1
|
Habeeb IF, Alao TE, Delgado D, Buffone A. When a negative (charge) is not a positive: sialylation and its role in cancer mechanics and progression. Front Oncol 2024; 14:1487306. [PMID: 39628991 PMCID: PMC11611868 DOI: 10.3389/fonc.2024.1487306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 12/06/2024] Open
Abstract
Sialic acids and sialoglycans are critical actors in cancer progression and metastasis. These terminal sugar residues on glycoproteins and glycolipids modulate key cellular processes such as immune evasion, cell adhesion, and migration. Aberrant sialylation is driven by overexpression of sialyltransferases, resulting in hypersialylation on cancer cell surfaces as well as enhancing tumor aggressiveness. Sialylated glycans alter the structure of the glycocalyx, a protective barrier that fosters cancer cell detachment, migration, and invasion. This bulky glycocalyx also increases membrane tension, promoting integrin clustering and downstream signaling pathways that drive cell proliferation and metastasis. They play a critical role in immune evasion by binding to Siglecs, inhibitory receptors on immune cells, which transmit signals that protect cancer cells from immune-mediated destruction. Targeting sialylation pathways presents a promising therapeutic opportunity to understand the complex roles of sialic acids and sialoglycans in cancer mechanics and progression, which is crucial for developing novel diagnostic and therapeutic strategies that can disrupt these processes and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Issa Funsho Habeeb
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Toheeb Eniola Alao
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Daniella Delgado
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Alexander Buffone
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
- Chemical and Materials Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| |
Collapse
|
2
|
Chen S, Hayoun-Neeman D, Nagar M, Pinyan S, Hadad L, Yaacobov L, Alon L, Shachar LE, Swissa T, Kryukov O, Gershoni-Yahalom O, Rosental B, Cohen S, Lichtenstein RG. Terminal α1,2-fucosylation of glycosphingolipids by FUT1 is a key regulator in early cell-fate decisions. EMBO Rep 2024; 25:4433-4464. [PMID: 39256596 PMCID: PMC11467398 DOI: 10.1038/s44319-024-00243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
The embryonic cell surface is rich in glycosphingolipids (GSLs), which change during differentiation. The reasons for GSL subgroup variation during early embryogenesis remain elusive. By combining genomic approaches, flow cytometry, confocal imaging, and transcriptomic data analysis, we discovered that α1,2-fucosylated GSLs control the differentiation of human pluripotent cells (hPCs) into germ layer tissues. Overexpression of α1,2-fucosylated GSLs disrupts hPC differentiation into mesodermal lineage and reduces differentiation into cardiomyocytes. Conversely, reducing α1,2-fucosylated groups promotes hPC differentiation and mesoderm commitment in response to external signals. We find that bone morphogenetic protein 4 (BMP4), a mesodermal gene inducer, suppresses α1,2-fucosylated GSL expression. Overexpression of α1,2-fucosylated GSLs impairs SMAD activation despite BMP4 presence, suggesting α-fucosyl end groups as BMP pathway regulators. Additionally, the absence of α1,2-fucosylated GSLs in early/late mesoderm and primitive streak stages in mouse embryos aligns with the hPC results. Thus, α1,2-fucosylated GSLs may regulate early cell-fate decisions and embryo development by modulating cell signaling.
