that plays important roles in regulating normal physiological processes, including stem cell differentiation, embryonal development, and tissue growth and remodeling, as well as pathological processes such as tumor initiation and progression. Cripto functions as a co-receptor for TGF-β ligands such as Nodal, GDF1, and GDF3. Soluble and secreted forms of Cripto also exhibit growth factor-like activity and activate SRC/MAPK/PI3K/AKT pathways. Glucose-Regulated Protein 78 kDa (GRP78) binds Cripto at the cell surface and has been shown to be required for Cripto signaling via both TGF-β and SRC/MAPK/PI3K/AKT pathways. To provide a comprehensive overview of the scientific literature related to Cripto, we performed, for the first time, a bibliometric analysis of the biological roles of Cripto as reported in the scientific literature covering the last 10 years. We present different fields of knowledge in comprehensive areas of research on Cripto, ranging from basic to translational research, using a keyword-driven approach. Our ultimate aim is to aid the scientific community in conducting targeted research by identifying areas where research has been conducted so far and, perhaps more importantly, where critical knowledge is still missing.
Collapse
Affiliation(s)
- Elisa Rodrigues Sousa
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
| | - Eugenio Zoni
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
- Department of Urology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Sofia Karkampouna
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
| | - Federico La Manna
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
- Department of Urology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | - Marta De Menna
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
| | - Marianna Kruithof-de Julio
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
- Department of Urology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Correspondence:
| |
Collapse
|
14
|
Jin W. Regulation of Src Family Kinases during Colorectal Cancer Development and Its Clinical Implications. Cancers (Basel) 2020; 12:cancers12051339. [PMID: 32456226 PMCID: PMC7281431 DOI: 10.3390/cancers12051339] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
Src family kinases (SFKs) are non-receptor kinases that play a critical role in the pathogenesis of colorectal cancer (CRC). The expression and activity of SFKs are upregulated in patients with CRC. Activation of SFKs promotes CRC cell proliferation, metastases to other organs and chemoresistance, as well as the formation of cancer stem cells (CSCs). The enhanced expression level of Src is associated with decreased survival in patients with CRC. Src-mediated regulation of CRC progression involves various membrane receptors, modulators, and suppressors, which regulate Src activation and its downstream targets through various mechanisms. This review provides an overview of the current understanding of the correlations between Src and CRC progression, with a special focus on cancer cell proliferation, invasion, metastasis and chemoresistance, and formation of CSCs. Additionally, this review discusses preclinical and clinical strategies to improve the therapeutic efficacy of drugs targeting Src for treating patients with CRC.
Collapse
Affiliation(s)
- Wook Jin
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon 406-840, Korea
| |
Collapse
|
15
|
Harpelunde Poulsen K, Nielsen JE, Grønkær Toft B, Joensen UN, Rasmussen LJ, Blomberg Jensen M, Mitchell RT, Juul A, Rajpert-De Meyts E, Jørgensen A. Influence of Nodal signalling on pluripotency factor expression, tumour cell proliferation and cisplatin-sensitivity in testicular germ cell tumours. BMC Cancer 2020; 20:349. [PMID: 32326899 PMCID: PMC7181506 DOI: 10.1186/s12885-020-06820-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Testicular germ cell tumours (TGCTs) are characterised by an overall high cisplatin-sensitivity which has been linked to their continued expression of pluripotency factors. Recently, the Nodal signalling pathway has been implicated in the regulation of pluripotency factor expression in fetal germ cells, and the pathway could therefore also be involved in regulating expression of pluripotency factors in malignant germ cells, and hence cisplatin-sensitivity in TGCTs. METHODS We used in vitro culture of the TGCT-derived cell line NTera2, ex vivo tissue culture of primary TGCT specimens and xenografting of NTera2 cells into nude mice in order to investigate the consequences of manipulating Nodal and Activin signalling on pluripotency factor expression, apoptosis, proliferation and cisplatin-sensitivity. RESULTS The Nodal signalling factors were markedly expressed concomitantly with the pluripotency factor OCT4 in GCNIS cells, seminomas and embryonal carcinomas. Despite this, inhibition of Nodal and Activin signalling either alone or simultaneously did not affect proliferation or apoptosis in malignant germ cells in vitro or ex vivo. Interestingly, inhibition of Nodal signalling in vitro reduced the expression of pluripotency factors and Nodal pathway genes, while stimulation of the pathway increased their expression. However, cisplatin-sensitivity was not affected following pharmacological inhibition of Nodal/Activin signalling or siRNA-mediated knockdown of the obligate co-receptor CRIPTO in NTera2 cells in vitro or in a xenograft model. CONCLUSION Our findings suggest that the Nodal signalling pathway may be involved in regulating pluripotency factor expression in malignant germ cells, but manipulation of the pathway does not appear to affect cisplatin-sensitivity or tumour cell proliferation.
Collapse
Affiliation(s)
- K Harpelunde Poulsen
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, DK-2100, Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Blegdamsvej 9, Copenhagen, Denmark
| | - J E Nielsen
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, DK-2100, Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Blegdamsvej 9, Copenhagen, Denmark
| | - B Grønkær Toft
- Pathology Department, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - U N Joensen
- Department of Urology, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - L J Rasmussen
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - M Blomberg Jensen
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - R T Mitchell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - A Juul
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, DK-2100, Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Blegdamsvej 9, Copenhagen, Denmark
| | - E Rajpert-De Meyts
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, DK-2100, Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Blegdamsvej 9, Copenhagen, Denmark
| | - A Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, DK-2100, Copenhagen, Denmark. .,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Blegdamsvej 9, Copenhagen, Denmark.
| |
Collapse
|
16
|
Sandomenico A, Ruvo M. Targeting Nodal and Cripto-1: Perspectives Inside Dual Potential Theranostic Cancer Biomarkers. Curr Med Chem 2019; 26:1994-2050. [PMID: 30207211 DOI: 10.2174/0929867325666180912104707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Elucidating the mechanisms of recurrence of embryonic signaling pathways in tumorigenesis has led to the discovery of onco-fetal players which have physiological roles during normal development but result aberrantly re-activated in tumors. In this context, Nodal and Cripto-1 are recognized as onco-developmental factors, which are absent in normal tissues but are overexpressed in several solid tumors where they can serve as theranostic agents. OBJECTIVE To collect, review and discuss the most relevant papers related to the involvement of Nodal and Cripto-1 in the development, progression, recurrence and metastasis of several tumors where they are over-expressed, with a particular attention to their occurrence on the surface of the corresponding sub-populations of cancer stem cells (CSC). RESULTS We have gathered, rationalized and discussed the most interesting findings extracted from some 370 papers related to the involvement of Cripto-1 and Nodal in all tumor types where they have been detected. Data demonstrate the clear connection between Nodal and Cripto-1 presence and their multiple oncogenic activities across different tumors. We have also reviewed and highlighted the potential of targeting Nodal, Cripto-1 and the complexes that they form on the surface of tumor cells, especially of CSC, as an innovative approach to detect and suppress tumors with molecules that block one or more mechanisms that they regulate. CONCLUSION Overall, Nodal and Cripto-1 represent two innovative and effective biomarkers for developing potential theranostic anti-tumor agents that target normal as well as CSC subpopulations and overcome both pharmacological resistance and tumor relapse.
Collapse
Affiliation(s)
- Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| |
Collapse
|
17
|
Alowaidi F, Hashimi SM, Nguyen M, Meshram M, Alqurashi N, Cavanagh BL, Bellette B, Ivanovski S, Meedenyia A, Wood SA. Investigating the role of CRIPTO-1 (TDGF-1) in glioblastoma multiforme U87 cell line. J Cell Biochem 2019; 120:7412-7427. [PMID: 30426531 DOI: 10.1002/jcb.28015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 10/10/2018] [Indexed: 01/24/2023]
Abstract
Cripto-1 has been implicated in a number of human cancers. Although there is high potential for a role of Cripto-1 in glioblastoma multiforme (GBM) pathogenesis and progression, few studies have tried to define its role in GBM. These studies were limited in that Cripto-1 expression was not studied in detail in relation to markers of cancer initiation and progression. Therefore, these correlative studies allowed limited interpretation of Criptos-1's effect on the various aspects of GBM development using the U87 GBM cell line. In this study, we sought to delineate the role of Cripto-1 in facilitating pathogenesis, stemness, proliferation, invasion, migration and angiogenesis in GBM. Our findings show that upon overexpressing Cripto-1 in U87 GBM cells, the stemness markers Nanog, Oct4, Sox2, and CD44 increased expression. Similarly, an increase in Ki67 was observed demonstrating Cripto-1's potential to induce cellular proliferation. Likewise, we report a novel finding that increased expression of the markers of migration and invasion, Vimentin and Twist, correlated with upregulation of Cripto-1. Moreover, Cripto-1 exposure led to VEGFR-2 overexpression along with higher tube formation under conditions promoting endothelial growth. Taken together our results support a role for Cripto-1 in the initiation, development, progression, and maintenance of GBM pathogenesis. The data presented here are also consistent with a role for Cripto-1 in the re-growth and invasive growth in GBM. This highlights its potential use as a predictive and diagnostic marker in GBM as well as a therapeutic target.
