1
|
Wei Z, Babkirk K, Chen S, Pei M. Epithelial-to-mesenchymal transition transcription factors: New strategies for mesenchymal tissue regeneration. Cytokine Growth Factor Rev 2025:S1359-6101(25)00032-2. [PMID: 40011185 DOI: 10.1016/j.cytogfr.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
The epithelial-mesenchymal transition transcription factors (EMT-TFs)-ZEB, SNAI, and TWIST families-have been extensively studied in embryonic development and tumor metastasis, providing valuable insight into their roles in cell behavior and transformation. These EMT-TFs have garnered increasing attention in the context of mesenchymal tissue regeneration, potentially contributing an approach for cell therapy. Given that dysregulated EMT-TF expression can impair cell survival and lineage differentiation, controlled regulation of their expression could offer significant advantages for tissue regeneration. However, there is a lack of comprehensive reviews to summarize the influence of the EMT-TFs on mesenchymal tissue regeneration and potential molecular mechanisms. This review explores the regulatory roles of ZEB, SNAI, and TWIST in the regeneration of bone, adipose, cartilage, muscle, and other mesenchymal tissues, with a focus on the underlying molecular signaling mechanisms. Gaining a deeper understanding of how EMT-TFs regulate cell proliferation, apoptosis, migration, and differentiation may offer new insights into the management of mesenchymal tissue repair and open novel avenues for enhancing tissue regeneration.
Collapse
Affiliation(s)
- Zhixin Wei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Kiya Babkirk
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Song Chen
- Department of Orthopaedics, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China; Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China.
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, USA; WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
2
|
Guo Q, Chen J, Bu Q, Zhang J, Ruan M, Chen X, Zhao M, Tu X, Zhao C. Establishing stable and highly osteogenic hiPSC-derived MSCs for 3D-printed bone graft through microenvironment modulation by CHIR99021-treated osteocytes. Mater Today Bio 2024; 26:101111. [PMID: 38933413 PMCID: PMC11201125 DOI: 10.1016/j.mtbio.2024.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived mesenchymal stem cells (iMSCs) are ideal candidates for the production of standardised and scalable bioengineered bone grafts. However, stable induction and osteogenic differentiation of iMSCs pose challenges in the industry. We developed a precise differentiation method to produce homogeneous and fully differentiated iMSCs. In this study, we established a standardised system to prepare iMSCs with increased osteogenic potential and improved bioactivity by introducing a CHIR99021 (C91)-treated osteogenic microenvironment (COOME). COOME enhances the osteogenic differentiation and mineralisation of iMSCs via canonical Wnt signalling. Global transcriptome analysis and co-culturing experiments indicated that COOME increased the pro-angiogenesis/neurogenesis activity of iMSCs. The superior osteogenic differentiation and mineralisation abilities of COOME-treated iMSCs were also confirmed in a Bio3D module generated using a polycaprolactone (PCL) and cell-integrated 3D printing (PCI3D) system, which is the closest model to in vivo research. This COOME-treated iMSCs differentiation system offers a new perspective for generating highly osteogenic, bioactive, and anatomically matched grafts for clinical applications. Statement of significance Although human induced pluripotent stem cell-derived MSCs (iMSCs) are ideal seed cells for synthetic bone implants, the challenges of stable induction and osteogenic differentiation hinder their clinical application. This study established a standardised system for the scalable preparation of iMSCs with improved osteogenic potential by combining our precise iMSC differentiation method with the CHIR99021 (C91)-treated osteocyte osteogenic microenvironment (COOME) through the activation of canonical Wnt signalling. Moreover, COOME upregulated the pro-angiogenic and pro-neurogenic capacities of iMSCs, which are crucial for the integration of implanted bone grafts. The superior osteogenic ability of COOME-treated iMSCs was confirmed in Bio3D modules generated using PCL and cell-integrated 3D printing systems, highlighting their functional potential in vivo. This study contributes to tissue engineering by providing insights into the functional differentiation of iMSCs for bone regeneration.
Collapse
Affiliation(s)
- Qiuling Guo
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jingjing Chen
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Qiqi Bu
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jinling Zhang
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Minjie Ruan
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoyu Chen
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Mingming Zhao
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xiaolin Tu
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Chengzhu Zhao
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
3
|
Cortez J, Torres CG, Parraguez VH, De Los Reyes M, Peralta OA. Bovine adipose tissue-derived mesenchymal stem cells self-assemble with testicular cells and integrates and modifies the structure of a testicular organoids. Theriogenology 2024; 215:259-271. [PMID: 38103403 DOI: 10.1016/j.theriogenology.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Mesenchymal stem cells (MSC) display self-renewal and mesodermal differentiation potentials. These characteristics make them potentially useful for in vitro derivation of gametes, which may constitute experimental therapies for human and animal reproduction. Organoids provide a spatial support and may simulate a cellular niche for in vitro studies. In this study, we aimed at evaluating the potential integration of fetal bovine MSCs derived from adipose tissue (AT-MSCs) in testicular organoids (TOs), their spatial distribution with testicular cells during TO formation and their potential for germ cell differentiation. TOs were developed using Leydig, Sertoli, and peritubular myoid cells that were previously isolated from bovine testes (n = 6). Thereafter, TOs were characterized using immunofluorescence and Q-PCR to detect testicular cell-specific markers. AT-MSCs were labeled with PKH26 and then cultured with testicular cells at a concentration of 1 × 106 cells per well in Ultra Low Attachment U-shape bottom (ULA) plates. TOs formed by testicular cells and AT-MSCs (TOs + AT-MSCs) maintained a rounded structure throughout the 28-day culture period and did not show significant differences in their diameters. Conversely, control TOs exhibited a compact structure until day 7 of culture, while on day 28 they displayed cellular extensions around their structure. Control TOs had greater (P < 0.05) diameters compared to TOs + AT-MSCs. AT-MSCs induced an increase in proportion of Leydig and peritubular myoid cells in TOs + AT-MSCs; however, did not induce changes in the overall gene expression of testicular cell-specific markers. STAR immunolabelling detected Leydig cells that migrated from the central area to the periphery and formed brunches in control TOs. However, in TOs + AT-MSCs, Leydig cells formed a compact peripheral layer. Sertoli cells immunodetected using WT1 marker were observed within the central area forming clusters of cells in TOs + AT-MSCs. The expression of COL1A associated to peritubular myoids cells was restricted to the central region in TOs + AT-MSCs. Thus, during a 28-day culture period, fetal bovine AT-MSCs integrated and modified the structure of the TOs, by restricting formation of branches, limiting the overall increase in diameters and increasing the proportions of Leydig and peritubular myoid cells. AT-MSCs also induced a reorganization of testicular cells, changing their distribution and particularly the location of Leydig cells.
Collapse
Affiliation(s)
- Jahaira Cortez
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808 Chile; Doctorate Program of Forestry, Agriculture, and Veterinary Sciences (DCSAV), University of Chile, Santa Rosa 11315, Santiago 8820808 Chile
| | - Cristian G Torres
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808 Chile
| | - Víctor H Parraguez
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808 Chile
| | - Mónica De Los Reyes
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808 Chile
| | - Oscar A Peralta
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808 Chile.
| |
Collapse
|
4
|
Otsuka T, Kan HM, Mengsteab PY, Tyson B, Laurencin CT. Fibroblast growth factor 8b (FGF-8b) enhances myogenesis and inhibits adipogenesis in rotator cuff muscle cell populations in vitro. Proc Natl Acad Sci U S A 2024; 121:e2314585121. [PMID: 38147545 PMCID: PMC10769839 DOI: 10.1073/pnas.2314585121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023] Open
Abstract
Fatty expansion is one of the features of muscle degeneration due to muscle injuries, and its presence interferes with muscle regeneration. Specifically, poor clinical outcomes have been linked to fatty expansion in rotator cuff tears and repairs. Our group recently found that fibroblast growth factor 8b (FGF-8b) inhibits adipogenic differentiation and promotes myofiber formation of mesenchymal stem cells in vitro. This led us to hypothesize that FGF-8b could similarly control the fate of muscle-specific cell populations derived from rotator cuff muscle involved in muscle repair following rotator cuff injury. In this study, we isolate fibro-adipogenic progenitor cells (FAPs) and satellite stem cells (SCs) from rat rotator cuff muscle tissue and analyzed the effects of FGF-8b supplementation. Utilizing a cell plating protocol, we successfully isolate FAPs-rich fibroblasts (FIBs) and SCs-rich muscle progenitor cells (MPCs). Subsequently, we demonstrate that FIB adipogenic differentiation can be inhibited by FGF-8b, while MPC myogenic differentiation can be enhanced by FGF-8b. We further demonstrate that phosphorylated ERK due to FGF-8b leads to the inhibition of adipogenesis in FIBs and SCs maintenance and myofiber formation in MPCs. Together, these findings demonstrate the powerful potential of FGF-8b for rotator cuff repair by altering the fate of muscle undergoing degeneration.
Collapse
Affiliation(s)
- Takayoshi Otsuka
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences, University of Connecticut Health Center, Farmington, CT06030
| | - Ho-Man Kan
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences, University of Connecticut Health Center, Farmington, CT06030
| | - Paulos Y. Mengsteab
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences, University of Connecticut Health Center, Farmington, CT06030
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT06030
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT06269
| | - Breajah Tyson
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
| | - Cato T. Laurencin
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences, University of Connecticut Health Center, Farmington, CT06030
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT06030
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT06269
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT06269
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT06269
| |
Collapse
|
5
|
Haga CL, Booker CN, Carvalho A, Boregowda SV, Phinney DG. Transcriptional Targets of TWIST1 in Human Mesenchymal Stem/Stromal Cells Mechanistically Link Stem/Progenitor and Paracrine Functions. Stem Cells 2023; 41:1185-1200. [PMID: 37665974 PMCID: PMC10723815 DOI: 10.1093/stmcls/sxad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
Despite extensive clinical testing, mesenchymal stem/stromal cell (MSC)-based therapies continue to underperform with respect to efficacy, which reflects the paucity of biomarkers that predict potency prior to patient administration. Previously, we reported that TWIST1 predicts inter-donor differences in MSC quality attributes that confer potency. To define the full spectrum of TWIST1 activity in MSCs, the present work employed integrated omics-based profiling to identify a high-confidence set of TWIST1 targets, which mapped to cellular processes related to ECM structure/organization, skeletal and circulatory system development, interferon gamma signaling, and inflammation. These targets are implicated in contributing to both stem/progenitor and paracrine activities of MSCs indicating these processes are linked mechanistically in a TWIST1-dependent manner. Targets implicated in extracellular matrix dynamics further implicate TWIST1 in modulating cellular responses to niche remodeling. Novel TWIST1-regulated genes identified herein may be prioritized for future mechanistic and functional studies.
Collapse
Affiliation(s)
- Christopher L Haga
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Department of Molecular Medicine, Jupiter, FL, USA
| | - Cori N Booker
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Department of Molecular Medicine, Jupiter, FL, USA
| | - Ana Carvalho
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Department of Molecular Medicine, Jupiter, FL, USA
| | - Siddaraju V Boregowda
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Department of Molecular Medicine, Jupiter, FL, USA
| | - Donald G Phinney
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Department of Molecular Medicine, Jupiter, FL, USA
| |
Collapse
|
6
|
Boregowda SV, Haga CL, Supper VM, Booker CN, Phinney DG. Novel role for alpha-2-macroglobulin (A2M) as a disease modifying protein in senile osteoporosis. Front Cell Dev Biol 2023; 11:1294438. [PMID: 37965574 PMCID: PMC10642388 DOI: 10.3389/fcell.2023.1294438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction: In the rapidly aging U.S. population, age-induced bone loss (senile osteoporosis) represents a major public health concern that is associated with a significant increased risk for low trauma fragility fractures, which are debilitating to patients, cause significant morbidity and mortality, and are costly to treat and manage. While various treatments exist to slow bone loss in osteoporosis patients, these suffer from poor tolerability and label restrictions that limit their overall effectiveness. Over the past decade, skeletal stem/progenitor cells (SSPCs), which are the main precursor of osteoblasts and adipocytes in adult bone marrow (BM), have emerged as important players in osteoporosis. Methods: Age-induced skeletal pathology was quantified in elderly (24-month-old) vs. mature (3-month-old) mice by micro-CT and changes in SSPC abundance in the BM of these mice was quantified by fluorescence-activated cell sorting (FACS). SSPCs from elderly vs. mature mice were also analyzed by RNA-Seq to identify differentially expressed genes (DEGs), and gain and loss-of-function studies were performed in human BM-derived mesenchymal stromal cells (BM-MSCs) to assess A2M function. Results: Elderly mice were shown to exhibit significant age-induced skeletal pathology, which correlated with a significant increase in SSPC abundance in BM. RNA-seq analysis identified alpha-2-macroglobulin (A2M), a pan-protease inhibitor that also binds inflammatory cytokines, as one of the most downregulated transcripts in SSPCs isolated from the BM of elderly vs. mature mice, and silencing of A2M expression in human BM-MSCs induced their proliferation and skewed their lineage bifurcation toward adipogenesis at the expense of osteogenesis thereby recapitulating critical aspects of age-induced stem cell dysfunction. Conclusion: These findings identify A2M as a novel disease modifying protein in osteoporosis, downregulation of which in bone marrow promotes SSPC dysfunction and imbalances in skeletal homeostasis.