Collapse
Affiliation(s)
- Saray Chen
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Dana Hayoun-Neeman
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Michal Nagar
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Sapir Pinyan
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Limor Hadad
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Liat Yaacobov
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Lilach Alon
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Liraz Efrat Shachar
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Tair Swissa
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Olga Kryukov
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Orly Gershoni-Yahalom
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Benyamin Rosental
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Smadar Cohen
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Rachel G Lichtenstein
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
| |
Collapse
|
3
|
Li W, Guo J, Hobson EC, Xue X, Li Q, Fu J, Deng CX, Guo Z. Metabolic-Glycoengineering-Enabled Molecularly Specific Acoustic Tweezing Cytometry for Targeted Mechanical Stimulation of Cell Surface Sialoglycans. Angew Chem Int Ed Engl 2024; 63:e202401921. [PMID: 38498603 PMCID: PMC11073901 DOI: 10.1002/anie.202401921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
In this study, we developed a novel type of dibenzocyclooctyne (DBCO)-functionalized microbubbles (MBs) and validated their attachment to azide-labelled sialoglycans on human pluripotent stem cells (hPSCs) generated by metabolic glycoengineering (MGE). This enabled the application of mechanical forces to sialoglycans on hPSCs through molecularly specific acoustic tweezing cytometry (mATC), that is, displacing sialoglycan-anchored MBs using ultrasound (US). It was shown that subjected to the acoustic radiation forces of US pulses, sialoglycan-anchored MBs exhibited significantly larger displacements and faster, more complete recovery after each pulse than integrin-anchored MBs, indicating that sialoglycans are more stretchable and elastic than integrins on hPSCs in response to mechanical force. Furthermore, stimulating sialoglycans on hPSCs using mATC reduced stage-specific embryonic antigen-3 (SSEA-3) and GD3 expression but not OCT4 and SOX2 nuclear localization. Conversely, stimulating integrins decreased OCT4 nuclear localization but not SSEA-3 and GD3 expression, suggesting that mechanically stimulating sialoglycans and integrins initiated distinctive mechanoresponses during the early stages of hPSC differentiation. Taken together, these results demonstrated that MGE-enabled mATC uncovered not only different mechanical properties of sialoglycans on hPSCs and integrins but also their different mechanoregulatory impacts on hPSC differentiation, validating MGE-based mATC as a new, powerful tool for investigating the roles of glycans and other cell surface biomolecules in mechanotransduction.
Collapse
Affiliation(s)
- Weiping Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Eric C. Hobson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qingjiang Li
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Jianping Fu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cheri X. Deng
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Mikhailov A, Sankai Y. Apoptosis in Postmortal Tissues of Goat Spinal Cords and Survival of Resident Neural Progenitors. Int J Mol Sci 2024; 25:4683. [PMID: 38731901 PMCID: PMC11083117 DOI: 10.3390/ijms25094683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/07/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Growing demand for therapeutic tissue repair recurrently focusses scientists' attention on critical assessment of postmortal collection of live cells, especially stem cells. Our study aimed to assess the survival of neuronal progenitors in postmortal spinal cord and their differentiation potential. Postmortal samples of spinal cords were obtained from human-sized animals (goats) at 6, 12, 24, 36, and 54 h after slaughter. Samples were studied by immunohistology, differentiation assay, Western blot and flow cytometry for the presence and location of GD2-positive neural progenitors and their susceptibility to cell death. TUNEL staining of the goat spinal cord samples over 6-54 h postmortem revealed no difference in the number of positive cells per cross-section. Many TUNEL-positive cells were located in the gray commissure around the central canal of the spinal cord; no increase in TUNEL-positive cells was recorded in either posterior or anterior horns of the gray matter where many GD2-positive neural progenitors can be found. The active caspase 3 amount as measured by Western blot at the same intervals was moderately increasing over time. Neuronal cells were enriched by magnetic separation with antibodies against CD24; among them, the GD2-positive neural progenitor subpopulation did not overlap with apoptotic cells having high pan-caspase activity. Apoptotic cell death events are relatively rare in postmortal spinal cords and are not increased in areas of the neural progenitor cell's location, within measured postmortal intervals, or among the CD24/GD2-positive cells. Data from our study suggest postmortal spinal cords as a valuable source for harvesting highly viable allogenic neural progenitor cells.