Collapse
Affiliation(s)
- Faisal Alowaidi
- Department of Pathology and Laboratory Medicine, College of Medicine and University Hospitals, King Saud University, Riyadh, Saudi Arabia.,Menzies Health Institute Queensland, School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Saeed M Hashimi
- Department of Basic Science, Biology Unit, Deanship of Preparatory Year and Supporting studies, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Maria Nguyen
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Mallika Meshram
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Naif Alqurashi
- Department of Basic Science, Biology Unit, Deanship of Preparatory Year and Supporting studies, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Brenton L Cavanagh
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Bernadette Bellette
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Saso Ivanovski
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Adrian Meedenyia
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Stephen A Wood
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
18
|
Witt K, Ligtenberg MA, Conti L, Lanzardo S, Ruiu R, Wallmann T, Tufvesson-Stiller H, Chambers BJ, Rolny C, Lladser A, Lundqvist A, Cavallo F, Kiessling R. Cripto-1 Plasmid DNA Vaccination Targets Metastasis and Cancer Stem Cells in Murine Mammary Carcinoma. Cancer Immunol Res 2018; 6:1417-1425. [PMID: 30143536 DOI: 10.1158/2326-6066.cir-17-0572] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/24/2018] [Accepted: 08/20/2018] [Indexed: 02/03/2023]
Abstract
Metastatic breast cancer is a fatal disease that responds poorly to treatment. Cancer vaccines targeting antigens expressed by metastatic breast cancer cells and cancer stem cells could function as anticancer therapies. Cripto-1 is an oncofetal protein overexpressed in invasive breast cancer and cancer-initiating cells. In this study, we explored the potential of a Cripto-1-encoding DNA vaccine to target breast cancer in preclinical mouse models. BALB/c mice and BALB-neuT mice were treated with a DNA vaccine encoding mouse Cripto-1 (mCr-1). BALB/c mice were challenged with murine breast cancer 4T1 cells or TUBO spheres; BALB-neuT mice spontaneously developed breast cancer. Tumor growth was followed in all mouse models and lung metastases were evaluated. In vitro assays were performed to identify the immune response elicited by vaccination. Vaccination against mCr-1 reduced primary tumor growth in the 4T1 metastatic breast cancer model and reduced lung metastatic burden. In BALB-neuT mice, because the primary tumors are Cripto-1 negative, vaccination against mCr-1 did not affect primary tumors but did reduce lung metastatic burden. Spheroid-cultured TUBO cells, derived from a BALB/neuT primary tumor, develop a cancer stem cell-like phenotype and express mCr-1. We observed reduced tumor growth in vaccinated mice after challenge with TUBO spheres. Our data indicate that vaccination against Cripto-1 results in a protective immune response against mCr-1 expressing and metastasizing cells. Targeting Cripto-1 by vaccination holds promise as an immunotherapy for treatment of metastatic breast cancer. Cancer Immunol Res; 6(11); 1417-25. ©2018 AACR.
Collapse
Affiliation(s)
- Kristina Witt
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Maarten A Ligtenberg
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Stefania Lanzardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Roberto Ruiu
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Tatjana Wallmann
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Helena Tufvesson-Stiller
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Benedict J Chambers
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Charlotte Rolny
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Alvaro Lladser
- Laboratory of Gene Immunotherapy; Fundación Ciencia and Vida; Santiago, Chile
| | - Andreas Lundqvist
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Rolf Kiessling
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
19
|
Sellers ZP, Schneider G, Bujko K, Suszynska M, Pedziwiatr D. Do Cancer Cell Lines Have Fixed or Fluctuating Stem Cell Phenotypes? - Studies with the NTera2 Cell Line. Stem Cell Rev Rep 2018. [PMID: 28624968 DOI: 10.1007/s12015-017-9743-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
One of the important questions when studying established cancer cell lines is whether such cells contain a subpopulation of primitive cancer stem cells that maintains the expansion of the cell line. To address this issue, we performed studies on the established human embryonal carcinoma cell line NTera2 by evaluating the potential stemness of cells sorted according to their expression of the cell surface stem cell markers CD133 and SSEA4. By performing in vitro and in vivo assays, we observed different properties of cells expressing both, one, or neither of these antigens. While sorted SSEA4+ subpopulations exhibited the greatest propensity for migration toward normal serum and the highest seeding efficiency in the lungs of immunodeficient mice, CD133-SSEA4- cells displayed high seeding efficiency to the bone marrow after injection in vivo. It is worth noting that these properties did not depend on the size of the evaluated cells. To address the question of whether cancer stem cell phenotypes in cell lines are fixed or fluctuating, we sorted single cells according to their expression of CD133 and SSEA4 antigens and observed that cells which did not express these cancer stem cell markers gave rise to cells that express these markers after expansion in vitro. Therefore, our results support the idea that within established cancer cell lines, the phenotype of the cell subpopulation expressing cancer stem cell markers is not fixed but fluctuates during cell line expansion, and cells negative for these markers may acquire their expression.
Collapse
Affiliation(s)
- Zachariah P Sellers
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA.
| | - Gabriela Schneider
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Kamila Bujko
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Malwina Suszynska
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Daniel Pedziwiatr
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland
| |
Collapse
|
20
|
Cripto-1 contributes to stemness in hepatocellular carcinoma by stabilizing Dishevelled-3 and activating Wnt/β-catenin pathway. Cell Death Differ 2018; 25:1426-1441. [PMID: 29445127 PMCID: PMC6113239 DOI: 10.1038/s41418-018-0059-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/28/2017] [Accepted: 01/08/2018] [Indexed: 01/10/2023] Open
Abstract
Identification and characterization of functional molecular targets conferring stemness properties in hepatocellular carcinoma (HCC) offers crucial insights to overcome the major hurdles of tumor recurrence, metastasis and chemoresistance in clinical management. In the current study, we investigated the significance of Cripto-1 in contributing to HCC stemness. Cripto-1 was upregulated in the sorafenib-resistant clones derived from HCC cell lines and patient-derived xenograft that we previously developed, suggesting an association between Cripto-1 and stemness. By in vitro experiments, Cripto-1 fostered cell proliferation, migration, and invasion. It also enhanced self-renewal ability and conferred chemoresistance of HCC cells. Consistently, silencing of Cripto-1 suppressed in vivo tumorigenicity on serial transplantation. On the downstream signaling mechanism, expression of major components of Wnt/β-catenin pathway β-catenin, AXIN2, and C-MYC, accompanied by β-catenin activity was reduced upon Cripto-1 knockdown. The suppressive effects on stemness properties with Cripto-1 knockdown in vitro and in vivo were partially rescued by forced expression of constitutively active β-catenin. Further elucidation revealed the binding of Cripto-1 to Frizzled-7 (FZD7), low-density lipoprotein receptor-related protein 6 (LRP6) and Dishevelled-3 (DVL3) of the Wnt/β-catenin pathway and stabilized DVL3 protein. Analyses with clinical samples validated Cripto-1 overexpression in HCC tissues, as well as a positive correlation between Cripto-1 and AXIN2 expressions. High Cripto-1 level in tumor was associated with poorer disease-free survival of HCC patients. Taken together, Cripto-1 binds to FZD7/LRP6 and DVL3, stabilizes DVL3 expression and activates the Wnt/β-catenin signaling cascade to confer stemness in HCC. Our study findings substantiated the role of Cripto-1 in determining stemness phenotypes of HCC and mechanistically in modulating the Wnt/β-catenin signaling cascade, one of the most frequently deregulated pathways in liver cancer.
Collapse
|
21
|
Nickel J, Ten Dijke P, Mueller TD. TGF-β family co-receptor function and signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:12-36. [PMID: 29293886 DOI: 10.1093/abbs/gmx126] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Transforming growth factor-β (TGF-β) family members, which include TGF-βs, activins and bone morphogenetic proteins, are pleiotropic cytokines that elicit cell type-specific effects in a highly context-dependent manner in many different tissues. These secreted protein ligands signal via single-transmembrane Type I and Type II serine/threonine kinase receptors and intracellular SMAD transcription factors. Deregulation in signaling has been implicated in a broad array of diseases, and implicate the need for intricate fine tuning in cellular signaling responses. One important emerging mechanism by which TGF-β family receptor signaling intensity, duration, specificity and diversity are regulated and/or mediated is through cell surface co-receptors. Here, we provide an overview of the co-receptors that have been identified for TGF-β family members. While some appear to be specific to TGF-β family members, others are shared with other pathways and provide possible ways for signal integration. This review focuses on novel functions of TGF-β family co-receptors, which continue to be discovered.
