1
|
Kraft D, Ritter S, Durante M, Seifried E, Fournier C, Tonn T. Transmission of clonal chromosomal abnormalities in human hematopoietic stem and progenitor cells surviving radiation exposure. Mutat Res 2015; 777:43-51. [PMID: 25938904 DOI: 10.1016/j.mrfmmm.2015.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 03/18/2015] [Accepted: 04/06/2015] [Indexed: 12/15/2022]
Abstract
In radiation-induced acute myeloid leukemia (rAML), clonal chromosomal abnormalities are often observed in bone marrow cells of patients, suggesting that their formation is crucial in the development of the disease. Since rAML is considered to originate from hematopoietic stem and progenitor cells (HSPC), we investigated the frequency and spectrum of radiation-induced chromosomal abnormalities in human CD34(+) cells. We then measured stable chromosomal abnormalities, a possible biomarker of leukemia risk, in clonally expanded cell populations which were grown for 14 days in a 3D-matrix (CFU-assay). We compared two radiation qualities used in radiotherapy, sparsely ionizing X-rays and densely ionizing carbon ions (29 and 60-85 keV/μm, doses between 0.5 and 4 Gy). Only a negligible number of de novo arising, unstable aberrations (≤ 0.05 aberrations/cell, 97% breaks) were measured in the descendants of irradiated HSPC. However, stable aberrations were detected in colonies formed by irradiated HSPC. All cells of the affected colonies exhibited one or more identical aberrations, indicating their clonal origin. The majority of the clonal rearrangements (92%) were simple exchanges such as translocations (77%) and pericentric inversions (15%), which are known to contribute to the development of rAML. Carbon ions were more efficient in inducing cell killing (maximum of ∼ 30-35% apoptotic cells for 2 Gy carbon ions compared to ∼ 25% for X-rays) and chromosomal aberrations in the first cell-cycle after exposure (∼ 70% and ∼ 40% for 1 Gy of carbon ions and X-rays, respectively), with a higher fraction of non-transmissible aberrations. In contrast, for both radiation qualities the percentage of clones with chromosomal abnormalities was similar (40%). Using the frequency of colonies with clonal aberrations as a surrogate marker for the leukemia risk following radiotherapy of solid tumors, charged particle therapy is not expected to lead to an increased risk of leukemia in patients.
Collapse
Affiliation(s)
- Daniela Kraft
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt, Germany; Institute for Transfusion Medicine und Immunohematology, DRK-Blutspendedienst Baden-Wuerttemberg-Hessen, Johann Wolfgang Goethe-University Hospital, Sandhofstrasse 1, 60528 Frankfurt, Germany.
| | - Sylvia Ritter
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt, Germany.
| | - Marco Durante
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt, Germany; Institute for Condensed Matter Physics, Physics Department, Technical University Darmstadt, Hochschulstraße 6-8, 64289 Darmstadt, Germany.
| | - Erhard Seifried
- Institute for Transfusion Medicine und Immunohematology, DRK-Blutspendedienst Baden-Wuerttemberg-Hessen, Johann Wolfgang Goethe-University Hospital, Sandhofstrasse 1, 60528 Frankfurt, Germany.
| | - Claudia Fournier
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt, Germany.
| | - Torsten Tonn
- Institute for Transfusion Medicine und Immunohematology, DRK-Blutspendedienst Baden-Wuerttemberg-Hessen, Johann Wolfgang Goethe-University Hospital, Sandhofstrasse 1, 60528 Frankfurt, Germany; Technische Universität Dresden, Med. Fakultät Carl Gustav Carus; Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Blasewitzer Straße 68/70, 01307 Dresden, Germany.
| |
Collapse
|
2
|
Forristal CE, Levesque JP. Targeting the hypoxia-sensing pathway in clinical hematology. Stem Cells Transl Med 2013; 3:135-40. [PMID: 24371328 DOI: 10.5966/sctm.2013-0134] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) are oxygen-sensitive transcription factors regulated by oxygen-dependent prolyl hydroxylase domain (PHD) enzymes and are key to cell adaptation to low oxygen. The hematopoietic stem cell (HSC) niche in the bone marrow is highly heterogeneous in terms of microvasculature and thus oxygen concentration. The importance of hypoxia and HIFs in the hematopoietic environment is becoming increasingly recognized. Many small compounds that inhibit PHDs have been developed, enabling HIFs to be pharmacologically stabilized in an oxygen-independent manner. The use of PHD inhibitors for therapeutic intervention in hematopoiesis is being increasingly investigated. PHD inhibitors are well established to increase erythropoietin production to correct anemia in hemodialysis patients. Pharmacological stabilization of HIF-1α protein with PHD inhibitors is also emerging as an important regulator of HSC proliferation and self-renewal. Administration of PHD inhibitors increases quiescence and decreases proliferation of HSCs in the bone marrow in vivo, thereby protecting them from high doses of irradiation and accelerating hematological recovery. Recent findings also show that stabilization of HIF-1α increases mobilization of HSCs in response to granulocyte colony-stimulating factor and plerixafor, suggesting that PHD inhibitors could be useful agents to increase mobilization success in patients requiring transplantation. These findings highlight the importance of the hypoxia-sensing pathway and HIFs in clinical hematology.