Collapse
Affiliation(s)
| | | | | | | | - Donald G. Phinney
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States
| |
Collapse
|
7
|
Khan S, Mahgoub S, Fallatah N, Lalor PF, Newsome PN. Liver Disease and Cell Therapy: Advances Made and Remaining Challenges. Stem Cells 2023; 41:739-761. [PMID: 37052348 PMCID: PMC10809282 DOI: 10.1093/stmcls/sxad029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 02/27/2023] [Indexed: 04/14/2023]
Abstract
The limited availability of organs for liver transplantation, the ultimate curative treatment for end stage liver disease, has resulted in a growing and unmet need for alternative therapies. Mesenchymal stromal cells (MSCs) with their broad ranging anti-inflammatory and immunomodulatory properties have therefore emerged as a promising therapeutic agent in treating inflammatory liver disease. Significant strides have been made in exploring their biological activity. Clinical application of MSC has shifted the paradigm from using their regenerative potential to one which harnesses their immunomodulatory properties. Reassuringly, MSCs have been extensively investigated for over 30 years with encouraging efficacy and safety data from translational and early phase clinical studies, but questions remain about their utility. Therefore, in this review, we examine the translational and clinical studies using MSCs in various liver diseases and their impact on dampening immune-mediated liver damage. Our key observations include progress made thus far with use of MSCs for clinical use, inconsistency in the literature to allow meaningful comparison between different studies and need for standardized protocols for MSC manufacture and administration. In addition, the emerging role of MSC-derived extracellular vesicles as an alternative to MSC has been reviewed. We have also highlighted some of the remaining clinical challenges that should be addressed before MSC can progress to be considered as therapy for patients with liver disease.
Collapse
Affiliation(s)
- Sheeba Khan
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, West Midlands, UK
| | - Sara Mahgoub
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, West Midlands, UK
| | - Nada Fallatah
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Patricia F Lalor
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
| | - Philip N Newsome
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
8
|
Li CH, Zhao J, Zhang HY, Wang B. Banking of perinatal mesenchymal stem/stromal cells for stem cell-based personalized medicine over lifetime: Matters arising. World J Stem Cells 2023; 15:105-119. [PMID: 37181005 PMCID: PMC10173813 DOI: 10.4252/wjsc.v15.i4.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/07/2023] [Accepted: 03/22/2023] [Indexed: 04/26/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are currently applied in regenerative medicine and tissue engineering. Numerous clinical studies have indicated that MSCs from different tissue sources can provide therapeutic benefits for patients. MSCs derived from either human adult or perinatal tissues have their own unique advantages in their medical practices. Usually, clinical studies are conducted by using of cultured MSCs after thawing or short-term cryopreserved-then-thawed MSCs prior to administration for the treatment of a wide range of diseases and medical disorders. Currently, cryogenically banking perinatal MSCs for potential personalized medicine for later use in lifetime has raised growing interest in China as well as in many other countries. Meanwhile, this has led to questions regarding the availability, stability, consistency, multipotency, and therapeutic efficiency of the potential perinatal MSC-derived therapeutic products after long-term cryostorage. This opinion review does not minimize any therapeutic benefit of perinatal MSCs in many diseases after short-term cryopreservation. This article mainly describes what is known about banking perinatal MSCs in China and, importantly, it is to recognize the limitation and uncertainty of the perinatal MSCs stored in cryobanks for stem cell medical treatments in whole life. This article also provides several recommendations for banking of perinatal MSCs for potentially future personalized medicine, albeit it is impossible to anticipate whether the donor will benefit from banked MSCs during her/his lifetime.
Collapse
Affiliation(s)
- Cheng-Hai Li
- Stem Cell Program of Clinical Research Center, People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, Zhengzhou 450003, Henan Province, China
| | - Jing Zhao
- Department of Clinical Laboratory, People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, Zhengzhou 450003, Henan Province, China
| | - Hong-Yan Zhang
- Department of Pharmacy, Fuwai Central China Cardiovascular Hospital, Zhengzhou 450000, Henan Province, China
| | - Bin Wang
- Department of Neurosurgery, People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, Zhengzhou 450003, Henan Province, China.
| |
Collapse
|
9
|
Chen H, Cui Y, Zhang D, Xie J, Zhou X. The role of fibroblast growth factor 8 in cartilage development and disease. J Cell Mol Med 2022; 26:990-999. [PMID: 35001536 PMCID: PMC8831980 DOI: 10.1111/jcmm.17174] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factor 8 (FGF‐8), also known as androgen‐induced growth factor (AIGF), is presumed to be a potent mitogenic cytokine that plays important roles in early embryonic development, brain formation and limb development. In the bone environment, FGF‐8 produced or received by chondrocyte precursor cells binds to fibroblast growth factor receptor (FGFR), causing different levels of activation of downstream signalling pathways, such as phospholipase C gamma (PLCγ)/Ca2+, RAS/mitogen‐activated protein kinase‐extracellular regulated protein kinases (RAS/MAPK‐MEK‐ERK), and Wnt‐β‐catenin‐Axin2 signalling, and ultimately controlling chondrocyte proliferation, differentiation, cell survival and migration. However, the molecular mechanism of FGF‐8 in normal or pathological cartilage remains unclear, and thus, FGF‐8 represents a novel exploratory target for studies of chondrocyte development and cartilage disease progression. In this review, studies assessing the relationship between FGF‐8 and chondrocytes that have been published in the past 5 years are systematically summarized to determine the probable mechanism and physiological effect of FGF‐8 on chondrocytes. Based on the existing research results, a therapeutic regimen targeting FGF‐8 is proposed to explore the possibility of treating chondrocyte‐related diseases.
Collapse
Affiliation(s)
- Haoran Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Liu TM. Application of mesenchymal stem cells derived from human pluripotent stem cells in regenerative medicine. World J Stem Cells 2021; 13:1826-1844. [PMID: 35069985 PMCID: PMC8727229 DOI: 10.4252/wjsc.v13.i12.1826] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) represent the most clinically used stem cells in regenerative medicine. However, due to the disadvantages with primary MSCs, such as limited cell proliferative capacity and rarity in the tissues leading to limited MSCs, gradual loss of differentiation during in vitro expansion reducing the efficacy of MSC application, and variation among donors increasing the uncertainty of MSC efficacy, the clinical application of MSCs has been greatly hampered. MSCs derived from human pluripotent stem cells (hPSC-MSCs) can circumvent these problems associated with primary MSCs. Due to the infinite self-renewal of hPSCs and their differentiation potential towards MSCs, hPSC-MSCs are emerging as an attractive alternative for regenerative medicine. This review summarizes the progress on derivation of MSCs from human pluripotent stem cells, disease modelling and drug screening using hPSC-MSCs, and various applications of hPSC-MSCs in regenerative medicine. In the end, the challenges and concerns with hPSC-MSC applications are also discussed.
Collapse
Affiliation(s)
- Tong-Ming Liu
- Agency for Science, Technology and Research, Institute of Molecular and Cell Biology, Singapore 138648, Singapore
| |
Collapse
|
11
|
Bock FJ, Sedov E, Koren E, Koessinger AL, Cloix C, Zerbst D, Athineos D, Anand J, Campbell KJ, Blyth K, Fuchs Y, Tait SWG. Apoptotic stress-induced FGF signalling promotes non-cell autonomous resistance to cell death. Nat Commun 2021; 12:6572. [PMID: 34772930 PMCID: PMC8590049 DOI: 10.1038/s41467-021-26613-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Damaged or superfluous cells are typically eliminated by apoptosis. Although apoptosis is a cell-autonomous process, apoptotic cells communicate with their environment in different ways. Here we describe a mechanism whereby cells under apoptotic stress can promote survival of neighbouring cells. We find that upon apoptotic stress, cells release the growth factor FGF2, leading to MEK-ERK-dependent transcriptional upregulation of pro-survival BCL-2 proteins in a non-cell autonomous manner. This transient upregulation of pro-survival BCL-2 proteins protects neighbouring cells from apoptosis. Accordingly, we find in certain cancer types a correlation between FGF-signalling, BCL-2 expression and worse prognosis. In vivo, upregulation of MCL-1 occurs in an FGF-dependent manner during skin repair, which regulates healing dynamics. Importantly, either co-treatment with FGF-receptor inhibitors or removal of apoptotic stress restores apoptotic sensitivity to cytotoxic therapy and delays wound healing. These data reveal a pathway by which cells under apoptotic stress can increase resistance to cell death in surrounding cells. Beyond mediating cytotoxic drug resistance, this process also provides a potential link between tissue damage and repair.
Collapse
Affiliation(s)
- Florian J Bock
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ER, Maastricht, The Netherlands.
| | - Egor Sedov
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Elle Koren
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Anna L Koessinger
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Catherine Cloix
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Désirée Zerbst
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Dimitris Athineos
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Jayanthi Anand
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Kirsteen J Campbell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
| |
Collapse
|
12
|
Xu L, Willumeit-Römer R, Luthringer-Feyerabend BJC. Mesenchymal Stem Cell and Oxygen Modulate the Cocultured Endothelial Cells in the Presence of Magnesium Degradation Products. ACS APPLIED BIO MATERIALS 2021; 4:2398-2407. [DOI: 10.1021/acsabm.0c01289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lei Xu
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), Geesthacht 21502, Germany
| | - Regine Willumeit-Römer
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), Geesthacht 21502, Germany
| | | |
Collapse
|
13
|
Baek D, Park KH, Lee KM, Jung S, Joung S, Kim J, Lee JW. Ubiquitin-specific protease 53 promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Cell Death Dis 2021; 12:238. [PMID: 33664230 PMCID: PMC7933275 DOI: 10.1038/s41419-021-03517-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022]
Abstract
The ubiquitin protease pathway plays important role in human bone marrow-derived mesenchymal stem cell (hBMSC) differentiation, including osteogenesis. However, the function of deubiquitinating enzymes in osteogenic differentiation of hBMSCs remains poorly understood. In this study, we aimed to investigate the role of ubiquitin-specific protease 53 (USP53) in the osteogenic differentiation of hBMSCs. Based on re-analysis of the Gene Expression Omnibus database, USP53 was selected as a positive regulator of osteogenic differentiation in hBMSCs. Overexpression of USP53 by lentivirus enhanced osteogenesis in hBMSCs, whereas knockdown of USP53 by lentivirus inhibited osteogenesis in hBMSCs. In addition, USP53 overexpression increased the level of active β-catenin and enhanced the osteogenic differentiation of hBMSCs. This effect was reversed by the Wnt/β-catenin inhibitor DKK1. Mass spectrometry showed that USP53 interacted with F-box only protein 31 (FBXO31) to promote proteasomal degradation of β-catenin. Inhibition of the osteogenic differentiation of hBMSCs by FBXO31 was partially rescued by USP53 overexpression. Animal studies showed that hBMSCs with USP53 overexpression significantly promoted bone regeneration in mice with calvarial defects. These results suggested that USP53 may be a target for gene therapy for bone regeneration.
Collapse
Affiliation(s)
- Dawoon Baek
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Kwang Hwan Park
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Kyoung-Mi Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Sujin Jung
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Soyeong Joung
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jihyun Kim
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jin Woo Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
14
|
Otsuka T, Mengsteab PY, Laurencin CT. Control of mesenchymal cell fate via application of FGF-8b in vitro. Stem Cell Res 2021; 51:102155. [PMID: 33445073 PMCID: PMC8027992 DOI: 10.1016/j.scr.2021.102155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/30/2020] [Accepted: 01/01/2021] [Indexed: 12/29/2022] Open
Abstract
In order to develop strategies to regenerate complex tissues in mammals, understanding the role of signaling in regeneration competent species and mammalian development is of critical importance. Fibroblast growth factor 8 (FGF-8) signaling has an essential role in limb morphogenesis and blastema outgrowth. Therefore, we aimed to study the effect of FGF-8b on the proliferation and differentiation of mesenchymal stem cells (MSCs), which have tremendous potential for therapeutic use of cell-based therapy. Rat adipose derived stem cells (ADSCs) and muscle progenitor cells (MPCs) were isolated and cultured in growth medium and various types of differentiation medium (osteogenic, chondrogenic, adipogenic, tenogenic, and myogenic medium) with or without FGF-8b supplementation. We found that FGF-8b induced robust proliferation regardless of culture medium. Genes related to limb development were upregulated in ADSCs by FGF-8b supplementation. Moreover, FGF-8b enhanced chondrogenic differentiation and suppressed adipogenic and tenogenic differentiation in ADSCs. Osteogenic differentiation was not affected by FGF-8b supplementation. FGF-8b was found to enhance myofiber formation in rat MPCs. Overall, this study provides foundational knowledge on the effect of FGF-8b in the proliferation and fate determination of MSCs and provides insight in its potential efficacy for musculoskeletal therapies.