Collapse
Affiliation(s)
- Joachim Nickel
- Universitätsklinikum Würzburg, Lehrstuhl für Tissue Engineering und Regenerative Medizin und Fraunhofer Institut für Silicatforschung (ISC), Translationszentrum "Regenerative Therapien", Röntgenring 11, D-97070 Würzburg, Germany
| | - Peter Ten Dijke
- Department of Molecular and Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands
| | - Thomas D Mueller
- Lehrstuhl für molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| |
Collapse
|
22
|
Hu Q, Khanna P, Ee Wong BS, Lin Heng ZS, Subhramanyam CS, Thanga LZ, Sing Tan SW, Baeg GH. Oxidative stress promotes exit from the stem cell state and spontaneous neuronal differentiation. Oncotarget 2017; 9:4223-4238. [PMID: 29423117 PMCID: PMC5790534 DOI: 10.18632/oncotarget.23786] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) play important roles in fundamental cellular processes such as proliferation and survival. Here we investigated the effect of oxidative stress on stem cell maintenance and neuronal differentiation in a human embryonic stem cell (hESC) model, Ntera2 (NT2). CM-H2DCFDA and DHE assays confirmed that the oxidizing agent paraquat could induce a high level of ROS in NT2 cells. Quantitative PCR, Western blotting and immunocytochemistry showed that paraquat-induced oxidative stress suppressed the expression of stemness markers, including NANOG, OCT4 and TDGF1, whereas it enhanced the spontaneous expression of neuronal differentiation markers such as PAX6, NEUROD1, HOXA1, NCAM, GFRA1 and TUJ1. The treated cells even exhibited a strikingly different morphology from control cells, extending out long neurite-like processes. The neurogenic effect of ROS on stem cell behaviour was confirmed by the observations that the expression of neuronal markers in the paraquat-treated cells was suppressed by an antioxidant while further enhanced by knocking down Nrf2, a key transcription factor associated with antioxidant signaling. Lastly, paraquat dose-dependently activated the neurogenic MAPK-ERK1/2, which can be reversed by the MEK1/2 inhibitor SL327. Our study suggests that excessive intracellular ROS can trigger the exit from stem cell state and promote the neuronal differentiation of hESCs, and that MAPK-ERK1/2 signaling may play a proactive role in the ROS-induced neuronal differentiation of hESCs.
Collapse
Affiliation(s)
- Qidong Hu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD 10, Singapore
| | - Puja Khanna
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD 10, Singapore
| | - Belinda Shu Ee Wong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD 10, Singapore
| | - Zealyn Shi Lin Heng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD 10, Singapore
| | | | - Lal Zo Thanga
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD 10, Singapore
| | - Sharon Wui Sing Tan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD 10, Singapore
| | - Gyeong Hun Baeg
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD 10, Singapore
| |
Collapse
|
23
|
Park SW, Do HJ, Han MH, Choi W, Kim JH. The expression of the embryonic gene Cripto-1 is regulated by OCT4 in human embryonal carcinoma NCCIT cells. FEBS Lett 2017; 592:24-35. [PMID: 29223130 DOI: 10.1002/1873-3468.12935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 01/23/2023]
Abstract
Cripto-1 and OCT4, expressed in stem cells and cancers, play important roles in tumorigenesis. Here, we demonstrate that Cripto-1 expression is regulated by OCT4 in human embryonic carcinoma NCCIT cells. The endogenous expression of Cripto-1 and OCT4 is significantly reduced during differentiation. Cripto-1 expression is increased by OCT4 overexpression, but decreased by shRNA-mediated OCT4 knockdown. OCT4 overexpression significantly activates Cripto-1 transcriptional activity. A 5'-upstream minimal promoter sequence in the gene-encoding Cripto-1 is significantly activated by OCT4 overexpression. Mutation of the putative OCT4-binding site abolishes OCT4-mediated activation of the Cripto-1 promoter. The OCT4 transactivation domains mediate transcriptional activity of the Cripto-1 minimal promoter through direct interaction. Taken together, OCT4 plays an important role as a transcriptional activator of Cripto-1 expression in NCCIT cells.
Collapse
Affiliation(s)
- Sung-Won Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-Si, Gyeonggi-Do, Korea
| | - Hyun-Jin Do
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-Si, Gyeonggi-Do, Korea
| | - Mi-Hee Han
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-Si, Gyeonggi-Do, Korea
| | - Wonbin Choi
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-Si, Gyeonggi-Do, Korea
| | - Jae-Hwan Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-Si, Gyeonggi-Do, Korea
| |
Collapse
|
24
|
Liu Q, Cui X, Yu X, Bian BSJ, Qian F, Hu XG, Ji CD, Yang L, Ren Y, Cui W, Zhang X, Zhang P, Wang JM, Cui YH, Bian XW. Cripto-1 acts as a functional marker of cancer stem-like cells and predicts prognosis of the patients in esophageal squamous cell carcinoma. Mol Cancer 2017; 16:81. [PMID: 28431580 PMCID: PMC5399850 DOI: 10.1186/s12943-017-0650-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/09/2017] [Indexed: 01/09/2023] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is highly malignant with highly invasive and metastatic capabilities and poor prognosis. It is believed that the ESCC cancer stem-like cells (ECSLCs) are critical for tumorigenicity, invasion and metastasis of ESCC. However, the properties of ECSLCs vary with different markers used in isolation, so that new and more effective markers of ECSLCs need to be identified. This study aimed to estimate the potentiality of Cripto-1 (CR-1) as an ECSLC surface marker and investigate the clinical significance of CR-1 expression in ESCC. Methods ESCC cells with CR-1 high or CR-1low were obtained by flow cytometry then their self-renewal capability and tumorigenicity were compared by colony and limiting dilution sphere formation analysis in vitro and xenograft in nude mice in vivo, respectively. Knockdown of CR-1 expression in ESCC cells was conducted with short hairpin RNA. Cell migration and invasion were examined by scratch test and matrigel transwell assay, respectively. Metastatic capability of ESCC cells was assayed by a mouse tail vein metastasis model. The levels of CR-1 expression in cancerous and paired adjacent normal tissues were assessed by IHC and qRT-RCR. Results CR-1high subpopulation of ESCC cells isolated by FACS expressed high level of genes related to stemness and epithelial-mesenchymal transition (EMT), and possessed high capacities of self-renewal, tumorigenesis, invasion and metastasis. Suppression of CR-1 expression significantly reduced the expression of stemness- and EMT-related genes and the capabilities of self-renewal in vitro, tumorigenicity and metastasis in vivo in ESCC cells. In the clinical ESCC specimens, the expression levels of CR-1 in cancerous tissues were positively correlated to TNM stage, invasive depth, and lymph node metastasis. Cox regression analysis indicated that CR-1 was an independent indicator of prognosis. The expression of CR-1 was found overlapping with aldehyde dehydrogenase 1A1 (ALDH1A1), an intracellular marker for ESCLCs, in ESCC cell lines and specimens. Conclusions CR-1 is a functional and cell surface ECSLC marker, and an independent prognostic indicator as well as a potential therapeutic target for ESCC. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0650-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiang Liu
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xiang Cui
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.,Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xi Yu
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Bai-Shi-Jiao Bian
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Feng Qian
- Department of General Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xu-Gang Hu
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Cheng-Dong Ji
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Lang Yang
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yong Ren
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Wei Cui
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Peng Zhang
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - You-Hong Cui
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
25
|
Mahmoudian RA, Abbaszadegan MR, Forghanifard MM, Moghbeli M, Moghbeli F, Chamani J, Gholamin M. Biological and Clinicopathological Significance of Cripto-1 Expression in the Progression of Human ESCC. Rep Biochem Mol Biol 2017; 5:83-90. [PMID: 28367468 PMCID: PMC5346274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 08/20/2016] [Indexed: 06/07/2023]
Abstract
BACKGROUND Human Cripto-1, a member of the EGF-CFC family, is involved in embryonic development, embryonic stem cell maintenance, and tumor progression. It also participates in multiple cell signaling pathways including Wnt, Notch, and TGF-β. Remarkably, it is expressed in cancer stem cell (CSC) compartments, boosting tumor cell migration, invasion, and angiogenesis. Although Cripto-1 is overexpressed in a variety of human malignant tumors, its expression in esophageal squamous cell carcinoma (ESCC) remains unclear. Our aim in this study was to evaluate the possible oncogenic role of Cripto-1 in ESCC progression and elucidate its association with clinicopathological parameters in patients. METHODS In this study, Cripto-1 expression in 50 ESCC tissue samples was analyzed and compared to corresponding margin-normal esophageal tissues using quantitative real-time PCR. RESULTS Cripto-1 was overexpressed in nearly 40% of ESCC samples compared with normal tissue samples. Significant correlations were observed between Cripto-1 expression and tumor differentiation grade, progression stage, and location (p < 0.05). CONCLUSIONS Our results indicate that overexpression of Cripto-1 is involved in the development of ESCC. Further assessment will be necessary to determine the role of Cripto-1 cross talk in ESCC tumorigenesis.