Collapse
Affiliation(s)
- Catherine E Forristal
- Stem Cell Biology Group, Mater Research Institute-University of Queensland, Woolloongabba, Queensland, Australia
| | | |
Collapse
|
3
|
Otsuka K, Koana T, Tauchi H, Sakai K. Activation of Antioxidative Enzymes Induced by Low-Dose-Rate Whole‐Body γ Irradiation: Adaptive Response in Terms of Initial DNA Damage. Radiat Res 2006; 166:474-8. [PMID: 16953665 DOI: 10.1667/rr0561.1] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
An adaptive response induced by long-term low-dose-rate irradiation in mice was evaluated in terms of the amount of DNA damage in the spleen analyzed by a comet assay. C57BL/ 6N female mice were irradiated with 0.5 Gy of (137)Cs gamma rays at 1.2 mGy/h; thereafter, a challenge dose (0.4, 0.8 or 1.6 Gy) at a high dose rate was given. Less DNA damage was observed in the spleen cells of preirradiated mice than in those of mice that received the challenge dose only; an adaptive response in terms of DNA damage was induced by long-term low-dose-rate irradiation in mice. The gene expression of catalase and Mn-SOD was significantly increased in the spleen after 23 days of the low-dose-rate radiation (0.5 Gy). In addition, the enzymatic activity of catalase corresponded to the gene expression level; the increase in the activity was observed at day 23 (0.5 Gy). These results suggested that an enhancement of the antioxidative capacities played an important role in the reduction of initial DNA damage by low-dose-rate radiation.
Collapse
Affiliation(s)
- Kensuke Otsuka
- Low Dose Radiation Research Center, Central Research Institute of Electric Power Industry, Tokyo, Japan.
| | | | | | | |
Collapse
|
4
|
Singh RK, Krishna M. DNA strand breaks signal the induction of DNA double-strand break repair in Saccharomyces cerevisiae. Radiat Res 2006; 164:781-90. [PMID: 16296884 DOI: 10.1667/rr3460.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Genotoxic stress induces a checkpoint signaling cascade to generate a stress response. Saccharomyces cerevisiae shows an altered radiation response under different type of stress. Although the induction of repair has been implicated in enhanced survival after exposure to the challenging stress, the nature of the signal remains poorly understood. This study demonstrates that low doses of gamma radiation and bleomycin induce RAD52-dependent recombination repair pathway in the wild-type strain D-261. Prior exposure of cells to DNA-damaging agents (gamma radiation or bleomycin) equips them better for the subsequent damage caused by challenging doses. However, exposure to UV light, which does not cause strand breaks, was ineffective. This was confirmed by PFGE studies. This indicates that the strand breaks probably serve as the signal for induction of the recombination repair pathway while pyrimidine dimers do not. The nature of the induced repair was investigated by mutation scoring in special strain D-7, which showed that the induced repair is essentially error free.
Collapse
Affiliation(s)
- Rakesh Kumar Singh
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India 400085.
| | | |
Collapse
|
5
|
Amundson SA, Bittner M, Meltzer P, Trent J, Fornace AJ. Induction of gene expression as a monitor of exposure to ionizing radiation. Radiat Res 2001; 156:657-61. [PMID: 11604088 DOI: 10.1667/0033-7587(2001)156[0657:iogeaa]2.0.co;2] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The complex molecular responses to genotoxic stress are mediated by a variety of regulatory pathways. The transcription factor TP53 plays a central role in the cellular response to DNA-damaging agents such as ionizing radiation, but other pathways also play important roles. In addition, differences in radiation quality, such as the exposure to high-LET radiation that occurs during space travel, may influence the pattern of responses. The premise is developed that stress gene responses can be employed as molecular markers for radiation exposure using a combination of informatics and functional genomics approaches. Published studies from our laboratory have already demonstrated such transcriptional responses with doses of gamma rays as low as 2 cGy, and in peripheral blood lymphocytes (PBLs) irradiated ex vivo with doses as low as 20 cGy. We have also found several genes elevated in vivo 24 h after whole-body irradiation of mice with 20 cGy. Such studies should provide insight into the molecular responses to physiologically relevant doses, which cannot necessarily be extrapolated from high-dose studies. In addition, ongoing experiments are identifying large numbers of potential biomarkers using microarray hybridization and various irradiation protocols including expression at different times after exposure to low- and high-LET radiation. Computation-intensive informatics analysis methods are also being developed for management of the complex gene expression profiles resulting from these experiments. With further development of these approaches, it may be feasible to monitor changes in gene expression after low-dose radiation exposure and other physiological stresses that may be encountered during manned space flight, such as the planned mission to Mars.