Collapse
Affiliation(s)
- Takayoshi Otsuka
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA
| | - Paulos Y Mengsteab
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
15
|
Zhu L, Donhou S, Burleigh A, Miotla Zarebska J, Curtinha M, Parisi I, Khan SN, Dell'Accio F, Chanalaris A, Vincent TL. TSG-6 Is Weakly Chondroprotective in Murine OA but Does not Account for FGF2-Mediated Joint Protection. ACR Open Rheumatol 2020; 2:605-615. [PMID: 33029956 PMCID: PMC7571392 DOI: 10.1002/acr2.11176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/11/2020] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Tumor necrosis factor α-stimulated gene 6 (TSG-6) is an anti-inflammatory protein highly expressed in osteoarthritis (OA), but its influence on the course of OA is unknown. METHODS Cartilage injury was assessed by murine hip avulsion or by recutting rested explants. Forty-two previously validated injury genes were quantified by real-time polymerase chain reaction in whole joints following destabilization of the medial meniscus (DMM) (6 hours and 7 days). Joint pathology was assessed at 8 and 12 weeks following DMM in 10-week-old male and female fibroblast growth factor 2 (FGF2)-/- , TSG-6-/- , TSG-6tg (overexpressing), FGF2-/- ;TSG-6tg (8 weeks only) mice, as well as strain-matched, wild-type controls. In vivo cartilage repair was assessed 8 weeks following focal cartilage injury in TSG-6tg and control mice. FGF2 release following cartilage injury was measured by enzyme-linked immunosorbent assay. RESULTS TSG-6 messenger RNA upregulation was strongly FGF2-dependent upon injury in vitro and in vivo. Fifteeen inflammatory genes were significantly increased in TSG-6-/- joints, including IL1α, Ccl2, and Adamts5 compared with wild type. Six genes were significantly suppressed in TSG-6-/- joints including Timp1, Inhibin βA, and podoplanin (known FGF2 target genes). FGF2 release upon cartilage injury was not influenced by levels of TSG-6. Cartilage degradation was significantly increased at 12 weeks post-DMM in male TSG-6-/- mice, with a nonsignificant 30% reduction in disease seen in TSG-6tg mice. No differences were observed in cartilage repair between genotypes. TSG-6 overexpression was unable to prevent accelerated OA in FGF2-/- mice. CONCLUSION TSG-6 influences early gene regulation in the destabilized joint and exerts a modest late chondroprotective effect. Although strongly FGF2 dependent, TSG-6 does not explain the strong chondroprotective effect of FGF2.
Collapse
Affiliation(s)
- Linyi Zhu
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, UK
| | - Shannah Donhou
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, UK
| | - Annika Burleigh
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, UK
| | - Jadwiga Miotla Zarebska
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, UK
| | - Marcia Curtinha
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, UK
| | - Ida Parisi
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, UK
| | - Sumayya Nafisa Khan
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, UK
| | | | - Anastasios Chanalaris
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, UK
| | - Tonia L Vincent
- Kennedy Institute of Rheumatology, Arthritis Research UK Centre for OA Pathogenesis, University of Oxford, UK
| |
Collapse
|
16
|
Mesenchymal Stem/Progenitor Cells: The Prospect of Human Clinical Translation. Stem Cells Int 2020; 2020:8837654. [PMID: 33953753 PMCID: PMC8063852 DOI: 10.1155/2020/8837654] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/19/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/progenitor cells (MSCs) are key players in regenerative medicine, relying principally on their differentiation/regeneration potential, immunomodulatory properties, paracrine effects, and potent homing ability with minimal if any ethical concerns. Even though multiple preclinical and clinical studies have demonstrated remarkable properties for MSCs, the clinical applicability of MSC-based therapies is still questionable. Several challenges exist that critically hinder a successful clinical translation of MSC-based therapies, including but not limited to heterogeneity of their populations, variability in their quality and quantity, donor-related factors, discrepancies in protocols for isolation, in vitro expansion and premodification, and variability in methods of cell delivery, dosing, and cell homing. Alterations of MSC viability, proliferation, properties, and/or function are also affected by various drugs and chemicals. Moreover, significant safety concerns exist due to possible teratogenic/neoplastic potential and transmission of infectious diseases. Through the current review, we aim to highlight the major challenges facing MSCs' human clinical translation and shed light on the undergoing strategies to overcome them.
Collapse
|
17
|
Wang B, Liu XM, Liu ZN, Wang Y, Han X, Lian AB, Mu Y, Jin MH, Liu JY. Human hair follicle-derived mesenchymal stem cells: Isolation, expansion, and differentiation. World J Stem Cells 2020; 12:462-470. [PMID: 32742563 PMCID: PMC7360986 DOI: 10.4252/wjsc.v12.i6.462] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/18/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Hair follicles are easily accessible skin appendages that protect against cold and potential injuries. Hair follicles contain various pools of stem cells, such as epithelial, melanocyte, and mesenchymal stem cells (MSCs) that continuously self-renew, differentiate, regulate hair growth, and maintain skin homeostasis. Recently, MSCs derived from the dermal papilla or dermal sheath of the human hair follicle have received attention because of their accessibility and broad differentiation potential. In this review, we describe the applications of human hair follicle-derived MSCs (hHF-MSCs) in tissue engineering and regenerative medicine. We have described protocols for isolating hHF-MSCs from human hair follicles and their culture condition in detail. We also summarize strategies for maintaining hHF-MSCs in a highly proliferative but undifferentiated state after repeated in vitro passages, including supplementation of growth factors, 3D suspension culture technology, and 3D aggregates of MSCs. In addition, we report the potential of hHF-MSCs in obtaining induced smooth muscle cells and tissue-engineered blood vessels, regenerated hair follicles, induced red blood cells, and induced pluripotent stem cells. In summary, the abundance, convenient accessibility, and broad differentiation potential make hHF-MSCs an ideal seed cell source of regenerative medical and cell therapy.
Collapse
Affiliation(s)
- Bo Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, Jilin Province, China
| | - Xiao-Mei Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, Jilin Province, China
| | - Zi-Nan Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, Jilin Province, China
| | - Yuan Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, Jilin Province, China
| | - Xing Han
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, Jilin Province, China
| | - Ao-Bo Lian
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, Jilin Province, China
| | - Ying Mu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Ming-Hua Jin
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, Jilin Province, China
| | - Jin-Yu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
18
|
Shakya A, Imado E, Nguyen PK, Matsuyama T, Horimoto K, Hirata I, Kato K. Oriented immobilization of basic fibroblast growth factor: Bioengineered surface design for the expansion of human mesenchymal stromal cells. Sci Rep 2020; 10:8762. [PMID: 32472000 PMCID: PMC7260242 DOI: 10.1038/s41598-020-65572-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/05/2020] [Indexed: 01/14/2023] Open
Abstract
E. coli expressed recombinant basic fibroblast growth factor (bFGF) with histidine-tag (bFGF-His) was immobilized onto the surface of a glass plate modified with a Ni(II)-chelated alkanethiol monolayer. The immobilization is expected to take place through the coordination between Ni(II) and His-tag. The bFGF-immobilized surface was exposed to citrate buffer solution to refold in situ the surface-immobilized bFGF. The secondary structure of immobilized bFGF-His was analyzed by solid-phase circular dichroism (CD) spectroscopy. Immortalized human mesenchymal stromal cells (hMSCs) were cultured on the bFGF-His-immobilized surface to examine their proliferation. CD spectroscopy revealed that the immobilized bFGF initially exhibited secondary structure rich in α-helix and that the spectrum was gradually transformed to exhibit the formation of β-strands upon exposure to citrate buffer solution, approaching to the spectrum of native bFGF. The rate of hMSC proliferation was 1.2-fold higher on the bFGF-immobilized surface treated with in situ citrate buffer, compared to the polystyrene surface. The immobilized bFGF-His treated in situ with citrate buffer solution seemed to be biologically active because its secondary structure approached its native state. This was well demonstrated by the cell culture experiments. From these results we conclude that immobilization of bFGF on the culture substrate serves to enhance proliferation of hMSCs.
Collapse
Affiliation(s)
- Ajay Shakya
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Eiji Imado
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Phuong Kim Nguyen
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Faculty of Odonto-Stomatology, Ho Chi Minh City University of Medicine and Pharmacy, Ho Chi Minh, Vietnam
| | - Tamamo Matsuyama
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kotaro Horimoto
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Isao Hirata
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koichi Kato
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
19
|
Cheng Y, Lin K, Young T, Cheng N. The influence of fibroblast growth factor 2 on the senescence of human adipose-derived mesenchymal stem cells during long-term culture. Stem Cells Transl Med 2020; 9:518-530. [PMID: 31840944 PMCID: PMC7103622 DOI: 10.1002/sctm.19-0234] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) exhibit great potential in regenerative medicine, and in vitro expansion is frequently necessary to obtain a sufficient number of ASCs for clinical use. Fibroblast growth factor 2 (FGF2) is a common supplement in the ASC culture medium to enhance cell proliferation. To achieve clinical applicability of ASC-based products, prolonged culture of ASCs is sometimes required to obtain sufficient quantity of ASCs. However, the effect of FGF2 on ASCs during prolonged culture has not been previously determined. In this study, ASCs were subjected to prolonged in vitro culture with or without FGF2. FGF2 maintained the small cell morphology and expedited proliferation kinetics in early ASC passages. After prolonged in vitro expansion, FGF2-treated ASCs exhibited increased cell size, arrested cell proliferation, and increased cellular senescence relative to the control ASCs. We observed an upregulation of FGFR1c and enhanced expression of downstream STAT3 in the initial passages of FGF2-treated ASCs. The application of an FGFR1 or STAT3 inhibitor effectively blocked the enhanced proliferation of ASCs induced by FGF2 treatment. FGFR1c upregulation and enhanced STAT3 expression were lost in the later passages of FGF2-treated ASCs, suggesting that the continuous stimulation of FGF2 becomes ineffective because of the refractory downstream FGFR1 and the STAT3 signaling pathway. In addition, no evidence of tumorigenicity was noted in vitro and in vivo after prolonged expansion of FGF2-cultured ASCs. Our data indicate that ASCs have evolved a STAT3-dependent response to continuous FGF2 stimulation which promotes the initial expansion but limits their long-term proliferation.
Collapse
Affiliation(s)
- Yin Cheng
- Department of SurgeryNational Taiwan University Hospital and College of MedicineTaipeiTaiwan
| | - Kai‐Hsuan Lin
- Department of SurgeryNational Taiwan University Hospital and College of MedicineTaipeiTaiwan
| | - Tai‐Horng Young
- Department of Biomedical Engineering, College of Medicine and College of EngineeringNational Taiwan UniversityTaipeiTaiwan
| | - Nai‐Chen Cheng
- Department of SurgeryNational Taiwan University Hospital and College of MedicineTaipeiTaiwan
- Research Center for Developmental Biology and Regenerative MedicineNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
20
|
Nolta JA, Galipeau J, Phinney DG. Improving mesenchymal stem/stromal cell potency and survival: Proceedings from the International Society of Cell Therapy (ISCT) MSC preconference held in May 2018, Palais des Congrès de Montréal, Organized by the ISCT MSC Scientific Committee. Cytotherapy 2020; 22:123-126. [PMID: 32067856 DOI: 10.1016/j.jcyt.2020.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 01/20/2023]
Abstract
As part of the International Society of Cell Therapy (ISCT) 2018 Annual Meeting, the Mesenchymal Stem/Stromal Cell (MSC) committee organized a pre-conference, which covered methods of improving MSC engraftment and potency in vivo and clinical efficacy using MSC potency assays. The speakers examined methods to improve clinical efficacy using MSC potency assays and methods to improve MSC engraftment/homing/potency in vivo. Discussion of patient "responders" versus "non-responders" in clinical trials and working toward ways to identify them were also included.