Collapse
Affiliation(s)
- Reihaneh Alsadat Mahmoudian
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meysam Moghbeli
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Moghbeli
- Department Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Jamshidkhan Chamani
- Faculty of Sciences, Department of Biochemistry and Biophysics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mehran Gholamin
- Immunology Research Center, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Kirabo A, Ryzhov S, Gupte M, Sengsayadeth S, Gumina RJ, Sawyer DB, Galindo CL. Neuregulin-1β induces proliferation, survival and paracrine signaling in normal human cardiac ventricular fibroblasts. J Mol Cell Cardiol 2017; 105:59-69. [PMID: 28263756 PMCID: PMC5715731 DOI: 10.1016/j.yjmcc.2017.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/14/2017] [Accepted: 03/01/2017] [Indexed: 01/27/2023]
Abstract
Neuregulin-1β (NRG-1β) is critical for cardiac development and repair, and recombinant forms are currently being assessed as possible therapeutics for systolic heart failure. We previously demonstrated that recombinant NRG-1β reduces cardiac fibrosis in an animal model of cardiac remodeling and heart failure, suggesting that there may be direct effects on cardiac fibroblasts. Here we show that NRG-1β receptors (ErbB2, ErbB3, and ErbB4) are expressed in normal human cardiac ventricular (NHCV) fibroblast cell lines. Treatment of NHCV fibroblasts with recombinant NRG-1β induced activation of the AKT pathway, which was phosphoinositide 3-kinase (PI3K)-dependent. Moreover, the NRG-1β-induced PI3K/AKT signaling in these cells required phosphorylation of both ErbB2 and ErbB3 receptors at tyrosine (Tyr)1248 and Tyr1289 respectively. RNASeq analysis of NRG-1β-treated cardiac fibroblasts obtained from three different individuals revealed a global gene expression signature consistent with cell growth and survival. We confirmed enhanced cellular proliferation and viability in NHCV fibroblasts in response to NRG-1β, which was abrogated by PI3K, ErbB2, and ErbB3 inhibitors. NRG-1β also induced production and secretion of cytokines (interleukin-1α and interferon-γ) and pro-reparative factors (angiopoietin-2, brain-derived neurotrophic factor, and crypto-1), suggesting a role in cardiac repair through the activation of paracrine signaling.
Collapse
Affiliation(s)
- Annet Kirabo
- Department of Pharmacology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States.
| | - Sergey Ryzhov
- Maine Medical Research Institute, 81 Research Drive, Scarborough, ME 04074, United States.
| | - Manisha Gupte
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States.
| | - Seng Sengsayadeth
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States.
| | - Richard J Gumina
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States; Department of Pharmacology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States; Department of Pathology, Immunology, and Microbiology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States.
| | - Douglas B Sawyer
- Maine Medical Research Institute, 81 Research Drive, Scarborough, ME 04074, United States.
| | - Cristi L Galindo
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States.
| |
Collapse
|
27
|
Chen L, Groenewoud A, Tulotta C, Zoni E, Kruithof-de Julio M, van der Horst G, van der Pluijm G, Ewa Snaar-Jagalska B. A zebrafish xenograft model for studying human cancer stem cells in distant metastasis and therapy response. Methods Cell Biol 2016; 138:471-496. [PMID: 28129855 DOI: 10.1016/bs.mcb.2016.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lethal and incurable bone metastasis is one of the main causes of death in multiple types of cancer. A small subpopulation of cancer stem/progenitor-like cells (CSCs), also known as tumor-initiating cells from heterogenetic cancer is considered to mediate bone metastasis. Although over the past decades numerous studies have been performed in different types of cancer, it is still difficult to track small numbers of CSCs during the onset of metastasis. With use of noninvasive high-resolution imaging, transparent zebrafish embryos can be employed to dynamically visualize cancer progression and reciprocal interaction with stroma in a living organism. Recently we established a zebrafish CSC-xenograft model to visually and functionally analyze the role of CSCs and their interactions with the microenvironment at the onset of metastasis. Given the highly conserved human and zebrafish genome, transplanted human cancer cells are able to respond to zebrafish cytokines, modulate the zebrafish microenvironment, and take advantage of the zebrafish stroma during cancer progression. This chapter delineates the zebrafish CSC-xenograft model as a useful tool for both CSC biological study and anticancer drug screening.
Collapse
Affiliation(s)
- L Chen
- Leiden University, Leiden, The Netherlands
| | | | - C Tulotta
- Leiden University, Leiden, The Netherlands
| | - E Zoni
- University of Bern, Bern, Switzerland; Leiden University Medical Centre, Leiden, The Netherlands
| | - M Kruithof-de Julio
- University of Bern, Bern, Switzerland; Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | |
Collapse
|
28
|
Gupta K, Pilli VSS, Aradhyam GK. Left-right axis asymmetry determining human Cryptic gene is transcriptionally repressed by Snail. BMC DEVELOPMENTAL BIOLOGY 2016; 16:39. [PMID: 27793090 PMCID: PMC5084438 DOI: 10.1186/s12861-016-0141-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/24/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Establishment of the left-right axis is important for positioning organs asymmetrically in the developing vertebrate-embryo. A number of factors like maternally deposited molecules have emerged essential in initiating the specification of the axis; the downstream events, however, are regulated by signal-transduction and gene-expression changes identifying which remains a crucial challenge. The EGF-CFC family member Cryptic, that functions as a co-receptor for some TGF-beta ligands, is developmentally expressed in higher mammals and mutations in the gene cause loss or change in left-right axis asymmetry. Despite the strong phenotype, no transcriptional-regulator of this gene is known till date. RESULTS Using promoter-analyses tools, we found strong evidence that the developmentally essential transcription factor Snail binds to the human Cryptic-promoter. We cloned the promoter-region of human Cryptic in a reporter gene and observed decreased Cryptic-promoter activation upon increasing Snail expression. Further, the expression of Cryptic is down-regulated upon exogenous Snail expression, validating the reporter assays and the previously identified role of Snail as a transcriptional repressor. Finally, we demonstrate using gel-shift assay that Snail in nuclear extract of PANC1 cells interacts with the promoter-construct bearing putative Snail binding sites and confirm this finding using chromatin immunoprecipitation assay. CONCLUSIONS Snail represses the expression of human Cryptic and therefore, might affect the signaling via Nodal that has previously been demonstrated to specify the left-right axis using the EGF-CFC co-receptors.
Collapse
Affiliation(s)
- Kartik Gupta
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Vijaya Satish Sekhar Pilli
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Gopala Krishna Aradhyam
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
29
|
Terry S, El-Sayed IY, Destouches D, Maillé P, Nicolaiew N, Ploussard G, Semprez F, Pimpie C, Beltran H, Londono-Vallejo A, Allory Y, de la Taille A, Salomon DS, Vacherot F. CRIPTO overexpression promotes mesenchymal differentiation in prostate carcinoma cells through parallel regulation of AKT and FGFR activities. Oncotarget 2016; 6:11994-2008. [PMID: 25596738 PMCID: PMC4494918 DOI: 10.18632/oncotarget.2740] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/11/2014] [Indexed: 02/03/2023] Open
Abstract
Members of the EGF-CFC (Cripto, FRL-1, Cryptic) protein family are increasingly recognized as key mediators of cell movement and cell differentiation during vertebrate embryogenesis. The founding member of this protein family, CRIPTO, is overexpressed in various human carcinomas. Yet, the biological role of CRIPTO in this setting remains unclear. Here, we find CRIPTO expression as especially high in a subgroup of primary prostate carcinomas with poorer outcome, wherein resides cancer cell clones with mesenchymal traits. Experimental studies in PCa models showed that one notable function of CRIPTO expression in prostate carcinoma cells may be to augment PI3K/AKT and FGFR1 signaling, which promotes epithelial-mesenchymal transition and sustains a mesenchymal state. In the observed signaling events, FGFR1 appears to function parallel to AKT, and the two pathways act cooperatively to enhance migratory, invasive and transformation properties specifically in the CRIPTO overexpressing cells. Collectively, these findings suggest a novel molecular network, involving CRIPTO, AKT, and FGFR signaling, in favor of the emergence of mesenchymal-like cancer cells during the development of aggressive prostate tumors.