Collapse
Affiliation(s)
- Andrey Mikhailov
- Center for Cybernics Research, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Yoshiyuki Sankai
- Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba 305-8573, Japan;
| |
Collapse
|
5
|
Rossdam C, Brand S, Beimdiek J, Oberbeck A, Albers MD, Naujok O, Buettner FFR. Targeting the glycan epitope type I N-acetyllactosamine enables immunodepletion of human pluripotent stem cells from early differentiated cells. Glycobiology 2024; 34:cwae012. [PMID: 38349796 DOI: 10.1093/glycob/cwae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/15/2024] Open
Abstract
Cell surface biomarkers are fundamental for specific characterization of human pluripotent stem cells (hPSCs). Importantly, they can be applied for hPSC enrichment and/or purification but also to remove potentially teratoma-forming hPSCs from differentiated populations before clinical application. Several specific markers for hPSCs are glycoconjugates comprising the glycosphingolipid (GSL)-based glycans SSEA-3 and SSEA-4. We applied an analytical approach based on multiplexed capillary gel electrophoresis coupled to laser-induced fluorescence detection to quantitatively assess the GSL glycome of human embryonic stem cells and human induced pluripotent stem cells as well as during early stages of differentiation into mesoderm, endoderm, and ectoderm. Thereby, we identified the GSL lacto-N-tetraosylceramide (Lc4-Cer, Galβ1-3GlcNAcβ1-3Galβ1-4Glc-Cer), which comprises a terminal type 1 LacNAc (T1LN) structure (Galβ1-3GlcNAc), to be rapidly decreased upon onset of differentiation. Using a specific antibody, we could confirm a decline of T1LN-terminating glycans during the first four days of differentiation by live-cell staining and subsequent flow cytometry. We could further separate T1LN-positive and T1LN-negative cells out of a mixed population of pluripotent and differentiated cells by magnetic activated cell sorting. Notably, not only the T1LN-positive but also the T1LN-negative population was positive for SSEA-3, SSEA-4, and SSEA-5 while expression of nuclear pluripotency markers OCT4 and NANOG was highly reduced in the T1LN-negative population, exclusively. Our findings suggest T1LN as a pluripotent stem cell-specific glycan epitope that is more rapidly down-regulated upon differentiation than SSEA-3, SSEA-4, and SSEA-5.
Collapse
Affiliation(s)
- Charlotte Rossdam
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Smilla Brand
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Julia Beimdiek
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Astrid Oberbeck
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Marco Darius Albers
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Ortwin Naujok
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Falk F R Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
6
|
Lee H, Kim D, Youn B. Targeting Oncogenic Rewiring of Lipid Metabolism for Glioblastoma Treatment. Int J Mol Sci 2022; 23:ijms232213818. [PMID: 36430293 PMCID: PMC9698497 DOI: 10.3390/ijms232213818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant primary brain tumor. Despite increasing research on GBM treatment, the overall survival rate has not significantly improved over the last two decades. Although recent studies have focused on aberrant metabolism in GBM, there have been few advances in clinical application. Thus, it is important to understand the systemic metabolism to eradicate GBM. Together with the Warburg effect, lipid metabolism has emerged as necessary for GBM progression. GBM cells utilize lipid metabolism to acquire energy, membrane components, and signaling molecules for proliferation, survival, and response to the tumor microenvironment. In this review, we discuss fundamental cholesterol, fatty acid, and sphingolipid metabolism in the brain and the distinct metabolic alterations in GBM. In addition, we summarize various studies on the regulation of factors involved in lipid metabolism in GBM therapy. Focusing on the rewiring of lipid metabolism will be an alternative and effective therapeutic strategy for GBM treatment.
Collapse
Affiliation(s)
- Haksoo Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
| | - Dahye Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea
- Correspondence: ; Tel.: +82-51-510-2264
| |
Collapse
|
7
|
Glycosphingolipids in human embryonic stem cells and breast cancer stem cells, and potential cancer therapy strategies based on their structures and functions. Glycoconj J 2022; 39:177-195. [PMID: 35267131 DOI: 10.1007/s10719-021-10032-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/27/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022]
Abstract
Expression profiles of glycosphingolipids (GSLs) in human embryonic stem cell (hESC) lines and their differentiated embryoid body (EB) outgrowth cells, consisting of three germ layers, were surveyed systematically. Several globo- and lacto-series GSLs were identified in undifferentiated hESCs and during differentiation of hESCs to EB outgrowth cells, and core structure switching of these GSLs to gangliosides was observed. Such switching was attributable to altered expression of key glycosyltransferases (GTs) in GSL biosynthetic pathways, reflecting the unique stage-specific transitions and mechanisms characteristic of the differentiation process. Lineage-specific differentiation of hESCs was associated with further GSL alterations. During differentiation of undifferentiated hESCs to neural progenitor cells, core structure switching from globo- and lacto-series to primarily gangliosides (particularly GD3) was again observed. During differentiation to endodermal cells, alterations of GSL profiles were distinct from those in differentiation to EB outgrowth or neural progenitor cells, with high expression of Gb4Cer and low expression of stage-specific embryonic antigen (SSEA)-3, -4, or GD3 in endodermal cells. Again, such profile changes resulted from alterations of key GTs in GSL biosynthetic pathways. Novel glycan structures identified on hESCs and their differentiated counterparts presumably play functional roles in hESCs and related cancer or cancer stem cells, and will be useful as surface biomarkers. We also examined GSL expression profiles in breast cancer stem cells (CSCs), using a model of epithelial-mesenchymal transition (EMT)-induced human breast CSCs. We found that GD2 and GD3, together with their common upstream GTs, GD3 synthase (GD3S) and GD2/GM2 synthase, maintained stem cell phenotype in breast CSCs. Subsequent studies showed that GD3 was associated with epidermal growth factor receptor (EGFR), and activated EGFR signaling in breast CSCs and breast cancer cell lines. GD3S knockdown enhanced cytotoxicity of gefitinib (an EGFR kinase inhibitor) in resistant MDA-MB468 cells, both in vitro and in vivo. Our findings indicate that GD3S contributes to gefitinib resistance in EGFR-positive breast cancer cells, and is a potentially useful therapeutic target in drug-resistant breast cancers.