Collapse
Affiliation(s)
- Jan A Nolta
- University of California Davis Stem Cell Program, Sacramento, California, USA.
| | | | | |
Collapse
|
21
|
Huang CW, Lu SY, Huang TC, Huang BM, Sun HS, Yang SH, Chuang JI, Hsueh YY, Wu YT, Wu CC. FGF9 induces functional differentiation to Schwann cells from human adipose derived stem cells. Theranostics 2020; 10:2817-2831. [PMID: 32194837 PMCID: PMC7052907 DOI: 10.7150/thno.38553] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
Rationale: The formation of adipose-derived stem cells (ASCs) into spheres on a chitosan-coated microenvironment promoted ASCs differentiation into a mixed population of neural lineage-like cells (NLCs), but the underline mechanism is still unknown. Since the fibroblast growth factor 9 (FGF9) and fibroblast growth factor receptors (FGFRs) play as key regulators of neural cell fate during embryo development and stem cell differentiation, the current study aims to reveal the interplay of FGF9 and FGFRs for promoting peripheral nerve regeneration. Methods: Different concentration of FGF9 peptide (10, 25, 50, 100 ng/mL) were added during NLCs induction (FGF9-NLCs). The FGFR expressions and potential signaling were studied by gene and protein expressions as well as knocking down by specific FGFR siRNA or commercial inhibitors. FGF9-NLCs were fluorescent labeled and applied into a nerve conduit upon the injured sciatic nerves of experimental rats. Results: The FGFR2 and FGFR4 were significantly increased during NLCs induction. The FGF9 treated FGF9-NLCs spheres became smaller and changed into Schwann cells (SCs) which expressed S100β and GFAP. The specific silencing of FGFR2 diminished FGF9-induced Akt phosphorylation and inhibited the differentiation of SCs. Transplanted FGF9-NLCs participated in myelin sheath formation, enhanced axonal regrowth and promoted innervated muscle regeneration. The knockdown of FGFR2 in FGF9-NLCs led to the abolishment of nerve regeneration. Conclusions: Our data therefore demonstrate the importance of FGF9 in the determination of SC fate via the FGF9-FGFR2-Akt pathway and reveal the therapeutic benefit of FGF9-NLCs.
Collapse
|
22
|
Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing. Cell Res 2019; 29:881-894. [PMID: 31501518 PMCID: PMC6888893 DOI: 10.1038/s41422-019-0228-6] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Tracing the emergence of the first hematopoietic stem cells (HSCs) in human embryos, particularly the scarce and transient precursors thereof, is so far challenging, largely due to the technical limitations and the material rarity. Here, using single-cell RNA sequencing, we constructed the first genome-scale gene expression landscape covering the entire course of endothelial-to-HSC transition during human embryogenesis. The transcriptomically defined HSC-primed hemogenic endothelial cells (HECs) were captured at Carnegie stage (CS) 12–14 in an unbiased way, showing an unambiguous feature of arterial endothelial cells (ECs) with the up-regulation of RUNX1, MYB and ANGPT1. Importantly, subcategorizing CD34+CD45− ECs into a CD44+ population strikingly enriched HECs by over 10-fold. We further mapped the developmental path from arterial ECs via HSC-primed HECs to hematopoietic stem progenitor cells, and revealed a distinct expression pattern of genes that were transiently over-represented upon the hemogenic fate choice of arterial ECs, including EMCN, PROCR and RUNX1T1. We also uncovered another temporally and molecularly distinct intra-embryonic HEC population, which was detected mainly at earlier CS 10 and lacked the arterial feature. Finally, we revealed the cellular components of the putative aortic niche and potential cellular interactions acting on the HSC-primed HECs. The cellular and molecular programs that underlie the generation of the first HSCs from HECs in human embryos, together with the ability to distinguish the HSC-primed HECs from others, will shed light on the strategies for the production of clinically useful HSCs from pluripotent stem cells.
Collapse
|
23
|
Schuh CMAP, Cuenca J, Alcayaga-Miranda F, Khoury M. Exosomes on the border of species and kingdom intercommunication. Transl Res 2019; 210:80-98. [PMID: 30998903 DOI: 10.1016/j.trsl.2019.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/19/2022]
Abstract
Over the last decades exosomes have become increasingly popular in the field of medicine. While until recently they were believed to be involved in the removal of obsolete particles from the cell, it is now known that exosomes are key players in cellular communication, carrying source-specific molecules such as proteins, growth factors, miRNA/mRNA, among others. The discovery that exosomes are not bound to intraspecies interactions, but are also capable of interkingdom communication, has once again revolutionized the field of exosomes research. A rapidly growing body of literature is shedding light at novel sources and participation of exosomes in physiological or regenerative processes, infection and disease. For the purpose of this review we have categorized 6 sources of interest (animal products, body fluids, plants, bacteria, fungus and parasites) and linked their innate roles to the clinics and potential medical applications, such as cell-based therapy, diagnostics or drug delivery.
Collapse
Affiliation(s)
- Christina M A P Schuh
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile; Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile; Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile.
| | - Jimena Cuenca
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile; Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Francisca Alcayaga-Miranda
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile; Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Maroun Khoury
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile; Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
| |
Collapse
|
24
|
Di YZ, Han BS, Di JM, Liu WY, Tang Q. Role of the brain-gut axis in gastrointestinal cancer. World J Clin Cases 2019; 7:1554-1570. [PMID: 31367615 PMCID: PMC6658366 DOI: 10.12998/wjcc.v7.i13.1554] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/04/2019] [Accepted: 05/02/2019] [Indexed: 02/05/2023] Open
Abstract
Several studies have largely focused on the significant role of the nervous and immune systems in the process of tumorigenesis, including tumor growth, proliferation, apoptosis, and metastasis. The brain-gut-axis is a new paradigm in neuroscience, which describes the biochemical signaling between the gastrointestinal (GI) tract and the central nervous system. This axis may play a critical role in the tumorigenesis and development of GI cancers. Mechanistically, the bidirectional signal transmission of the brain-gut-axis is complex and remains to be elucidated. In this article, we review the current findings concerning the relationship between the brain-gut axis and GI cancer cells, focusing on the significant role of the brain-gut axis in the processes of tumor proliferation, invasion, apoptosis, autophagy, and metastasis. It appears that the brain might modulate GI cancer by two pathways: the anatomical nerve pathway and the neuroendocrine route. The simulation and inactivation of the central nervous, sympathetic, and parasympathetic nervous systems, or changes in the innervation of the GI tract might contribute to a higher incidence of GI cancers. In addition, neurotransmitters and neurotrophic factors can produce stimulatory or inhibitory effects in the progression of GI cancers. Insights into these mechanisms may lead to the discovery of potential prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Yang-Zi Di
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Bo-Sheng Han
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 443000, Hubei Province, China
| | - Jun-Mao Di
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Wei-Yan Liu
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Qiang Tang
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| |
Collapse
|
25
|
Tocotrienol-Rich Fraction (TRF) Treatment Promotes Proliferation Capacity of Stress-Induced Premature Senescence Myoblasts and Modulates the Renewal of Satellite Cells: Microarray Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9141343. [PMID: 30774750 PMCID: PMC6350575 DOI: 10.1155/2019/9141343] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/18/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022]
Abstract
Human skeletal muscle is a vital organ involved in movement and force generation. It suffers from deterioration in mass, strength, and regenerative capacity in sarcopenia. Skeletal muscle satellite cells are involved in the regeneration process in response to muscle loss. Tocotrienol, an isomer of vitamin E, was reported to have a protective effect on cellular aging. This research is aimed at determining the modulation of tocotrienol-rich fraction (TRF) on the gene expressions of stress-induced premature senescence (SIPS) human skeletal muscle myoblasts (CHQ5B). CHQ5B cells were divided into three groups, i.e., untreated young control, SIPS control (treated with 1 mM hydrogen peroxide), and TRF-posttreated groups (24 hours of 50 μg/mL TRF treatment after SIPS induction). The differential gene expressions were assessed using microarray, GSEA, and KEGG pathway analysis. Results showed that TRF treatment significantly regulated the gene expressions, i.e., p53 (RRM2B, SESN1), ErbB (EREG, SHC1, and SHC3), and FoxO (MSTN, SMAD3) signalling pathways in the SIPS myoblasts compared to the SIPS control group (p < 0.05). TRF treatment modulated the proliferation capacity of SIPS myoblasts through regulation of ErbB (upregulation of expression of EREG, SHC1, and SHC3) and FoxO (downregulation of expression of MSTN and SMAD3) and maintaining the renewal of satellite cells through p53 signalling (upregulation of RRM2B and SESN1), MRF, cell cycle, and Wnt signalling pathways.
Collapse
|
26
|
Shah S, Fourgeaud C, Derieux S, Mirshahi S, Contant G, Pimpie C, Lo Dico R, Soria J, Pocard M, Mirshahi M. The close relationship between heparanase and epithelial mesenchymal transition in gastric signet-ring cell adenocarcinoma. Oncotarget 2018; 9:33778-33787. [PMID: 30333909 PMCID: PMC6173471 DOI: 10.18632/oncotarget.26042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/16/2018] [Indexed: 01/30/2023] Open
Abstract
Heparanase (HPSE), a heparan sulfate-specific endo-β-D-glucuronidase, plays an important role in tumor cell metastasis through the degradation of extracellular matrix heparan sulfate proteoglycans. Suramin, a polysulfonated naphthylurea, is an inhibitor of HPSE with suramin analogues. Our objective was to analyze the HPSE involvement in gastric signet ring cell adenocarcinoma (SRCA) invasion. High expression of HPSE mRNA and protein was found in the tumor and in ascites of SRCA as well as in KATO-III cell line. Beside of collagen-I, growth factors (TGF-β1 and VEGF-A, except FGF-2) and epithelial mesenchymal transition (EMT) markers (Snail, Slug, Vimentin, α-SMA and Fibronectin, except E-cadherin) were found higher in main nodules of SRCA as compared to peritumoral sites. Among MDR proteins, MDR-1 and LRP (lung resistance protein) were highly expressed in tumor cells. The formation of 3D cell spheroids was found to be correlated with their origin (adherent or non-adherent KATO-III). After treatment of KATO-III cells with a HPSE inhibitor (suramin), cell proliferation and EMT-related markers, besides collagen-1 expression, were down regulated. In conclusion, in SRCA, HPSE via an autocrine secretion is involved in acquisition of mesenchymal phenotype and tumor cell malignancy. Therefore, HPSE could be an interesting pharmacological target for the treatment of SRCA.
Collapse
Affiliation(s)
- Shahid Shah
- Lariboisière Hospital, INSERM U965, Sorbonne University Paris Cité -Paris 7, 75010 Paris, France.,Present address: Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Caroline Fourgeaud
- Lariboisière Hospital, INSERM U965, Sorbonne University Paris Cité -Paris 7, 75010 Paris, France
| | - Simon Derieux
- Lariboisière Hospital, INSERM U965, Sorbonne University Paris Cité -Paris 7, 75010 Paris, France
| | - Shahsoltan Mirshahi
- Lariboisière Hospital, INSERM U965, Sorbonne University Paris Cité -Paris 7, 75010 Paris, France
| | | | - Cynthia Pimpie
- Lariboisière Hospital, INSERM U965, Sorbonne University Paris Cité -Paris 7, 75010 Paris, France
| | - Rea Lo Dico
- Lariboisière Hospital, INSERM U965, Sorbonne University Paris Cité -Paris 7, 75010 Paris, France
| | - Jeannette Soria
- Lariboisière Hospital, INSERM U965, Sorbonne University Paris Cité -Paris 7, 75010 Paris, France
| | - Marc Pocard
- Lariboisière Hospital, INSERM U965, Sorbonne University Paris Cité -Paris 7, 75010 Paris, France
| | - Massoud Mirshahi
- Lariboisière Hospital, INSERM U965, Sorbonne University Paris Cité -Paris 7, 75010 Paris, France
| |
Collapse
|
27
|
Schmidt L, Taiyab A, Melvin VS, Jones KL, Williams T. Increased FGF8 signaling promotes chondrogenic rather than osteogenic development in the embryonic skull. Dis Model Mech 2018; 11:dmm031526. [PMID: 29752281 PMCID: PMC6031357 DOI: 10.1242/dmm.031526] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
The bones of the cranial vault are formed directly from mesenchymal cells through intramembranous ossification rather than via a cartilage intermediate. Formation and growth of the skull bones involves the interaction of multiple cell-cell signaling pathways, with fibroblast growth factors (FGFs) and their receptors exerting a prominent influence. Mutations within the FGF signaling pathway are the most frequent cause of craniosynostosis, which is a common human craniofacial developmental abnormality characterized by the premature fusion of the cranial sutures. Here, we have developed new mouse models to investigate how different levels of increased FGF signaling can affect the formation of the calvarial bones and associated sutures. Whereas moderate Fgf8 overexpression resulted in delayed ossification followed by craniosynostosis of the coronal suture, higher Fgf8 levels promoted a loss of ossification and favored cartilage over bone formation across the skull. By contrast, endochondral bones were still able to form and ossify in the presence of increased levels of Fgf8, although the growth and mineralization of these bones were affected to varying extents. Expression analysis demonstrated that abnormal skull chondrogenesis was accompanied by changes in the genes required for Wnt signaling. Moreover, further analysis indicated that the pathology was associated with decreased Wnt signaling, as the reduction in ossification could be partially rescued by halving Axin2 gene dosage. Taken together, these findings indicate that mesenchymal cells of the skull are not fated to form bone, but can be forced into a chondrogenic fate through the manipulation of FGF8 signaling. These results have implications for evolution of the different methods of ossification as well as for therapeutic intervention in craniosynostosis.