Collapse
Affiliation(s)
- Stéphane Terry
- Inserm, U955, Equipe 7, Créteil, France.,Université Paris-Est, UMR_S955, UPEC, Créteil, France.,Institut Curie, Centre de Recherche, CNRS UMR 3244, Paris, France.,Inserm, U753, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Ihsan Y El-Sayed
- Inserm, U955, Equipe 7, Créteil, France.,Université Paris-Est, UMR_S955, UPEC, Créteil, France.,EDST/PRASE, Rafic Harriri Campus, Faculté des Sciences, Université Libanaise, Beyrouth, Liban
| | - Damien Destouches
- Inserm, U955, Equipe 7, Créteil, France.,Université Paris-Est, UMR_S955, UPEC, Créteil, France.,Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), CNRS, Créteil, France
| | - Pascale Maillé
- AP-HP, Hôpital H. Mondor, Département de Pathologie, Créteil, France
| | - Nathalie Nicolaiew
- Inserm, U955, Equipe 7, Créteil, France.,Université Paris-Est, UMR_S955, UPEC, Créteil, France
| | - Guillaume Ploussard
- Inserm, U955, Equipe 7, Créteil, France.,AP-HP, Hôpital H. Mondor, Service d'urologie, Créteil, France
| | - Fannie Semprez
- Inserm, U955, Equipe 7, Créteil, France.,Université Paris-Est, UMR_S955, UPEC, Créteil, France
| | - Cynthia Pimpie
- Inserm, U955, Equipe 7, Créteil, France.,Université Paris-Est, UMR_S955, UPEC, Créteil, France
| | - Himisha Beltran
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Yves Allory
- Inserm, U955, Equipe 7, Créteil, France.,Université Paris-Est, UMR_S955, UPEC, Créteil, France.,AP-HP, Hôpital H. Mondor, Département de Pathologie, Créteil, France
| | - Alexandre de la Taille
- Inserm, U955, Equipe 7, Créteil, France.,Université Paris-Est, UMR_S955, UPEC, Créteil, France.,AP-HP, Hôpital H. Mondor, Service d'urologie, Créteil, France
| | - David S Salomon
- Mouse Cancer Genetics Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Francis Vacherot
- Inserm, U955, Equipe 7, Créteil, France.,Université Paris-Est, UMR_S955, UPEC, Créteil, France
| |
Collapse
|
30
|
Spiller CM, Gillis AJM, Burnet G, Stoop H, Koopman P, Bowles J, Looijenga LHJ. Cripto: Expression, epigenetic regulation and potential diagnostic use in testicular germ cell tumors. Mol Oncol 2015; 10:526-37. [PMID: 26654129 DOI: 10.1016/j.molonc.2015.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 01/27/2023] Open
Abstract
Type II germ cell tumors arise after puberty from a germ cell that was incorrectly programmed during fetal life. Failure of testicular germ cells to properly differentiate can lead to the formation of germ cell neoplasia in situ of the testis; this precursor cell invariably gives rise to germ cell cancer after puberty. The Nodal co-receptor Cripto is expressed transiently during normal germ cell development and is ectopically expressed in non-seminomas that arise from germ cell neoplasia in situ, suggesting that its aberrant expression may underlie germ cell dysregulation and hence germ cell cancer. Here we investigated methylation of the Cripto promoter in mouse germ cells and human germ cell cancer and correlated this with the level of CRIPTO protein expression. We found hypomethylation of the CRIPTO promoter in undifferentiated fetal germ cells, embryonal carcinoma and seminomas, but hypermethylation in differentiated fetal germ cells and the differentiated types of non-seminomas. CRIPTO protein was strongly expressed in germ cell neoplasia in situ along with embryonal carcinoma, yolk sac tumor and seminomas. Further, cleaved CRIPTO was detected in media from seminoma and embryonal carcinoma cell lines, suggesting that cleaved CRIPTO may provide diagnostic indication of germ cell cancer. Accordingly, CRIPTO was detectable in serum from 6/15 patients with embryonal carcinoma, 5/15 patients with seminoma, 4/5 patients with germ cell neoplasia in situ cells only and in 1/15 control patients. These findings suggest that CRIPTO expression may be a useful serological marker for diagnostic and/or prognostic purposes during germ cell cancer management.
Collapse
Affiliation(s)
- Cassy M Spiller
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ad J M Gillis
- Department of Pathology, Erasmus MC - University Medical Center, Rotterdam, 3015, The Netherlands
| | - Guillaume Burnet
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Departement de Biologie, Ecole Normale Superieure de Cachan, Cachan, France
| | - Hans Stoop
- Department of Pathology, Erasmus MC - University Medical Center, Rotterdam, 3015, The Netherlands
| | - Peter Koopman
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Josephine Bowles
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Leendert H J Looijenga
- Department of Pathology, Erasmus MC - University Medical Center, Rotterdam, 3015, The Netherlands.
| |
Collapse
|
31
|
Klauzinska M, Bertolette D, Tippireddy S, Strizzi L, Gray PC, Gonzales M, Duroux M, Ruvo M, Wechselberger C, Castro NP, Rangel MC, Focà A, Sandomenico A, Hendrix MJC, Salomon D, Cuttitta F. Cripto-1: an extracellular protein - connecting the sequestered biological dots. Connect Tissue Res 2015; 56:364-80. [PMID: 26327334 DOI: 10.3109/03008207.2015.1077239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cripto-1 (CR-1) is a multifunctional embryonic protein that is re-expressed during inflammation, wound repair, and malignant transformation. CR-1 can function either as a tethered co-receptor or shed as a free ligand underpinning its flexible role in cell physiology. CR-1 has been shown to mediate cell growth, migration, invasion, and induce epithelial to mesenchymal transition (EMT). The main signaling pathways mediating CR-1 effects include Nodal-dependent (Smad2/3) and Nodal-independent (Src/p44/42/Akt) signaling transduction pathways. In addition, there are several naturally occurring binding partner proteins (BPPs) for CR-1 that can either agonize or antagonize its bioactivity. We will review the collective role of CR-1 as an extracellular protein, discuss caveats to consider in developing a quantitation assay, define possible mechanistic avenues applicable for drug discovery, and report on our experimental approaches to overcome these problematic issues.
Collapse
Affiliation(s)
- Malgorzata Klauzinska
- a Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute , Frederick , MD , USA
| | - Daniel Bertolette
- a Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute , Frederick , MD , USA
| | - Sudhamsh Tippireddy
- a Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute , Frederick , MD , USA
| | - Luigi Strizzi
- b Department of Pathology , Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Peter C Gray
- c Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies , La Jolla , CA , USA
| | - Monica Gonzales
- d Office of Research Operations, Office of the Director, Center for Cancer Research, National Cancer Institute , Bethesda , MD , USA
| | - Meg Duroux
- e Laboratory of Cancer Biology , Biomedicine Group, Department of Health Science and Technology, Aalborg University , Aalborg East , Denmark
| | - Menotti Ruvo
- f CIRPeB, University of Naples Federico II , Napoli , Italy .,g Istituto di Biostrutture e Bioimmagini del CRN , Napoli , Italy
| | | | - Nadia P Castro
- a Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute , Frederick , MD , USA
| | - Maria Cristina Rangel
- a Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute , Frederick , MD , USA
| | - Annalia Focà
- g Istituto di Biostrutture e Bioimmagini del CRN , Napoli , Italy .,i Dipartimento di Farmacia, University of Naples Federico II , Napoli , Italy , and
| | | | - Mary J C Hendrix
- j Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - David Salomon
- a Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute , Frederick , MD , USA
| | - Frank Cuttitta
- a Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute , Frederick , MD , USA
| |
Collapse
|
32
|
Takahashi K, Hosono M, Sato I, Hata K, Wada T, Yamaguchi K, Nitta K, Shima H, Miyagi T. Sialidase NEU3 contributes neoplastic potential on colon cancer cells as a key modulator of gangliosides by regulating Wnt signaling. Int J Cancer 2015; 137:1560-73. [PMID: 25810027 DOI: 10.1002/ijc.29527] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/12/2015] [Indexed: 01/01/2023]
Abstract
The plasma membrane-associated sialidase NEU3 is a key enzyme for ganglioside degradation. We previously demonstrated remarkable up-regulation of NEU3 in various human cancers, with augmented malignant properties. Here, we provide evidence of a close link between NEU3 expression and Wnt/β-catenin signaling in colon cancer cells by analyzing tumorigenic potential and cancer stem-like characteristics. NEU3 silencing in HT-29 and HCT116 colon cancer cells resulted in significant decrease in clonogenicity on soft agar and in vivo tumor growth, along with down-regulation of stemness and Wnt-related genes. Analyses further revealed that NEU3 enhanced phosphorylation of the Wnt receptor LRP6 and consequently β-catenin activation by accelerating complex formation with LRP6 and recruitment of GSK3β and Axin, whereas its silencing exerted the opposite effects. NEU3 activity-null mutants failed to demonstrate the activation, indicating the requirement of ganglioside modulation by the sialidase for the effects. Under sphere-forming conditions, when stemness genes are up-regulated, endogenous NEU3 expression was found to be significantly increased, whereas NEU3 silencing suppressed sphere-formation and in vivo tumor incidence in NOD-SCID mice. Increased ability of clonogenicity on soft agar and sphere formation by Wnt stimulation was abrogated by NEU3 silencing. Furthermore, NEU3 was found to regulate phosphorylation of ERK and Akt via EGF receptor and Ras cascades, thought to be additionally required for tumor progression. The results indicate an essential contribution of NEU3 to tumorigenic potential through maintenance of stem-like characteristics of colon cancer cells by regulating Wnt signaling at the receptor level, in addition to tumor progression via Ras/MAPK signaling.