Collapse
|
8
|
Celi AB, Goldstein J, Rosato-Siri MV, Pinto A. Role of Globotriaosylceramide in Physiology and Pathology. Front Mol Biosci 2022; 9:813637. [PMID: 35372499 PMCID: PMC8967256 DOI: 10.3389/fmolb.2022.813637] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/21/2022] [Indexed: 12/14/2022] Open
Abstract
At first glance, the biological function of globoside (Gb) clusters appears to be that of glycosphingolipid (GSL) receptors for bacterial toxins that mediate host-pathogen interaction. Indeed, certain bacterial toxin families have been evolutionarily arranged so that they can enter eukaryotic cells through GSL receptors. A closer look reveals this molecular arrangement allocated on a variety of eukaryotic cell membranes, with its role revolving around physiological regulation and pathological processes. What makes Gb such a ubiquitous functional arrangement? Perhaps its peculiarity is underpinned by the molecular structure itself, the nature of Gb-bound ligands, or the intracellular trafficking unleashed by those ligands. Moreover, Gb biological conspicuousness may not lie on intrinsic properties or on its enzymatic synthesis/degradation pathways. The present review traverses these biological aspects, focusing mainly on globotriaosylceramide (Gb3), a GSL molecule present in cell membranes of distinct cell types, and proposes a wrap-up discussion with a phylogenetic view and the physiological and pathological functional alternatives.
Collapse
Affiliation(s)
- Ana Beatriz Celi
- Laboratorio de Neurofisiopatología, Instituto de Fisiología y Biofísica “Houssay”, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge Goldstein
- Laboratorio de Neurofisiopatología, Instituto de Fisiología y Biofísica “Houssay”, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Victoria Rosato-Siri
- Departamento de Física Médica/Instituto de Nanociencia y Nanotecnología, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Alipio Pinto
- Laboratorio de Neurofisiopatología, Instituto de Fisiología y Biofísica “Houssay”, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Alipio Pinto,
| |
Collapse
|
9
|
Tanosaki S, Tohyama S, Kishino Y, Fujita J, Fukuda K. Metabolism of human pluripotent stem cells and differentiated cells for regenerative therapy: a focus on cardiomyocytes. Inflamm Regen 2021; 41:5. [PMID: 33526069 PMCID: PMC7852150 DOI: 10.1186/s41232-021-00156-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/25/2021] [Indexed: 12/29/2022] Open
Abstract
Pluripotent stem cells (PSCs) exhibit promising application in regenerative therapy, drug discovery, and disease modeling. While several protocols for differentiating somatic cells from PSCs exist, their use is limited by contamination of residual undifferentiated PSCs and immaturity of differentiated somatic cells. The metabolism of PSCs differs greatly from that of somatic cells, and a distinct feature is required to sustain the distinct properties of PSCs. To date, several studies have reported on the importance of metabolism in PSCs and their derivative cells. Here, we detail advancements in the field, with a focus on cardiac regenerative therapy.
Collapse
Affiliation(s)
- Sho Tanosaki
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan.,Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan.