Collapse
Affiliation(s)
- S A Amundson
- National Institutes of Health, National Cancer Institute, Division of Basic Science, 37 Convent Dr., Bldg. 37, rm. 5C09, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
6
|
Abstract
Several studies have shown that ionizing radiation induces transcription of the TNFRSF6 (Fas) gene, leading to augmented TNFRSF6 protein levels at the surface of irradiated cells. We have examined TNFRSF6 expression in an apparently normal lymphocyte line and in a lymphocyte cell line derived from a patient with ataxia telangiectasia (AT) before and after exposure to radiation (0-10 Gy). Plasma membranes were isolated from normal lymphocytes and AT cells and subjected to Western blot analysis, using a TNFRSF6-specific monoclonal antibody to probe resolved proteins transferred onto nitrocellulose membranes. In both cell types, the presence of a 48-kDa band corresponding to the molecular mass of TNFRSF6 was revealed. Analysis of FITC-conjugated anti-TNFRSF6 antibody-stained normal lymphocytes and AT cells confirmed TNFRSF6 expression in both cell types. In MTT assays, AT cells treated with agonistic anti-TNFRSF6 Ab (CH.11) displayed a 25.9% decrease in cell viability, relative to cells treated with isotype-matched IgM Ab, suggesting the presence of a biologically active TNFRSF6 receptor at the AT cell surface. Exposure to cycloheximide (0-5 microg/ml), a metabolic inhibitor, enhanced sensitivity of AT cells to CH.11. Normal lymphocytes exhibited increased levels of apoptosis (approximately 34% cell death relative to cells treated with isotype-matched IgM Ab) when exposed to CH.11; however, the degree of cell death was not altered significantly with increasing concentrations of cycloheximide. When AT cells were exposed to 0.1, 0.5, 2 and 10 Gy, the activities of caspases 3 and 8 increased in a dose-dependent manner at 24 h postirradiation and reached a plateau by 72 h. A similar trend for activation of caspase 3 and 8 was observed in normal lymphocytes after irradiation. To assess the roles of TNFRSF6 and/or caspase 8 in radiation-induced cell death of AT and normal lymphocytes, and to determine whether hyper-radiosensitivity in AT cells is correlated with increased activity of these two components of the TNFRSF6 pathway, AT and normal lymphocytes were irradiated in the presence of ZB4, an anti-TNFRSF6 blocking antibody, and a caspase 8 inhibitor (Z-IETD-FMK). Apoptosis was determined by Annexin V staining using flow cytometry. Incubation with ZB4 anti-TNFRSF6 antibody did not alter the fraction of apoptotic cells in either AT cells or normal lymphocytes treated with doses of radiation ranging from 0-10 Gy. In contrast, apoptosis was significantly reduced in both cell lines in the presence of Z-IETD-FMK when samples were exposed to low-dose (< or = 2 Gy) radiation. Relative to control samples (those not incubated with Z-IETD-FMK), no difference in the level of apoptosis was observed in AT or normal lymphocytes treated with 10 Gy. These data indicate that: (a) despite radiation-induced up-regulation of TNFRSF6 at the cell surface, the death-promoting receptor does not play a role in radiation-mediated cytotoxicity; (b) apoptosis in lymphocytes irradiated with low (< or = 2 Gy) but not high doses (>2 Gy) proceeds at least in part through activation of caspase 8; and (3) since blocking anti-TNFRSF6 antibody (ZB4) did not reduce levels of apoptosis in irradiated AT cells to those of normal lymphocytes, TNFRSF6 is unlikely to play a significant role in the hyper-radiosensitivity exhibited by cells having the AT phenotype.