Collapse
Affiliation(s)
- Linnea Schmidt
- Program of Reproductive Sciences and Integrated Physiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Aftab Taiyab
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vida Senkus Melvin
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA
| |
Collapse
|
28
|
Ikpegbu E, Basta L, Clements DN, Fleming R, Vincent TL, Buttle DJ, Pitsillides AA, Staines KA, Farquharson C. FGF-2 promotes osteocyte differentiation through increased E11/podoplanin expression. J Cell Physiol 2018; 233:5334-5347. [PMID: 29215722 PMCID: PMC5900964 DOI: 10.1002/jcp.26345] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/29/2017] [Indexed: 01/15/2023]
Abstract
E11/podoplanin is critical in the early stages of osteoblast‐to‐osteocyte transitions (osteocytogenesis), however, the upstream events which regulate E11 expression are unknown. The aim of this study was to examine the effects of FGF‐2 on E11‐mediated osteocytogenesis and to reveal the nature of the underlying signaling pathways regulating this process. Exposure of MC3T3 osteoblast‐like cells and murine primary osteoblasts to FGF‐2 (10 ng/ml) increased E11 mRNA and protein expression (p < 0.05) after 4, 6, and 24 hr. FGF‐2 induced changes in E11 expression were also accompanied by significant (p < 0.01) increases in Phex and Dmp1 (osteocyte markers) expression and decreases in Col1a1, Postn, Bglap, and Alpl (osteoblast markers) expression. Immunofluorescent microscopy revealed that FGF‐2 stimulated E11 expression, facilitated the translocation of E11 toward the cell membrane, and subsequently promoted the formation of osteocyte‐like dendrites in MC3T3 and primary osteoblasts. siRNA knock down of E11 expression achieved >70% reduction of basal E11 mRNA expression (p < 0.05) and effectively abrogated FGF‐2‐related changes in E11 expression and dendrite formation. FGF‐2 strongly activated the ERK signaling pathway in osteoblast‐like cells but inhibition of this pathway did not block the ability of FGF‐2 to enhance E11 expression or to promote acquisition of the osteocyte phenotype. The results of this study highlight a novel mechanism by which FGF‐2 can regulate osteoblast differentiation and osteocyte formation. Specifically, the data suggests that FGF‐2 promotes osteocytogenesis through increased E11 expression and further studies will identify if this regulatory pathway is essential for bone development and maintenance in health and disease.
Collapse
Affiliation(s)
- Ekele Ikpegbu
- Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, UK.,Michael Okpara University of Agriculture, Abia, Nigeria
| | - Lena Basta
- Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, UK
| | - Dylan N Clements
- Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, UK
| | - Robert Fleming
- Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, UK
| | - Tonia L Vincent
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - David J Buttle
- Department of Infection, Immunity & Cardiovascular Disease, The University of Sheffield Medical School, Sheffield, UK
| | | | | | - Colin Farquharson
- Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
29
|
Boregowda SV, Krishnappa V, Strivelli J, Haga CL, Booker CN, Phinney DG. Basal p53 expression is indispensable for mesenchymal stem cell integrity. Cell Death Differ 2018; 25:679-692. [PMID: 29311623 PMCID: PMC5883824 DOI: 10.1038/s41418-017-0004-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 08/31/2017] [Accepted: 09/27/2017] [Indexed: 01/10/2023] Open
Abstract
Marrow-resident mesenchymal stem cells (MSCs) serve as a functional component of the perivascular niche that regulates hematopoiesis. They also represent the main source of bone formed in adult bone marrow, and their bifurcation to osteoblast and adipocyte lineages plays a key role in skeletal homeostasis and aging. Although the tumor suppressor p53 also functions in bone organogenesis, homeostasis, and neoplasia, its role in MSCs remains poorly described. Herein, we examined the normal physiological role of p53 in primary MSCs cultured under physiologic oxygen levels. Using knockout mice and gene silencing we show that p53 inactivation downregulates expression of TWIST2, which normally restrains cellular differentiation to maintain wild-type MSCs in a multipotent state, depletes mitochondrial reactive oxygen species (ROS) levels, and suppresses ROS generation and PPARG gene and protein induction in response to adipogenic stimuli. Mechanistically, this loss of adipogenic potential skews MSCs toward an osteogenic fate, which is further potentiated by TWIST2 downregulation, resulting in highly augmented osteogenic differentiation. We also show that p53−/− MSCs are defective in supporting hematopoiesis as measured in standard colony assays because of decreased secretion of various cytokines including CXCL12 and CSF1. Lastly, we show that transient exposure of wild-type MSCs to 21% oxygen upregulates p53 protein expression, resulting in increased mitochondrial ROS production and enhanced adipogenic differentiation at the expense of osteogenesis, and that treatment of cells with FGF2 mitigates these effects by inducing TWIST2. Together, these findings indicate that basal p53 levels are necessary to maintain MSC bi-potency, and oxygen-induced increases in p53 expression modulate cell fate and survival decisions. Because of the critical function of basal p53 in MSCs, our findings question the use of p53 null cell lines as MSC surrogates, and also implicate dysfunctional MSC responses in the pathophysiology of p53-related skeletal disorders.
Collapse
Affiliation(s)
- Siddaraju V Boregowda
- Department of Molecular Medicine, The Scripps Research Institute - Scripps Florida, Jupiter, FL, 33458, USA
| | - Veena Krishnappa
- Department of Molecular Medicine, The Scripps Research Institute - Scripps Florida, Jupiter, FL, 33458, USA
| | - Jacqueline Strivelli
- Department of Molecular Medicine, The Scripps Research Institute - Scripps Florida, Jupiter, FL, 33458, USA
| | - Christopher L Haga
- Department of Molecular Medicine, The Scripps Research Institute - Scripps Florida, Jupiter, FL, 33458, USA
| | - Cori N Booker
- Department of Molecular Medicine, The Scripps Research Institute - Scripps Florida, Jupiter, FL, 33458, USA
| | - Donald G Phinney
- Department of Molecular Medicine, The Scripps Research Institute - Scripps Florida, Jupiter, FL, 33458, USA.
| |
Collapse
|
30
|
Mendes LF, Tam WL, Chai YC, Geris L, Luyten FP, Roberts SJ. Combinatorial Analysis of Growth Factors Reveals the Contribution of Bone Morphogenetic Proteins to Chondrogenic Differentiation of Human Periosteal Cells. Tissue Eng Part C Methods 2017; 22:473-86. [PMID: 27018617 DOI: 10.1089/ten.tec.2015.0436] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Successful application of cell-based strategies in cartilage and bone tissue engineering has been hampered by the lack of robust protocols to efficiently differentiate mesenchymal stem cells into the chondrogenic lineage. The development of chemically defined culture media supplemented with growth factors (GFs) has been proposed as a way to overcome this limitation. In this work, we applied a fractional design of experiment (DoE) strategy to screen the effect of multiple GFs (BMP2, BMP6, GDF5, TGF-β1, and FGF2) on chondrogenic differentiation of human periosteum-derived mesenchymal stem cells (hPDCs) in vitro. In a micromass culture (μMass) system, BMP2 had a positive effect on glycosaminoglycan deposition at day 7 (p < 0.001), which in combination with BMP6 synergistically enhanced cartilage-like tissue formation that displayed in vitro mineralization capacity at day 14 (p < 0.001). Gene expression of μMasses cultured for 7 days with a medium formulation supplemented with 100 ng/mL of BMP2 and BMP6 and a low concentration of GDF5, TGF-β1, and FGF2 showed increased expression of Sox9 (1.7-fold) and the matrix molecules aggrecan (7-fold increase) and COL2A1 (40-fold increase) compared to nonstimulated control μMasses. The DoE analysis indicated that in GF combinations, BMP2 was the strongest effector for chondrogenic differentiation of hPDCs. When transplanted ectopically in nude mice, the in vitro-differentiated μMasses showed maintenance of the cartilaginous phenotype after 4 weeks in vivo. This study indicates the power of using the DoE approach for the creation of new medium formulations for skeletal tissue engineering approaches.
Collapse
Affiliation(s)
- Luis Filipe Mendes
- 1 Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center , Katholieke Universiteit Leuven, Leuven, Belgium .,2 Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven , Leuven, Belgium
| | - Wai Long Tam
- 1 Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center , Katholieke Universiteit Leuven, Leuven, Belgium .,2 Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven , Leuven, Belgium
| | - Yoke Chin Chai
- 1 Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center , Katholieke Universiteit Leuven, Leuven, Belgium .,2 Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven , Leuven, Belgium
| | - Liesbet Geris
- 2 Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven , Leuven, Belgium .,3 Biomechanics Research Unit, University of Liege , Liege, Belgium .,4 Department of Mechanical Engineering, Biomechanics Section, Katholieke Universiteit Leuven, Heverlee, Belgium
| | - Frank P Luyten
- 1 Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center , Katholieke Universiteit Leuven, Leuven, Belgium .,2 Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven , Leuven, Belgium
| | - Scott J Roberts
- 1 Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center , Katholieke Universiteit Leuven, Leuven, Belgium .,2 Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven , Leuven, Belgium .,5 Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London , The Royal National Orthopaedic Hospital, London, United Kingdom
| |
Collapse
|
31
|
Boregowda SV, Booker CN, Phinney DG. Mesenchymal Stem Cells: The Moniker Fits the Science. Stem Cells 2017; 36:7-10. [PMID: 28960677 DOI: 10.1002/stem.2713] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/11/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) have gained widespread use in regenerative medicine due to their demonstrated efficacy in a broad range of experimental animal models of disease and their excellent safety profile in human clinical trials. Outcomes from these studies suggest that MSCs achieve therapeutic effects in vivo in nonhomologous applications predominantly by paracrine action. This paracrine-centric viewpoint has become widely entrenched in the field, and has spurred a campaign to rename MSCs as "medicinal signaling cells" to better reflect this mode of action. In this Commentary, we argue that the paracrine-centric viewpoint and proposed name change ignores a wealth of old and new data that unequivocally demonstrate the stem cell nature of MSCs, and also overlooks a large effort to exploit homologous applications of MSCs in human clinical trials. Furthermore, we offer evidence that a stem cell-centric viewpoint of MSCs provides a comprehensive understanding of MSC biology that encompasses their paracrine activity, and provides a better foundation to develop metrics that quantify the biological potency of MSC batches for both homologous and nonhomologous clinical applications. Stem Cells 2018;36:7-10.
Collapse
Affiliation(s)
- Siddaraju V Boregowda
- Department of Molecular Medicine, The Scripps Research Institute - Scripps Florida, Jupiter, Florida, USA
| | - Cori N Booker
- Department of Molecular Medicine, The Scripps Research Institute - Scripps Florida, Jupiter, Florida, USA
| | - Donald G Phinney
- Department of Molecular Medicine, The Scripps Research Institute - Scripps Florida, Jupiter, Florida, USA
| |
Collapse
|
32
|
Xu R, Zhao H, Muhammad H, Dong M, Besenbacher F, Chen M. Dual-delivery of FGF-2/CTGF from Silk Fibroin/PLCL-PEO Coaxial Fibers Enhances MSC Proliferation and Fibrogenesis. Sci Rep 2017; 7:8509. [PMID: 28819120 PMCID: PMC5561253 DOI: 10.1038/s41598-017-08226-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/10/2017] [Indexed: 02/04/2023] Open
Abstract
The success of mesenchymal stem cell transplantation is highly dependent on their survival and controlled fate regulation. This study demonstrates that dual-delivery of connective tissue growth factor (CTGF) and fibroblast growth factor 2 (FGF-2) from a core-shell fiber of Silk Fibroin/poly(L-lactic acid-co-ε-caprolactone)-polyethylene oxide (SF/PLCL-PEO) enhanced fibrogenic lineage differentiation of MSCs. The core-shell structure was confirmed by transmission electron microscopy (TEM), fluorescence microscopy and attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy. A sequential release of FGF-2 and CTGF was successfully achieved in this manner. FGF-2 plays an important role in stem cell proliferation and, meanwhile when accompanied with CTGF, has a slightly additive effect on fibrogenic differentiation of MSCs, whereas CTGF promotes fibrogenesis and alleviates osteogenesis, chondrogenesis and adipogenesis.