Collapse
Affiliation(s)
- Kohta Takahashi
- Division of Cancer Glycosylation Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai.,Division of Cancer Molecular Biology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masahiro Hosono
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai
| | - Ikuro Sato
- Division of Pathology, Miyagi Cancer Center Research Institute, Natori
| | - Keiko Hata
- Division of Cancer Glycosylation Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai
| | - Tadashi Wada
- Division of Cancer Glycosylation Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai
| | - Kazunori Yamaguchi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori
| | - Kazuo Nitta
- Division of Cancer Molecular Biology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hiroshi Shima
- Division of Cancer Molecular Biology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Taeko Miyagi
- Division of Cancer Glycosylation Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai
| |
Collapse
|
33
|
Dynamic regulation of the cancer stem cell compartment by Cripto-1 in colorectal cancer. Cell Death Differ 2015; 22:1700-13. [PMID: 26343543 PMCID: PMC4563784 DOI: 10.1038/cdd.2015.19] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/27/2015] [Accepted: 02/02/2015] [Indexed: 12/20/2022] Open
Abstract
Stemness was recently depicted as a dynamic condition in normal and tumor cells. We found that the embryonic protein Cripto-1 (CR1) was expressed by normal stem cells at the bottom of colonic crypts and by cancer stem cells (CSCs) in colorectal tumor tissues. CR1-positive populations isolated from patient-derived tumor spheroids exhibited increased clonogenic capacity and expression of stem-cell-related genes. CR1 expression in tumor spheroids was variable over time, being subject to a complex regulation of the intracellular, surface and secreted protein, which was related to changes of the clonogenic capacity at the population level. CR1 silencing induced CSC growth arrest in vitro with a concomitant decrease of Src/Akt signaling, while in vivo it inhibited the growth of CSC-derived tumor xenografts and reduced CSC numbers. Importantly, CR1 silencing in established xenografts through an inducible expression system decreased CSC growth in both primary and metastatic tumors, indicating an essential role of CR1 in the regulation the CSC compartment. These results point to CR1 as a novel and dynamically regulated effector of stem cell functions in colorectal cancer.
Collapse
|
34
|
Yáñez Y, Grau E, Rodríguez-Cortez VC, Hervás D, Vidal E, Noguera R, Hernández M, Segura V, Cañete A, Conesa A, Font de Mora J, Castel V. Two independent epigenetic biomarkers predict survival in neuroblastoma. Clin Epigenetics 2015; 7:16. [PMID: 25767620 PMCID: PMC4357365 DOI: 10.1186/s13148-015-0054-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/09/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extracranial pediatric solid tumor with a highly variable clinical course, ranging from spontaneous regression to life-threatening disease. Survival rates for high-risk NB patients remain disappointingly low despite multimodal treatment. Thus, there is an urgent clinical need for additional biomarkers to improve risk stratification, treatment management, and survival rates in children with aggressive NB. RESULTS Using gene promoter methylation analysis in 48 neuroblastoma tumors with microarray technology, we found a strong association between survival and gene promoter hypermethylation (P = 0.036). Hypermethylation of 70 genes significantly differentiated high-risk survivor patients from those who died during follow-up time. Sixteen genes with relevant roles in cancer biology were further validated in an additional cohort of 83 neuroblastoma tumors by bisulfite pyrosequencing. High promoter methylation rates of these genes were found in patients with metastatic tumors (either stage metastatic (M) or metastatic special (MS)), 18 months or older at first diagnosis, MYCN amplification, relapsed, and dead. Notably, the degree of methylation of retinoblastoma 1 (RB1) and teratocarcinoma-derived growth factor 1 (TDGF1) predicts event-free and overall survival independently of the established risk factors. In addition, low RB1 mRNA expression levels associate with poor prognosis suggesting that promoter methylation could contribute to the transcriptional silencing of this gene in NB. CONCLUSIONS We found a new epigenetic signature predictive for NB patients' outcome: the methylation status of RB1 and TDGF1 associate with poorer survival. This information is useful to assess prognosis and improve treatment selection.
Collapse
Affiliation(s)
- Yania Yáñez
- Pediatric Oncology Unit, Hospital Universitari i Politècnic La Fe, Avda Fernando Abril Martorell, Valencia, 46026 Spain
| | - Elena Grau
- Pediatric Oncology Unit, Hospital Universitari i Politècnic La Fe, Avda Fernando Abril Martorell, Valencia, 46026 Spain
| | - Virginia C Rodríguez-Cortez
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC) Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, Barcelona, 08908 Spain
| | - David Hervás
- Biostatistics Unit, Instituto de Investigación Sanitaria La Fe, Avda Fernando Abril Martorell, Valencia, 46026 Spain
| | - Enrique Vidal
- Genomics of Gene Expression Lab, Centro de Investigaciones Príncipe Felipe, Carrer d'Eduardo Primo Yúfera, Valencia, 46012 Spain
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia, Avda Blasco Ibáñez, Valencia, 46010 Spain
| | - Miguel Hernández
- Department of Pathology, Hospital Universitari i Politècnic La Fe, Avda Fernando Abril Martorell, Valencia, 46026 Spain
| | - Vanessa Segura
- Pediatric Oncology Unit, Hospital Universitari i Politècnic La Fe, Avda Fernando Abril Martorell, Valencia, 46026 Spain
| | - Adela Cañete
- Pediatric Oncology Unit, Hospital Universitari i Politècnic La Fe, Avda Fernando Abril Martorell, Valencia, 46026 Spain
| | - Ana Conesa
- Genomics of Gene Expression Lab, Centro de Investigaciones Príncipe Felipe, Carrer d'Eduardo Primo Yúfera, Valencia, 46012 Spain
| | - Jaime Font de Mora
- Laboratory of Cellular and Molecular Biology, Instituto de Investigación Sanitaria La Fe, Avda Fernando Abril Martorell, Valencia, 46026 Spain
| | - Victoria Castel
- Pediatric Oncology Unit, Hospital Universitari i Politècnic La Fe, Avda Fernando Abril Martorell, Valencia, 46026 Spain
| |
Collapse
|
35
|
The multifaceted role of the embryonic gene Cripto-1 in cancer, stem cells and epithelial-mesenchymal transition. Semin Cancer Biol 2014; 29:51-8. [PMID: 25153355 DOI: 10.1016/j.semcancer.2014.08.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/07/2014] [Indexed: 01/04/2023]
Abstract
Cripto-1 (CR-1)/Teratocarcinoma-derived growth factor1 (TDGF-1) is a cell surface glycosylphosphatidylinositol (GPI)-linked glycoprotein that can function either in cis (autocrine) or in trans (paracrine). The cell membrane cis form is found in lipid rafts and endosomes while the trans acting form lacking the GPI anchor is soluble. As a member of the epidermal growth factor (EGF)/Cripto-1-FRL-1-Cryptic (CFC) family, CR-1 functions as an obligatory co-receptor for the transforming growth factor-β (TGF-β) family members, Nodal and growth and differentiation factors 1 and 3 (GDF1/3) by activating Alk4/Alk7 signaling pathways that involve Smads 2, 3 and 4. In addition, CR-1 can activate non-Smad-dependent signaling elements such as PI3K, Akt and MAPK. Both of these pathways depend upon the 78kDa glucose regulated protein (GRP78). Finally, CR-1 can facilitate signaling through the canonical Wnt/β-catenin and Notch/Cbf-1 pathways by functioning as a chaperone protein for LRP5/6 and Notch, respectively. CR-1 is essential for early embryonic development and maintains embryonic stem cell pluripotentiality. CR-1 performs an essential role in the etiology and progression of several types of human tumors where it is expressed in a population of cancer stem cells (CSCs) and facilitates epithelial-mesenchymal transition (EMT). In this context, CR-1 can significantly enhance tumor cell migration, invasion and angiogenesis. Collectively, these facts suggest that CR-1 may be an attractive target in the diagnosis, prognosis and therapy of several types of human cancer.
Collapse
|
36
|
Tumorigenic factor CRIPTO-1 is immunolocalized in extravillous cytotrophoblast in placenta creta. BIOMED RESEARCH INTERNATIONAL 2014; 2014:892856. [PMID: 25165718 PMCID: PMC4140153 DOI: 10.1155/2014/892856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/10/2014] [Indexed: 12/21/2022]
Abstract
CRIPTO-(CR)1 is a protein associated with tumorigenesis and metastasis. Here we demonstrate that CR-1 expression in normal and creta placentas is associated with various degrees of uterine invasion. Cytokeratin (CK) and CR-1 protein expression was visualized by immunohistochemical staining of formalin-fixed, paraffin-embedded placental specimens (control placentas, n = 9; accreta, n = 6; increta, n = 10; percreta, n = 15). The pattern of extravillous trophoblast (EVT) cell morphology was distinctive in creta placentas: densely-compacted cell columns and large star-shaped cells with a typically migratory phenotype, not common among third trimester control placentas. Quantification revealed higher CR-1 immunoreactivities in accreta (P = 0.001), increta (P = 0.0002), and percreta placentas (P = 0.001) than in controls. In contrast to controls, there was a significant positive relationship between CR-1 and CK reactivity in all creta placentas (accreta, P = 0.02; increta, P = 0.0001, and percreta, P = 0.025). This study demonstrated CR-1 expression in the placental bed, its increased expression in creta placentas, and EVT cells as the main CR-1-producing cell type. Morphological examination revealed an immature and invasive trophoblast profile in creta placentas, suggesting impairment of the trophoblast differentiation pathway. These findings provide important new insights into the pathophysiology of abnormal creta placentation and its gestational consequences.