Collapse
Affiliation(s)
- J Albanese
- Department of Medicine, Bridgeport Hospital, Yale University School of Medicine, Connecticut 06610, USA
| | | |
Collapse
|
7
|
Yang CR, Wilson-Van Patten C, Planchon SM, Wuerzberger-Davis SM, Davis TW, Cuthill S, Miyamoto S, Boothman DA. Coordinate modulation of Sp1, NF-kappa B, and p53 in confluent human malignant melanoma cells after ionizing radiation. FASEB J 2000; 14:379-90. [PMID: 10657994 DOI: 10.1096/fasebj.14.2.379] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Regulation of transcriptional responses in growth-arrested human cells under conditions that promote potentially lethal damage repair after ionizing radiation (IR) is poorly understood. Sp1/retinoblastoma control protein (RCP) DNA binding increased within 30 min and peaked at 2-4 h after IR (450-600 cGy) in confluent radioresistant human malignant melanoma (U1-Mel) cells. Increased phosphorylation of Sp1 directly corresponded to Sp1/RCP binding and immediate-early gene induction, whereas pRb remained hypophosphorylated. Transfection of U1-Mel cells with the human papillomavirus E7 gene abrogated Sp1/RCP induction and G(0)/G(1) cell cycle checkpoint arrest responses, increased apoptosis and radiosensitivity, and augmented genetic instability (i.e., increased polyploidy cells) after IR. Increased NF-kappaB DNA binding in U1-Mel cells after IR treatment lasted much longer (i.e., >20 h). U1-Mel cells overexpressing dominant-negative IkappaBalpha S32/36A mutant protein were significantly more resistant to IR exposure and retained both G(2)/M and G(0)/G(1) cell cycle checkpoint responses without significant genetic instability (i.e., polyploid cell populations were not observed). Nuclear p53 protein levels and DNA binding activity increased only after high doses of IR (>1200 cGy). Disruption of p53 responses in U1-Mel cells by E6 transfection also abrogated G(0)/G(1) cell cycle checkpoint arrest responses and increased polyploidy after IR, but did not alter radiosensitivity. These data suggest that abrogation of individual components of this coordinate IR-activated transcription factor response may lead to divergent alterations in cell cycle checkpoints, genomic instability, apoptosis, and survival. Such coordinate transcription factor activation in human cancer cells is reminiscent of prokaryotic SOS responses, and further elucidation of these events should shed light on the initial molecular events in the chromosome instability phenotype.-Yang, C.-R., Wilson-Van Patten, C., Planchon, S. M., Wuerzberger-Davis, S. M., Davis, T. W., Cuthill, C., Miyamoto, S., Boothman, D. A. Coordinate modulation of Sp1, NF-kappa B, and p53 in confluent human malignant melanoma cells after ionizing radiation.
Collapse
Affiliation(s)
- C R Yang
- Departments of Radiation Oncology and Pharmacology and the Ireland Comprehensive Cancer Center, Laboratory of Molecular Stress Responses, Case Western Reserve University, Cleveland, Ohio 44106-4942, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Albanese J, Dainiak N. Ionizing radiation alters Fas antigen ligand at the cell surface and on exfoliated plasma membrane-derived vesicles: implications for apoptosis and intercellular signaling. Radiat Res 2000; 153:49-61. [PMID: 10630977 DOI: 10.1667/0033-7587(2000)153[0049:irafal]2.0.co;2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Resident proteins that reside on the plasma membrane are continually exfoliated from the cell surface. Exfoliation is a selective, energy-dependent process that mediates intercellular communication. Ionizing radiation modulates the expression of many plasma membrane-bound growth regulators, including the "death" ligand, TNFSF6 (formerly known as FasL, CD95L). Here we report that ionizing radiation induces dose-dependent up-regulation of TNFSF6 on plasma membranes purified from SW620 cells, a TNFSF6-expressing colon cancer cell line. Serum-free medium conditioned by exposed and control cells was collected and exfoliated vesicles were obtained by ultracentrifugation. Western blot analysis of vesicles from unexposed cells and from cells treated with 10 Gy showed increased amounts of TNFSF6 compared to that on vesicles from unexposed cells. Cells treated with 4 Gy released vesicles having a low level of TNFSF6 on their surface relative to that on vesicles exfoliated from unexposed cells. When assayed for bioactivity, vesicles from unexposed cells induced the greatest level of apoptosis in TNFRSF6 (formerly known as FAS) receptor-bearing Jurkat cells (cell surviving fraction of 43.7 +/- 6.1; P < 0.05), followed by vesicles collected from cells treated with 4 Gy (79.6 +/- 2.6%; P < 0.05). Despite having a high level of TNFSF6 by Western analysis, vesicles collected from cells exposed to 10 Gy display minimal biological activity (77.9 +/- 3.2%; P < 0.05), suggesting that modification of the vesicle-associated ligand has occurred. Our results indicate that ionizing radiation increases the level of TNFSF6 exfoliated on extracellular vesicles. The data may provide a mechanism for abscopal and bystander effects after irradiation.
Collapse
Affiliation(s)
- J Albanese
- Department of Medicine, Bridgeport Hospital, Yale University School of Medicine, Bridgeport, Connecticut 06610, USA
| | | |
Collapse
|