Collapse
Affiliation(s)
- Ruodan Xu
- Department of Engineering, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Huiling Zhao
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus C, Denmark
| | - Hanif Muhammad
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus C, Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus C, Denmark
| | - Flemming Besenbacher
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus C, Denmark
| | - Menglin Chen
- Department of Engineering, Aarhus University, DK-8000, Aarhus C, Denmark. .,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
33
|
Hyun SY, Lee JH, Kang KJ, Jang YJ. Effect of FGF-2, TGF-β-1, and BMPs on Teno/Ligamentogenesis and Osteo/Cementogenesis of Human Periodontal Ligament Stem Cells. Mol Cells 2017; 40:550-557. [PMID: 28835018 PMCID: PMC5582301 DOI: 10.14348/molcells.2017.0019] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/04/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022] Open
Abstract
The periodontal ligament (PDL) is the connective tissue between tooth root and alveolar bone containing mesenchymal stem cells (MSC). It has been suggested that human periodontal ligament stem cells (hPDLSCs) differentiate into osteo/cementoblast and ligament progenitor cells. The periodontitis is a representative oral disease where the PDL tissue is collapsed, and regeneration of this tissue is important in periodontitis therapy. Fibroblast growth factor-2 (FGF-2) stimulates proliferation and differentiation of fibroblastic MSCs into various cell lineages. We evaluated the dose efficacy of FGF-2 for cytodifferentiation of hPDLSCs into ligament progenitor. The fibrous morphology was highly stimulated even at low FGF-2 concentrations, and the expression of teno/ligamentogenic markers, scleraxis and tenomodulin in hPDLSCs increased in a dose dependent manner of FGF-2. In contrast, expression of the osteo/cementogenic markers decreased, suggesting that FGF-2 might induce and maintain the ligamentogenic potential of hPDLSCs. Although the stimulation of tenocytic maturation by TGF-β1 was diminished by FGF-2, the inhibition of the expression of early ligamentogenic marker by TGF-β1 was redeemed by FGF-2 treatment. The stimulating effect of BMPs on osteo/cementogenesis was apparently suppressed by FGF-2. These results indicate that FGF-2 predominantly differentiates the hPDLSCs into teno/ligamentogenesis, and has an antagonistic effect on the hard tissue differentiation induced by BMP-2 and BMP-4.
Collapse
Affiliation(s)
- Sun-Yi Hyun
- Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116,
Korea
| | - Ji-Hye Lee
- Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116,
Korea
| | - Kyung-Jung Kang
- Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116,
Korea
| | - Young-Joo Jang
- Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116,
Korea
| |
Collapse
|
34
|
Boregowda SV, Ghoshal S, Booker CN, Krishnappa V, Chakraborty A, Phinney DG. IP6K1 Reduces Mesenchymal Stem/Stromal Cell Fitness and Potentiates High Fat Diet-Induced Skeletal Involution. Stem Cells 2017; 35:1973-1983. [PMID: 28577302 PMCID: PMC5533188 DOI: 10.1002/stem.2645] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/27/2017] [Accepted: 05/12/2017] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) are the predominant source of bone and adipose tissue in adult bone marrow and play a critical role in skeletal homeostasis. Age‐induced changes in bone marrow favor adipogenesis over osteogenesis leading to skeletal involution and increased marrow adiposity so pathways that prevent MSC aging are potential therapeutic targets for treating age‐related bone diseases. Here, we show that inositol hexakisphosphate kinase 1 (Ip6k1) deletion in mice increases MSC yields from marrow and enhances cell growth and survival ex vivo. In response to the appropriate stimuli, Ip6k1−/− versus Ip6k1+/+ MSCs also exhibit enhanced osteogenesis and hematopoiesis‐supporting activity and reduced adipogenic differentiation. Mechanistic‐based studies revealed that Ip6k1−/− MSCs express higher MDM2 and lower p53 protein levels resulting in lower intrinsic mitochondrial reactive oxygen species (ROS) levels as compared to Ip6k1+/+ MSCs, but both populations upregulate mitochondrial ROS to similar extents in response to oxygen‐induced stress. Finally, we show that mice fed a high fat diet exhibit reduced trabecular bone volume, and that pharmacological inhibition of IP6K1 using a pan‐IP6K inhibitor largely reversed this phenotype while increasing MSC yields from bone marrow. Together, these findings reveal an important role for IP6K1 in regulating MSC fitness and differentiation fate. Unlike therapeutic interventions that target peroxisome proliferator‐activated receptor gamma and leptin receptor activity, which yield detrimental side effects including increased fracture risk and altered feeding behavior, respectively, inhibition of IP6K1 maintains insulin sensitivity and prevents obesity while preserving bone integrity. Therefore, IP6K1 inhibitors may represent more effective insulin sensitizers due to their bone sparing properties. Stem Cells2017;35:1973–1983
Collapse
Affiliation(s)
- Siddaraju V Boregowda
- Department of Molecular Medicine, The Scripps Research Institute-Scripps Florida, Jupiter, Florida, USA
| | - Sarbani Ghoshal
- Department of Molecular Medicine, The Scripps Research Institute-Scripps Florida, Jupiter, Florida, USA
| | - Cori N Booker
- Department of Molecular Medicine, The Scripps Research Institute-Scripps Florida, Jupiter, Florida, USA
| | - Veena Krishnappa
- Department of Molecular Medicine, The Scripps Research Institute-Scripps Florida, Jupiter, Florida, USA
| | - Anutosh Chakraborty
- Department of Molecular Medicine, The Scripps Research Institute-Scripps Florida, Jupiter, Florida, USA
| | - Donald G Phinney
- Department of Molecular Medicine, The Scripps Research Institute-Scripps Florida, Jupiter, Florida, USA
| |
Collapse
|
35
|
Belz GT, Almeida FF. Unusual suspects: dancing with stromal cells. Nat Immunol 2017; 18:601-602. [PMID: 28518158 DOI: 10.1038/ni.3741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia, and the Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Francisca F Almeida
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia, and the Department of Medical Biology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
36
|
Song JS, Takimoto K, Jeon M, Vadakekalam J, Ruparel NB, Diogenes A. Decellularized Human Dental Pulp as a Scaffold for Regenerative Endodontics. J Dent Res 2017; 96:640-646. [PMID: 28196330 DOI: 10.1177/0022034517693606] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Teeth undergo postnatal organogenesis relatively late in life and only complete full maturation a few years after the crown first erupts in the oral cavity. At this stage, development can be arrested if the tooth organ is damaged by either trauma or caries. Regenerative endodontic procedures (REPs) are a treatment alternative to conventional root canal treatment for immature teeth. These procedures rely on the transfer of apically positioned stem cells, including stem cells of the apical papilla (SCAP), into the root canal system. Although clinical success has been reported for these procedures, the predictability of expected outcomes and the organization of the newly formed tissues are affected by the lack of an available suitable scaffold that mimics the complexity of the dental pulp extracellular matrix (ECM). In this study, we evaluated 3 methods of decellularization of human dental pulp to be used as a potential autograft scaffold. Tooth slices of human healthy extracted third molars were decellularized by 3 different methods. One of the methods generated the maximum observed decellularization with minimal impact on the ECM composition and organization. Furthermore, recellularization of the scaffold supported the proliferation of SCAP throughout the scaffold with differentiation into odontoblast-like cells near the dentinal walls. Thus, this study reports that human dental pulp from healthy extracted teeth can be successfully decellularized, and the resulting scaffold supports the proliferation and differentiation of SCAP. The future application of this form of an autograft in REPs can fulfill a yet unmet need for a suitable scaffold, potentially improving clinical outcomes and ultimately promoting the survival and function of teeth with otherwise poor prognosis.
Collapse
Affiliation(s)
- J S Song
- 1 Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,2 Department of Pediatric Dentistry, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - K Takimoto
- 1 Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - M Jeon
- 3 Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - J Vadakekalam
- 1 Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - N B Ruparel
- 1 Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - A Diogenes
- 1 Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
37
|
Bai T, Liu F, Zou F, Zhao G, Jiang Y, Liu L, Shi J, Hao D, Zhang Q, Zheng T, Zhang Y, Liu M, Li S, Qi L, Liu JY. Epidermal Growth Factor Induces Proliferation of Hair Follicle-Derived Mesenchymal Stem Cells Through Epidermal Growth Factor Receptor-Mediated Activation of ERK and AKT Signaling Pathways Associated with Upregulation of Cyclin D1 and Downregulation of p16. Stem Cells Dev 2016; 26:113-122. [PMID: 27702388 DOI: 10.1089/scd.2016.0234] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The maintenance of highly proliferative capacity and full differentiation potential is a necessary step in the initiation of stem cell-based regenerative medicine. Our recent study showed that epidermal growth factor (EGF) significantly enhanced hair follicle-derived mesenchymal stem cell (HF-MSC) proliferation while maintaining the multilineage differentiation potentials. However, the underlying mechanism remains unclear. Herein, we investigated the role of EGF in HF-MSC proliferation. HF-MSCs were isolated and cultured with or without EGF. Immunofluorescence staining, flow cytometry, cytochemistry, and western blotting were used to assess proliferation, cell signaling pathways related to the EGF receptor (EGFR), and cell cycle progression. HF-MSCs exhibited surface markers of mesenchymal stem cells and displayed trilineage differentiation potentials toward adipocytes, chondrocytes, and osteoblasts. EGF significantly increased HF-MSC proliferation as well as EGFR, ERK1/2, and AKT phosphorylation (p-EGFR, p-ERK1/2, and p-AKT) in a time- and dose-dependent manner, but not STAT3 phosphorylation. EGFR inhibitor (AG1478), PI3K-AKT inhibitor (LY294002), ERK inhibitor (U0126), and STAT3 inhibitor (STA-21) significantly blocked EGF-induced HF-MSC proliferation. Moreover, AG1478, LY294002, and U0126 significantly decreased p-EGFR, p-AKT, and p-ERK1/2 expression. EGF shifted HF-MSCs at the G1 phase to the S and G2 phase. Concomitantly, cyclinD1, phosphorylated Rb, and E2F1expression increased, while that of p16 decreased. In conclusion, EGF induces HF-MSC proliferation through the EGFR/ERK and AKT pathways, but not through STAT-3. The G1/S transition was stimulated by upregulation of cyclinD1 and inhibition of p16 expression.