Collapse
|
37
|
Elevated expression of Cripto-1 correlates with poor prognosis in non-small cell lung cancer. Tumour Biol 2014; 35:8673-8. [DOI: 10.1007/s13277-014-2039-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 04/28/2014] [Indexed: 12/17/2022] Open
|
38
|
Karasawa H, Castro NP, Rangel MC, Salomon DS. The Role of Cripto‐1 in Cancer and Cancer Stem Cells. CANCER STEM CELLS 2014:331-345. [DOI: 10.1002/9781118356203.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
39
|
Bianco C, Castro NP, Baraty C, Rollman K, Held N, Rangel MC, Karasawa H, Gonzales M, Strizzi L, Salomon DS. Regulation of human Cripto-1 expression by nuclear receptors and DNA promoter methylation in human embryonal and breast cancer cells. J Cell Physiol 2013; 228:1174-88. [PMID: 23129342 PMCID: PMC3573215 DOI: 10.1002/jcp.24271] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 10/18/2012] [Indexed: 11/07/2022]
Abstract
Human Cripto-1 (CR-1) plays an important role in regulating embryonic development while also regulating various stages of tumor progression. However, mechanisms that regulate CR-1 expression during embryogenesis and tumorigenesis are still not well defined. In the present study, we investigated the effects of two nuclear receptors, liver receptor homolog (LRH)-1 and germ cell nuclear factor receptor (GCNF) and epigenetic modifications on CR-1 gene expression in NTERA-2 human embryonal carcinoma cells and in breast cancer cells. CR-1 expression in NTERA-2 cells was positively regulated by LRH-1 through direct binding to a DR0 element within the CR-1 promoter, while GCNF strongly suppressed CR-1 expression in these cells. In addition, the CR-1 promoter was unmethylated in NTERA-2 cells, while T47D, ZR75-1, and MCF7 breast cancer cells showed high levels of CR-1 promoter methylation and low CR-1 mRNA and protein expression. Treatment of breast cancer cells with a demethylating agent and histone deacetylase inhibitors reduced methylation of the CR-1 promoter and reactivated CR-1 mRNA and protein expression in these cells, promoting migration and invasion of breast cancer cells. Analysis of a breast cancer tissue array revealed that CR-1 was highly expressed in the majority of human breast tumors, suggesting that CR-1 expression in breast cancer cell lines might not be representative of in vivo expression. Collectively, these findings offer some insight into the transcriptional regulation of CR-1 gene expression and its critical role in the pathogenesis of human cancer.
Collapse
MESH Headings
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Binding Sites
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Embryonal/genetics
- Carcinoma, Embryonal/metabolism
- Carcinoma, Embryonal/pathology
- Cell Movement
- DNA Methylation/drug effects
- DNA Modification Methylases/antagonists & inhibitors
- DNA Modification Methylases/metabolism
- Decitabine
- Dose-Response Relationship, Drug
- Embryonal Carcinoma Stem Cells/metabolism
- Embryonal Carcinoma Stem Cells/pathology
- Female
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Histone Deacetylase Inhibitors/pharmacology
- Humans
- Hydroxamic Acids/pharmacology
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Luciferases/biosynthesis
- Luciferases/genetics
- MCF-7 Cells
- Neoplasm Invasiveness
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Nuclear Receptor Subfamily 6, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 6, Group A, Member 1/metabolism
- Promoter Regions, Genetic
- RNA Interference
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Time Factors
- Tissue Array Analysis
- Transcription, Genetic
- Transfection
- Tretinoin/pharmacology
- Valproic Acid/pharmacology
Collapse
Affiliation(s)
- Caterina Bianco
- Laboratory of Cancer Prevention, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Nadia P. Castro
- Laboratory of Cancer Prevention, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Christina Baraty
- Laboratory of Cancer Prevention, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Kelly Rollman
- Laboratory of Cancer Prevention, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Natalie Held
- Laboratory of Cancer Prevention, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Maria Cristina Rangel
- Laboratory of Cancer Prevention, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Hideaki Karasawa
- Laboratory of Cancer Prevention, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Monica Gonzales
- Laboratory of Cancer Prevention, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Luigi Strizzi
- Children’s Memorial Research Center, Robert H. Lurie Comprehensive Cancer Center Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David S. Salomon
- Laboratory of Cancer Prevention, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| |
Collapse
|
40
|
Duan JJ, Qiu W, Xu SL, Wang B, Ye XZ, Ping YF, Zhang X, Bian XW, Yu SC. Strategies for isolating and enriching cancer stem cells: well begun is half done. Stem Cells Dev 2013; 22:2221-39. [PMID: 23540661 DOI: 10.1089/scd.2012.0613] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) constitute a subpopulation of cancer cells that have the potential for self-renewal, multipotent differentiation, and tumorigenicity. Studies on CSC biology and CSC-targeted therapies depend on CSC isolation and/or enrichment methodologies. Scientists have conducted extensive research in this field since John Dick's group successfully isolated CSCs based on the expression of the CD34 and CD38 surface markers. Progress in CSC research has been greatly facilitated by the enrichment and isolation of these cells. In this review, we summarize the current strategies used in our and other laboratories for CSC isolation and enrichment, including methods based on stem cell surface markers, intracellular enzyme activity, the concentration of reactive oxygen species, the mitochondrial membrane potential, promoter-driven fluorescent protein expression, autofluorescence, suspension/adherent culture, cell division, the identification of side population cells, resistance to cytotoxic compounds or hypoxia, invasiveness/adhesion, immunoselection, and physical property. Although many challenges remain to be overcome, it is reasonable to believe that more reliable, efficient, and convenient methods will be developed in the near future.
Collapse
Affiliation(s)
- Jiang-Jie Duan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Strizzi L, Margaryan NV, Gilgur A, Hardy KM, Normanno N, Salomon DS, Hendrix MJC. The significance of a Cripto-1 positive subpopulation of human melanoma cells exhibiting stem cell-like characteristics. Cell Cycle 2013; 12:1450-6. [PMID: 23574716 DOI: 10.4161/cc.24601] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cripto-1 (CR-1) protein function differs according to cellular or extracellular expression. In this study, we explore the significance of cell surface CR-1 expression in human melanoma cells. Cell surface CR-1-expressing human melanoma cells (CR1-CS+) were selected by fluorescence-activated cell sorting (FACS) and grown in vitro and in vivo in nude mice to study their growth characteristics. The CR1-CS+ melanoma cells were found to express increased levels of Oct4, MDR-1 and activated c-Src compared with cells lacking this subpopulation (CR1-CS-) or unsorted cells, used as control. CR1-CS+ show reduced proliferation rates and diminished spherical colony formation compared with control cells when cultured in vitro. Orthotopic injections of CR1-CS+ in nude mice formed slow growing tumors with histologic variability across different areas of the CR1-CS+ xenografts. CR-1-expressing cells from first generation CR1-CS+ tumors showed significantly increased tumor-forming rate and aggressiveness following subsequent transplants in nude mice. These data demonstrate that within a heterogeneous melanoma cell population there resides a slow proliferating, cell surface CR-1-expressing subpopulation capable of giving rise to a fast growing, aggressive progeny that may contribute to disease recurrence and progression.
Collapse
Affiliation(s)
- Luigi Strizzi
- Ann & Robert H. Lurie Children's Hospital of Chicago Research Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Strizzi L, Hardy KM, Bodenstine TM, Hendrix MJC. Targeting the Stem Cell Plasticity of Tumor Cells. STEM CELLS HANDBOOK 2013:441-448. [DOI: 10.1007/978-1-4614-7696-2_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
43
|
Spiller CM, Feng CW, Jackson A, Gillis AJM, Rolland AD, Looijenga LHJ, Koopman P, Bowles J. Endogenous Nodal signaling regulates germ cell potency during mammalian testis development. Development 2012; 139:4123-32. [DOI: 10.1242/dev.083006] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Germ cells, the embryonic precursors of sperm or oocytes, respond to molecular cues that regulate their sex-specific development in the fetal gonads. In males in particular, the balance between continued proliferation and cell fate commitment is crucial: defects in proliferation result in insufficient spermatogonial stem cells for fertility, but escape from commitment and prolonged pluripotency can cause testicular germ cell tumors. However, the factors that regulate this balance remain unidentified. Here, we show that signaling by the TGFβ morphogen Nodal and its co-receptor Cripto is active during a crucial window of male germ cell development. The Nodal pathway is triggered when somatic signals, including FGF9, induce testicular germ cells to upregulate Cripto. Germ cells of mutant mice with compromised Nodal signaling showed premature differentiation, reduced pluripotency marker expression and a reduced ability to form embryonic germ (EG) cell colonies in vitro. Conversely, human testicular tumors showed upregulation of NODAL and CRIPTO that was proportional to invasiveness and to the number of malignant cells. Thus, Nodal signaling provides a molecular control mechanism that regulates male germ cell potency in normal development and testicular cancer.