Collapse
Affiliation(s)
- Tingting Bai
- 1 Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University , Changchun, China .,2 Department of Toxicology, School of Public Health, Jilin University , Changchun, China
| | - Feilin Liu
- 2 Department of Toxicology, School of Public Health, Jilin University , Changchun, China .,3 Department of Ophthalmology, Second Hospital of Jilin University , Changchun, China
| | - Fei Zou
- 2 Department of Toxicology, School of Public Health, Jilin University , Changchun, China .,4 Department of Pediatrics, First Hospital of Jilin University , Changchun, China
| | - Guifang Zhao
- 5 Department of Pathology, Jilin Medical College , Jilin, China
| | - Yixu Jiang
- 1 Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University , Changchun, China .,2 Department of Toxicology, School of Public Health, Jilin University , Changchun, China
| | - Li Liu
- 1 Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University , Changchun, China .,2 Department of Toxicology, School of Public Health, Jilin University , Changchun, China
| | - Jiahong Shi
- 2 Department of Toxicology, School of Public Health, Jilin University , Changchun, China
| | - Deshun Hao
- 1 Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University , Changchun, China .,2 Department of Toxicology, School of Public Health, Jilin University , Changchun, China
| | - Qi Zhang
- 2 Department of Toxicology, School of Public Health, Jilin University , Changchun, China
| | - Tong Zheng
- 2 Department of Toxicology, School of Public Health, Jilin University , Changchun, China
| | - Yingyao Zhang
- 2 Department of Toxicology, School of Public Health, Jilin University , Changchun, China
| | - Mingsheng Liu
- 2 Department of Toxicology, School of Public Health, Jilin University , Changchun, China
| | - Shilun Li
- 6 Department of Oncology, First People's Hospital of Lishu County , Lishu County, China
| | - Liangchen Qi
- 7 Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University , Changchun, China
| | - Jin Yu Liu
- 2 Department of Toxicology, School of Public Health, Jilin University , Changchun, China
| |
Collapse
|
38
|
Use of FGF-2 and FGF-18 to direct bone marrow stromal stem cells to chondrogenic and osteogenic lineages. Future Sci OA 2016; 2:FSO142. [PMID: 28116125 PMCID: PMC5242207 DOI: 10.4155/fsoa-2016-0034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/29/2016] [Indexed: 02/07/2023] Open
Abstract
Aim: Intervertebral disc degeneration/low back pain is the number one global musculoskeletal condition in terms of disability and socioeconomic impact. Materials & methods Multipotent mesenchymal stem cells (MSCs) were cultured in micromass pellets ± FGF-2 or -18 up to 41 days, matrix components were immunolocalized and gene expression monitored by quantitative-reverse transcription PCR. Results: Chondrogenesis occurred earlier in FGF-18 than FGF-2 cultures. Lower COL2A1, COL10A1 and ACAN expression by day 41 indicated a downregulation in chondrocyte hypertrophy. MEF2c, ALPL, were upregulated; calcium, decorin and biglycan, and 4C3 and 7D4 chondroitin sulphate sulfation motifs were evident in FGF-18 but not FGF-2 pellets. Conclusion: FGF-2 and -18 preconditioned MSCs produced cell lineages which promoted chondrogenesis and osteogenesis and may be useful in the production of MSC lineages suitable for repair of cartilaginous tissue defects. Intervertebral disc degeneration and low back pain is the number one global musculoskeletal disorder effecting 80% of the general population. A remedy for this condition is being eagerly sought as part of a WHO research priority. Stem cells are one potential therapy that shows promise in animal models, laboratory studies, and preclinical and early clinical trials. Conditioning of stem cells in the laboratory before injection may improve their efficacy for the alleviation of low back pain. In the present study we have developed a means of improving how stem cells form cartilage and bone, which should be of application in the repair of spinal defects.
Collapse
|
39
|
FGF2 Stimulates COUP-TFII Expression via the MEK1/2 Pathway to Inhibit Osteoblast Differentiation in C3H10T1/2 Cells. PLoS One 2016; 11:e0159234. [PMID: 27404388 PMCID: PMC4942136 DOI: 10.1371/journal.pone.0159234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/29/2016] [Indexed: 11/20/2022] Open
Abstract
Chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) is an orphan nuclear receptor that regulates many key biological processes, including organ development and cell fate determination. Although the biological functions of COUP-TFII have been studied extensively, little is known about what regulates its gene expression, especially the role of inducible extracellular factors in triggering it. Here we report that COUP-TFII expression is regulated specifically by fibroblast growth factor 2 (FGF2), which mediates activation of the MEK1/2 pathway in mesenchymal lineage C3H10T1/2 cells. Although FGF2 treatment increased cell proliferation, the induction of COUP-TFII expression was dispensable. Instead, FGF2-primed cells in which COUP-TFII expression was induced showed a low potential for osteoblast differentiation, as evidenced by decreases in alkaline phosphatase activity and osteogenic marker gene expression. Reducing COUP-TFII by U0126 or siRNA against COUP-TFII prevented the anti-osteogenic effect of FGF2, indicating that COUP-TFII plays a key role in the FGF2-mediated determination of osteoblast differentiation capability. This report is the first to suggest that FGF2 is an extracellular inducer of COUP-TFII expression and may suppress the osteogenic potential of mesenchymal cells by inducing COUP-TFII expression prior to the onset of osteogenic differentiation.
Collapse
|
40
|
Lee S, Park BJ, Kim JY, Jekarl D, Choi HY, Lee SY, Kim M, Kim Y, Park MS. The effect of fibroblast growth factor on distinct differentiation potential of cord blood-derived unrestricted somatic stem cells and Wharton's jelly-derived mesenchymal stem/stromal cells. Cytotherapy 2016; 17:1723-31. [PMID: 26589753 DOI: 10.1016/j.jcyt.2015.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/08/2015] [Accepted: 09/18/2015] [Indexed: 01/27/2023]
Abstract
BACKGROUND AIMS Perinatal tissues are considered an attractive source of mesenchymal stem/stromal cells (MSCs) and have unique characteristics depending on their origin. In this study, we compared the basic characteristics of unrestricted somatic stem cells isolated from cord blood (CB-USSCs) and MSCs isolated from Wharton's jelly of umbilical cords (WJ-MSCs). We also evaluated the effect of basic fibroblast growth factor (bFGF) supplementation on the growth and differentiation of these cells. METHODS CB-USSCs and WJ-MSCs were isolated from the same individual (n = 6), and their morphology, cell surface antigens, proliferation, expression of stemness markers and adipogenic, osteogenic and chondrogenic differentiation potentials were evaluated. Their morphology, proliferation and differentiation potentials were then also compared in the presence of bFGF supplementation (10 ng/mL). RESULTS Overall, CB-USSCs expressed DLK-1 and negative for all the HOX gene markers. The expression of cell surface antigen CD90, growth capacity and adipogenic differential potential of CB-USSCs were lower than those of WJ-MSCs. WJ-MSCs showed higher growth capacity, but the expression of CD73 and CD105 and their osteogenic differentiation potential were lower than those of CB-USSCs. The spindle morphology of both CB-USSCs and WJ-MSCs and the growth and adipogenic differentiation of CB-USSCs were improved by bFGF supplementation. However, the bFGF supplement did not have any positive effect on the tri-lineage differentiation potentials of WJ-MSCs. CONCLUSIONS CB-USSCs and WJ-MSCs each had distinct characteristics including different growth capacity, distinguishable cell surface markers and distinct adipogenic and osteogenic potentials. bFGF supplementation improved the growth capacity and adipogenic differentiation of CB-USSCs.
Collapse
Affiliation(s)
- Seungok Lee
- Department of Laboratory Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, South Korea; Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Byung-Joon Park
- Department of Obstetrics and Gynecology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, South Korea
| | - Ji Yeon Kim
- Department of Laboratory Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, South Korea
| | - DongWook Jekarl
- Department of Laboratory Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, South Korea; Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Yoo Choi
- Department of Laboratory Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, South Korea
| | - Seong Yeoun Lee
- Department of Laboratory Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, South Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| | - Yonggoo Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Moon-Seo Park
- Institute of Catholic Integrative Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, South Korea
| |
Collapse
|
41
|
Lee S, Shatadal S, Griep AE. Dlg-1 Interacts With and Regulates the Activities of Fibroblast Growth Factor Receptors and EphA2 in the Mouse Lens. Invest Ophthalmol Vis Sci 2016; 57:707-18. [PMID: 26906157 PMCID: PMC4771194 DOI: 10.1167/iovs.15-17727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE We previously showed that Discs large-1 (Dlg-1) regulates lens fiber cell structure and the fibroblast growth factor receptor (Fgfr) signaling pathway, a pathway required for fiber cell differentiation. Herein, we investigated the mechanism through which Dlg-1 regulates Fgfr signaling. METHODS Immunofluorescence was used to measure levels of Fgfr1, Fgfr2, and activated Fgfr signaling intermediates, pErk and pAkt, in control and Dlg-1-deficient lenses that were haplodeficient for Fgfr1 or Fgfr2. Immunoblotting was used to measure levels of N-cadherin, EphA2, β-catenin, and tyrosine-phosphorylated EphA2, Fgfr1, Fgfr2, and Fgfr3 in cytoskeletal-associated and cytosolic fractions of control and Dlg-1-deficient lenses. Complex formation between Dlg-1, N-cadherin, β-catenin, Fgfr1, Fgfr2, Fgfr3, and EphA2 was assessed by coimmunoprecipitation. RESULTS Lenses deficient for Dlg-1 and haplodeficient for Fgfr1 or Fgfr2 showed increased levels of Fgfr2 or Fgfr1, respectively. Levels of pErk and pAkt correlated with the level of Fgfr2. N-cadherin was reduced in the cytoskeletal-associated fraction and increased in the cytosolic fraction of Dlg-1-deficient lenses. Dlg-1 complexed with β-catenin, EphA2, Fgfr1, Fgfr2, and Fgfr3. EphA2 complexed with N-cadherin, β-catenin, Fgfr1, Fgfr2, and Fgfr3. Levels of these interactions were altered in Dlg-1-deficient lenses. Loss of Dlg-1 led to changes in Fgfr1, Fgfr2, Fgfr3, and EphA2 levels and to greater changes in the levels of their activation. CONCLUSIONS Dlg-1 complexes with and regulates the activities of EphA2, Fgfr1, Fgfr2, and Fgfr3. As EphA2 contains a Psd95/Dlg/ZO-1 (PDZ) binding motif, whereas Fgfrs do not, we propose that the PDZ protein, Dlg-1, modulates Fgfr signaling through regulation of EphA2.
Collapse
|
42
|
Kalomoiris S, Cicchetto AC, Lakatos K, Nolta JA, Fierro FA. Fibroblast Growth Factor 2 Regulates High Mobility Group A2 Expression in Human Bone Marrow-Derived Mesenchymal Stem Cells. J Cell Biochem 2016; 117:2128-37. [PMID: 26888666 DOI: 10.1002/jcb.25519] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/12/2016] [Indexed: 01/12/2023]
Abstract
Mesenchymal stem cells (MSCs) are an excellent source for numerous cellular therapies due to their simple isolation, low immunogenicity, multipotent differentiation potential and regenerative secretion profile. However, over-expanded MSCs show decreased therapeutic efficacy. This shortcoming may be circumvented by identifying methods that promote self-renewal of MSCs in culture. HMGA2 is a DNA-binding protein that regulates self-renewal in multiple types of stem cells through chromatin remodeling, but its impact on human bone marrow-derived MSCs is not known. Using an isolation method to obtain pure MSCs within 9 days in culture, we show that expression of HMGA2 quickly decreases during early expansion of MSCs, while let-7 microRNAs (which repress HMGA2) are simultaneously increased. Remarkably, we demonstrate that FGF-2, a growth factor commonly used to promote self-renewal in MSCs, rapidly induces HMGA2 expression in a time- and concentration-dependent manner. The signaling pathway involves FGF-2 receptor 1 (FGFR1) and ERK1/2, but acts independent from let-7. By silencing HMGA2 using shRNAs, we demonstrate that HMGA2 is necessary for MSC proliferation. However, we also show that over-expression of HMGA2 does not increase cell proliferation, but rather abrogates the mitogenic effect of FGF-2, possibly through inhibition of FGFR1. In addition, using different methods to assess in vitro differentiation, we show that modulation of HMGA2 inhibits adipogenesis, but does not affect osteogenesis of MSCs. Altogether, our results show that HMGA2 expression is associated with highly proliferating MSCs, is tightly regulated by FGF-2, and is involved in both proliferation and adipogenesis of MSCs. J. Cell. Biochem. 117: 2128-2137, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stefanos Kalomoiris
- Stem Cell Program, Department of Internal Medicine, University of California, Davis, California
| | - Andrew C Cicchetto
- Stem Cell Program, Department of Internal Medicine, University of California, Davis, California
| | - Kinga Lakatos
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Jan A Nolta
- Stem Cell Program, Department of Internal Medicine, University of California, Davis, California
| | - Fernando A Fierro
- Stem Cell Program, Department of Internal Medicine, University of California, Davis, California.,Department of Cell Biology and Human Anatomy, University of California, Davis, California
| |
Collapse
|
43
|
Blache U, Metzger S, Vallmajo-Martin Q, Martin I, Djonov V, Ehrbar M. Dual Role of Mesenchymal Stem Cells Allows for Microvascularized Bone Tissue-Like Environments in PEG Hydrogels. Adv Healthc Mater 2016; 5:489-98. [PMID: 26693678 DOI: 10.1002/adhm.201500795] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Indexed: 12/19/2022]
Abstract
In vitro engineered tissues which recapitulate functional and morphological properties of bone marrow and bone tissue will be desirable to study bone regeneration under fully controlled conditions. Among the key players in the initial phase of bone regeneration are mesenchymal stem cells (MSCs) and endothelial cells (ECs) that are in close contact in many tissues. Additionally, the generation of tissue constructs for in vivo transplantations has included the use of ECs since insufficient vascularization is one of the bottlenecks in (bone) tissue engineering. Here, 3D cocultures of human bone marrow derived MSCs (hBM-MSCs) and human umbilical vein endothelial cells (HUVECs) in synthetic biomimetic poly(ethylene glycol) (PEG)-based matrices are directed toward vascularized bone mimicking tissue constructs. In this environment, bone morphogenetic protein-2 (BMP-2) or fibroblast growth factor-2 (FGF-2) promotes the formation of vascular networks. However, while osteogenic differentiation is achieved with BMP-2, the treatment with FGF-2 suppressed osteogenic differentiation. Thus, this study shows that cocultures of hBM-MSCs and HUVECs in biological inert PEG matrices can be directed toward bone and bone marrow-like 3D tissue constructs.
Collapse
Affiliation(s)
- Ulrich Blache
- Department of Obstetrics, University and University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - Stéphanie Metzger
- Department of Obstetrics, University and University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - Queralt Vallmajo-Martin
- Department of Obstetrics, University and University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - Ivan Martin
- Department of Biomedicine and Department of Surgery, University Hospital Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012, Bern, Switzerland
| | - Martin Ehrbar
- Department of Obstetrics, University and University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| |
Collapse
|
44
|
Kim S, Ahn C, Bong N, Choe S, Lee DK. Biphasic effects of FGF2 on adipogenesis. PLoS One 2015; 10:e0120073. [PMID: 25790378 PMCID: PMC4366188 DOI: 10.1371/journal.pone.0120073] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 01/19/2015] [Indexed: 12/11/2022] Open
Abstract
Although stem cells from mice deficient of FGF2 have been reported to display enhanced capacity for adipogenesis, the literature using in vitro cell culture system has so far reported conflicting results on the role of FGF2 in adipogenesis. We here demonstrate that FGF2, depending on concentration, can function as either a positive or negative factor of in vitro adipogenesis by regulating activation of the ERK signaling pathway. FGF2 at concentrations lower than 2 ng/ml enhanced in vitro adipogenesis of human adipose-derived stem cells (hASCs). However, FGF2 at concentrations higher than 10 ng/ml was able to suppress adipogenesis by maintaining sustained phosphorylation of ERK and function as a dominant negative adipogenic factor toward BMP ligands. Expression levels of FGF2 in the fat tissues from high fat diet induced obese C57BL/6 mice were lower than those from normal chow diet mice, indicating that expression levels of FGF2 in the fat tissues might be in reverse correlation with the size of fat tissues. Our observation of concentration dependent biphasic effect as well as dominant negative effect of FGF2 on adipogenesis provides a mechanistic basis to understand roles of FGF2 in adipogenesis and development of fat tissues.
Collapse
Affiliation(s)
- Sooho Kim
- Laboratory of Genome to Drug Medicine, joint Center for Biosciences, Incheon, Korea
| | - Chihoon Ahn
- Laboratory of Synthetic Biology, joint Center for Biosciences, Incheon, Korea
| | - Naeun Bong
- Laboratory of Genome to Drug Medicine, joint Center for Biosciences, Incheon, Korea
| | - Senyon Choe
- Laboratory of Synthetic Biology, joint Center for Biosciences, Incheon, Korea
| | - Dong Kun Lee
- Laboratory of Genome to Drug Medicine, joint Center for Biosciences, Incheon, Korea
- * E-mail:
| |
Collapse
|
45
|
Huang W, Zang D, Lu Y, Jiang P. Basic fibroblast growth factor increases the number of endogenous neural stem cells and inhibits the expression of amino methyl isoxazole propionic acid receptors in amyotrophic lateral sclerosis mice. Neural Regen Res 2015; 7:761-5. [PMID: 25737699 PMCID: PMC4345658 DOI: 10.3969/j.issn.1673-5374.2012.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/24/2012] [Indexed: 01/23/2023] Open
Abstract
This study aimed to investigate the number of amino methyl isoxazole propionic acid (AMPA) receptors and production of endogenous neural stem cells in the SOD1G93AG1H transgenic mouse model of amyotrophic lateral sclerosis, at postnatal day 60 following administration of basic fibroblast growth factor (FGF-2). A radioligand binding assay and immunohistochemistry were used to estimate the number of AMPA receptors and endogenous neural stem cells respectively. Results showed that the number of AMPA receptors and endogenous neural stem cells in the brain stem and sensorimotor cortex were significantly increased, while motor function was significantly decreased at postnatal days 90 and 120. After administration of FGF-2 into mice, numbers of endogenous neural stem cells increased, while expression of AMPA receptors decreased, whilst motor functions were recovered. At postnatal day 120, the number of AMPA receptors was negatively correlated with the number of endogenous neural stem cells in model mice and FGF-2-treated mice. Our experimental findings indicate that FGF-2 can inhibit AMPA receptors and increase the number of endogenous neural stem cells, thus repairing neural injury in amyotrophic lateral sclerosis mice.
Collapse
Affiliation(s)
- Weihui Huang
- Department of Neurology, Tianjin First Center Hospital, Tianjin Medical University, Tianjin 300192, China
| | - Dawei Zang
- Department of Neurology, Tianjin First Center Hospital, Tianjin Medical University, Tianjin 300192, China
| | - Yi Lu
- Department of Neurology, Tianjin First Center Hospital, Tianjin Medical University, Tianjin 300192, China
| | - Ping Jiang
- Department of Neurology, Tianjin First Center Hospital, Tianjin Medical University, Tianjin 300192, China
| |
Collapse
|
46
|
Zhou X, Tao Y, Wang J, Liang C, Wang J, Li H, Chen Q. Roles of FGF-2 and TGF-beta/FGF-2 on differentiation of human mesenchymal stem cells towards nucleus pulposus-like phenotype. Growth Factors 2015; 33:23-30. [PMID: 25270389 DOI: 10.3109/08977194.2014.969420] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human mesenchymal stem cells (MSCs) are reported to have the capability of differentiating towards nucleus pulposus (NP)-like phenotype under specific culture conditions. So far, the effects of fibroblast growth factor (FGF)-2 and the cocktail effects of transforming growth factor (TGF)-beta and FGF-2 on MSCs remain unclear. Therefore, we designed this study to clarify these effects. MSCs were cultured in conditioned medium containing FGF-2 or TGF-beta/FGF-2, and compared with basal or TGF-beta medium. The groups with FGF-2 showed the increase of cell proliferation. Functional gene markers and novel NP markers decreased in FGF-2 group, together with functional protein expression. Pho-ERK1/2 and pho-Smad3 differed significantly in the two conditioned groups. All these results suggest FGF-2 promotes MSCs' proliferation, synergistically with TGF-beta. However, FGF-2 plays a negative role in cartilage homeostasis. We also demonstrate that FGF-2 has no positive effect in differentiating MSCs into NP-like cells, but hinders the acceleration effect of TGF-beta.
Collapse
Affiliation(s)
- Xiaopeng Zhou
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, Zhejiang , People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
47
|
Ynsa MD, Dang ZY, Manso-Silvan M, Song J, Azimi S, Wu JF, Liang HD, Torres-Costa V, Punzon-Quijorna E, Breese MBH, Garcia-Ruiz JP. Reprogramming hMSCs morphology with silicon/porous silicon geometric micro-patterns. Biomed Microdevices 2014; 16:229-36. [PMID: 24305875 DOI: 10.1007/s10544-013-9826-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Geometric micro-patterned surfaces of silicon combined with porous silicon (Si/PSi) have been manufactured to study the behaviour of human Mesenchymal Stem Cells (hMSCs). These micro-patterns consist of regular silicon hexagons surrounded by spaced columns of silicon equilateral triangles separated by PSi. The results show that, at an early culture stage, the hMSCs resemble quiescent cells on the central hexagons with centered nuclei and actin/β-catenin and a microtubules network denoting cell adhesion. After 2 days, hMSCs adapted their morphology and cytoskeleton proteins from cell-cell dominant interactions at the center of the hexagonal surface. This was followed by an intermediate zone with some external actin fibres/β-catenin interactions and an outer zone where the dominant interactions are cell-silicon. Cells move into silicon columns to divide, migrate and communicate. Furthermore, results show that Runx2 and vitamin D receptors, both specific transcription factors for skeleton-derived cells, are expressed in cells grown on micropatterned silicon under all observed circumstances. On the other hand, non-phenotypic alterations are under cell growth and migration on Si/PSi substrates. The former consideration strongly supports the use of micro-patterned silicon surfaces to address pending questions about the mechanisms of human bone biogenesis/pathogenesis and the study of bone scaffolds.
Collapse
Affiliation(s)
- M D Ynsa
- Department of Applied Physics, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Schuh CMAP, Heher P, Weihs AM, Banerjee A, Fuchs C, Gabriel C, Wolbank S, Mittermayr R, Redl H, Rünzler D, Teuschl AH. In vitro extracorporeal shock wave treatment enhances stemness and preserves multipotency of rat and human adipose-derived stem cells. Cytotherapy 2014; 16:1666-78. [DOI: 10.1016/j.jcyt.2014.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 12/11/2022]
|
49
|
Impact of ellagic acid in bone formation after tooth extraction: an experimental study on diabetic rats. ScientificWorldJournal 2014; 2014:908098. [PMID: 25485304 PMCID: PMC4251085 DOI: 10.1155/2014/908098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 08/05/2014] [Accepted: 08/26/2014] [Indexed: 01/10/2023] Open
Abstract
Objectives. To estimate the impact of ellagic acid (EA) towards healing tooth socket in diabetic animals, after tooth extraction. Methods. Twenty-four Sprague Dawley male rats weighing 250–300 g were selected for this study. All animals were intraperitoneally injected with 45 mg/kg (b.w.) of freshly prepared streptozotocin (STZ), to induce diabetic mellitus. Then, the animals were anesthetized, and the upper left central incisor was extracted and the whole extracted sockets were filled with Rosuvastatin (RSV). The rats were separated into three groups, comprising 8 rats each. The first group was considered as normal control group and orally treated with normal saline. The second group was regarded as diabetic control group and orally treated with normal saline, whereas the third group comprised diabetic rats, administrated with EA (50 mg/kg) orally. The maxilla tissue stained by eosin and hematoxylin (H&E) was used for histological examinations and immunohistochemical technique. Fibroblast growth factor (FGF-2) and alkaline phosphatase (ALP) were used to evaluate the healing process in the extracted tooth socket by immunohistochemistry test. Results. The reactions of immunohistochemistry for FGF-2 and ALP presented stronger expression, predominantly in EA treated diabetic rat, than the untreated diabetic rat. Conclusion. These findings suggest that the administration of EA combined with RSV may have accelerated the healing process of the tooth socket of diabetic rats, after tooth extraction.
Collapse
|
50
|
De Lisio M, Jensen T, Sukiennik RA, Huntsman HD, Boppart MD. Substrate and strain alter the muscle-derived mesenchymal stem cell secretome to promote myogenesis. Stem Cell Res Ther 2014; 5:74. [PMID: 24906706 PMCID: PMC4097833 DOI: 10.1186/scrt463] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) reside in a variety of tissues and provide a stromal role in regulating progenitor cell function. Current studies focus on identifying the specific factors in the niche that can alter the MSC secretome, ultimately determining the effectiveness and timing of tissue repair. The purpose of the present study was to evaluate the extent to which substrate and mechanical strain simultaneously regulate MSC quantity, gene expression, and secretome. METHODS MSCs (Sca-1+CD45-) isolated from murine skeletal muscle (muscle-derived MSCs, or mMSCs) via fluorescence-activated cell sorting were seeded onto laminin (LAM)- or collagen type 1 (COL)-coated membranes and exposed to a single bout of mechanical strain (10%, 1 Hz, 5 hours). RESULTS mMSC proliferation was not directly affected by substrate or strain; however, gene expression of growth and inflammatory factors and extracellular matrix (ECM) proteins was downregulated in mMSCs grown on COL in a manner independent of strain. Focal adhesion kinase (FAK) may be involved in substrate regulation of mMSC secretome as FAK phosphorylation was significantly elevated 24 hours post-strain in mMSCs plated on LAM but not COL (P <0.05). Conditioned media (CM) from mMSCs exposed to both LAM and strain increased myoblast quantity 5.6-fold 24 hours post-treatment compared with myoblasts treated with serum-free media (P <0.05). This response was delayed in myoblasts treated with CM from mMSCs grown on COL. CONCLUSIONS Here, we demonstrate that exposure to COL, the primary ECM component associated with tissue fibrosis, downregulates genes associated with growth and inflammation in mMSCs and delays the ability for mMSCs to stimulate myoblast proliferation.
Collapse
Affiliation(s)
- Michael De Lisio
- Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, 405 N. Mathews Avenue, MC-251, Urbana, IL 61801, USA
| | - Tor Jensen
- Division of Biomedical Sciences, University of Illinois, Urbana, IL, USA
| | - Richard A Sukiennik
- Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, 405 N. Mathews Avenue, MC-251, Urbana, IL 61801, USA
| | - Heather D Huntsman
- Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, 405 N. Mathews Avenue, MC-251, Urbana, IL 61801, USA
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, 405 N. Mathews Avenue, MC-251, Urbana, IL 61801, USA
| |
Collapse
|