Collapse
Affiliation(s)
- Cassy M. Spiller
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chun-Wei Feng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew Jackson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ad J. M. Gillis
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC-University Medical Center Rotterdam, 3015 GE Rotterdam, The Netherlands
| | - Antoine D. Rolland
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Leendert H. J. Looijenga
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC-University Medical Center Rotterdam, 3015 GE Rotterdam, The Netherlands
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Josephine Bowles
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
44
|
Miharada K, Karlsson G, Rehn M, Rörby E, Siva K, Cammenga J, Karlsson S. Hematopoietic stem cells are regulated by Cripto, as an intermediary of HIF-1α in the hypoxic bone marrow niche. Ann N Y Acad Sci 2012; 1266:55-62. [PMID: 22901256 DOI: 10.1111/j.1749-6632.2012.06564.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cripto has been known as an embryonic stem (ES)- or tumor-related soluble/cell membrane protein. In this study, we demonstrated that Cripto has a role as an important regulatory factor for hematopoietic stem cells (HSCs). Recombinant Cripto sustained the reconstitution ability of HSCs in vitro. Flow cytometry analysis uncovered that GRP78, one of the candidate receptors for Cripto, was expressed on a subset of HSCs and could distinguish dormant/myeloid-biased HSCs and active/lymphoid-biased HSCs. Cripto is expressed in hypoxic endosteal niche cells where GRP78(+) HSCs mainly reside. Proteomics analysis revealed that Cripto-GRP78 binding stimulates glycolytic metabolism-related proteins and results in lower mitochondrial potential in HSCs. Furthermore, conditional knockout mice for HIF-1α, a master regulator of hypoxic responses, showed reduced Cripto expression and decreased GRP78(+) HSCs in the endosteal niche area. Thus, Cripto-GRP78 is a novel HSC regulatory signal mainly working in the hypoxic niche.
Collapse
Affiliation(s)
- Kenichi Miharada
- Department for Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
45
|
Rangel MC, Karasawa H, Castro NP, Nagaoka T, Salomon DS, Bianco C. Role of Cripto-1 during epithelial-to-mesenchymal transition in development and cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2188-200. [PMID: 22542493 DOI: 10.1016/j.ajpath.2012.02.031] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/13/2012] [Accepted: 02/21/2012] [Indexed: 02/08/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a critical multistep process that converts epithelial cells to more motile and invasive mesenchymal cells, contributing to body patterning and morphogenesis during embryonic development. In addition, both epithelial plasticity and increased motility and invasiveness are essential for the branching morphogenesis that occurs during development of the mammary gland and during tumor formation, allowing cancer cells to escape from the primary tumor. Cripto-1, a member of the epidermal growth factor-Cripto-1/FRL-1/Cryptic (EGF/CFC) gene family, together with the transforming growth factor (TGF)-β family ligand Nodal, regulates both cell movement and EMT during embryonic development. During postnatal development, Cripto-1 regulates the branching morphogenesis of the mouse mammary gland and enhances both the invasive and migratory properties of mammary epithelial cells in vitro. Furthermore, transgenic mouse models have shown that Cripto-1 promotes the formation of mammary tumors that display properties of EMT, including the down-regulation of the cell surface adherens junctional protein E-cadherin and the up-regulation of mesenchymal markers, such as vimentin, N-cadherin, and Snail. Interestingly, Cripto-1 is enriched in a subpopulation of embryonal, melanoma, prostate, and pancreatic cancer cells that possess stem-like characteristics. Therefore, Cripto-1 may play a role during developmental EMT, and it may also be involved in the reprogramming of differentiated tumor cells into cancer stem cells through the induction of an EMT program.
Collapse
Affiliation(s)
- Maria C Rangel
- Tumor Growth Factor Section, Laboratory of Cancer Prevention, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
46
|
Nagaoka T, Karasawa H, Castro NP, Rangel MC, Salomon DS, Bianco C. An evolving web of signaling networks regulated by Cripto-1. Growth Factors 2012; 30:13-21. [PMID: 22149969 DOI: 10.3109/08977194.2011.641962] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Over the past few decades, our understanding of the embryonic gene Cripto-1 has considerably advanced through biochemical, cell biology, and animal studies. Cripto-1 performs key functions during embryonic development, while it dramatically disappears in adult tissues, except possibly in adult tissue stem cells. Cripto-1 is re-expressed in human tumors promoting cell proliferation, migration, invasion, epithelial to mesenchymal transition, and tumor angiogenesis. This diversity of biological effects is dependent upon interaction of Cripto-1 with an extensive array of signaling molecules. In fact, Cripto-1 modulates signaling of transforming growth factor-β family members, including Nodal, GDF-1/-3, Activin, and TGF-β1, activates c-src/MAPK/Protein Kinase B (AKT) pathway in a Glypican-1 and GRP78-dependent manner, and cross-talks with erbB4, Wnt/β-catenin, Notch, Caveolin-1, and Apelin/putative receptor protein related to Angiotensin-type I receptor (APJ) pathways. This article provides an updated survey of the various signaling pathways modulated by Cripto-1 with a focus on mechanistic insights in our understanding of the biological function of Cripto-1 in eukaryotic cells.
Collapse
Affiliation(s)
- Tadahiro Nagaoka
- Tumor Growth Factor Section, Laboratory of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
47
|
Gu B, Watanabe K, Dai X. Pygo2 regulates histone gene expression and H3 K56 acetylation in human mammary epithelial cells. Cell Cycle 2012; 11:79-87. [PMID: 22186018 DOI: 10.4161/cc.11.1.18402] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Histone gene expression is tightly controlled during cell cycle. The epigenetic mechanisms underlying this regulation remain to be fully elucidated. Pygopus 2 (Pygo2) is a context-dependent co-activator of Wnt/β-catenin signaling and a chromatin effector that participates in histone modification. In this study, we show that Pygo2 is required for the optimal expression of multiple classes of histone genes in cultured human mammary epithelial cells. Using chromatin immunoprecipitation assay, we demonstrate that Pygo2 directly occupies the promoters of multiple histone genes and enhances the acetylation of lysine 56 in histone H3 (H3K56Ac), previously shown to facilitate yeast histone gene transcription at these promoters. Moreover, we report reduced global levels of H3K56Ac in Pygo2-depleted cells that occur in a cell cycle-independent manner. Together, our data uncover a novel regulator of mammalian histone gene expression that may act in part via modifying H3K56Ac.
Collapse
Affiliation(s)
- Bingnan Gu
- Department of Biological Chemistry, School of Medicine, University of California at Irvine, Irvine, CA, USA
| | | | | |
Collapse
|
48
|
Rangel MC, Castro NP, Karasawa H, Nagaoka T, Salomon DS, Bianco C. Cripto-1: A Common Embryonic Stem Cell and Cancer Cell Marker. STEM CELLS AND CANCER STEM CELLS, VOLUME 2 2012:155-166. [DOI: 10.1007/978-94-007-2016-9_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
49
|
Epstein-Barr virus latent membrane protein 1 induces cancer stem/progenitor-like cells in nasopharyngeal epithelial cell lines. J Virol 2011; 85:11255-64. [PMID: 21849440 DOI: 10.1128/jvi.00188-11] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies suggest the existence of cancer stem cells (CSC) and cancer progenitor cells (CPC), although strict definitions of neither CSC nor CPC have been developed. We have produced evidence that the principal oncoprotein of Epstein-Barr virus (EBV), latent membrane protein 1 (LMP1), which is associated with human malignancies, especially nasopharyngeal carcinoma (NPC), promotes tumor cell invasion and metastasis, as well as the epithelial-mesenchymal transition (EMT). However, whether LMP1 is involved in the development of CSC/CPC is still unclear. This study investigates whether the expression of EBV-LMP1 is related to the development of CSC/CPC. Analysis of cancer stem cell markers reveals that LMP1 induces the CD44(high) CD24(low) CSC/CPC-like phenotype as well as self-renewal abilities in LMP1-expressing epithelial cell lines. In addition, we show here that LMP1 induction in epithelial cells causes high tumorigenicity and rapid cellular proliferation. Furthermore, we found that LMP1 expression increased the expression of several CPC markers as well as producing increased levels of EMT markers. Our findings indicate that LMP1 can induce a CPC-like rather than a CSC-like phenotype in epithelial cells and suggest that LMP1-induced phenotypic changes contribute to the development of NPC.
Collapse
|
50
|
Sapra P, Hooper AT, O'Donnell CJ, Gerber HP. Investigational antibody drug conjugates for solid tumors. Expert Opin Investig Drugs 2011; 20:1131-49. [PMID: 21599617 DOI: 10.1517/13543784.2011.582866] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|