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Jun Fujita
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| |
Collapse
|
10
|
B3GALT5 knockout alters gycosphingolipid profile and facilitates transition to human naïve pluripotency. Proc Natl Acad Sci U S A 2020; 117:27435-27444. [PMID: 33087559 PMCID: PMC7959494 DOI: 10.1073/pnas.2003155117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
These studies provide systematically characterized glycosphingolipid (GSL) profiles and expression level of glycosyltransferase upon the conversion of human ESCs from primed to naïve state. We identify a switch of GSL profile from globo- and lacto-series to neolacto-series GSLs, accompanied by the downregulation of β-1,3-galactosyltransferase (B3GALT5) during the pluripotency transition. The CRISPR/Cas9-generated B3GALT5 knockout increases the level of intracellular Ca2+, resulting in an intermediate state of pluripotency, which facilitates the primed- to naïve-state transition in human ESCs. In addition, the altered GSL could be rescued through overexpression of B3GALT5. Thus, our results provide a new perspective in the understanding of human pluripotency transition from primed to naïve state, which can be facilitated by changing the expression of single glycosyltransferase, B3GALT5. Conversion of human pluripotent stem cells from primed to naïve state is accompanied by altered transcriptome and methylome, but glycosphingolipid (GSL) profiles in naïve human embryonic stem cells (hESCs) have not been systematically characterized. Here we showed a switch from globo-(SSEA-3, SSEA-4, and Globo H) and lacto-series (fucosyl-Lc4Cer) to neolacto-series GSLs (SSEA-1 and H type 2 antigen), along with marked down-regulation of β-1,3-galactosyltransferase (B3GALT5) upon conversion to naïve state. CRISPR/Cas9-generated B3GALT5-knockout (KO) hESCs displayed an altered GSL profile, increased cloning efficiency and intracellular Ca2+, reminiscent of the naïve state, while retaining differentiation ability. The altered GSLs could be rescued through overexpression of B3GALT5. B3GALT5-KO cells cultured with 2iLAF exhibited naïve-like transcriptome, global DNA hypomethylation, and X-chromosome reactivation. In addition, B3GALT5-KO rendered hESCs more resistant to calcium chelator in blocking entry into naïve state. Thus, loss of B3GALT5 induces a distinctive state of hESCs displaying unique GSL profiling with expression of neolacto-glycans, increased Ca2+, and conducive for transition to naïve pluripotency.
Collapse
|
11
|
Wong M, Xu G, Barboza M, Maezawa I, Jin LW, Zivkovic A, Lebrilla CB. Metabolic flux analysis of the neural cell glycocalyx reveals differential utilization of monosaccharides. Glycobiology 2020; 30:859-871. [PMID: 32337579 PMCID: PMC7581652 DOI: 10.1093/glycob/cwaa038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Saccharides in our diet are major sources of carbon for the formation of biomass such as proteins, lipids, nucleic acids and glycans. Among the dietary monosaccharides, glucose occupies a central role in metabolism, but human blood contains regulated levels of other monosaccharides as well. Their influence on metabolism and how they are utilized have not been explored thoroughly. Applying metabolic flux analysis on glycan synthesis can reveal the pathways that supply glycosylation precursors and provide a snapshot of the metabolic state of the cell. In this study, we traced the incorporation of six 13C uniformly labeled monosaccharides in the N-glycans, O-glycans and glycosphingolipids of both pluripotent and neural NTERA-2 cells. We gathered detailed isotopologue data for hundreds of glycoconjugates using mass spectrometry methods. The contributions of de novo synthesis and direct incorporation pathways for glucose, mannose, fructose, galactose, N-acetylglucosamine and fucose were determined based on their isotope incorporation. Co-feeding studies revealed that fructose incorporation is drastically decreased by the presence of glucose, while mannose and galactose were much less affected. Furthermore, increased sialylation slowed down the turnover of glycans, but fucosylation attenuated this effect. Our results demonstrated that exogenous monosaccharide utilization can vary markedly depending on the cell differentiation state and monosaccharide availability, and that the incorporation of carbons can also differ among different glycan structures. We contend that the analysis of metabolic isotope labeling of glycans can yield new insights about cell metabolism.
Collapse
Affiliation(s)
- Maurice Wong
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Gege Xu
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Mariana Barboza
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
- Department of Anatomy, Physiology & Cell Biology, University of California, Davis, Davis, CA 95616, USA
| | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA
| | - Angela Zivkovic
- Department of Nutrition, University of California, Davis, Davis, CA 95616, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
- Department of Anatomy, Physiology & Cell Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
12
|
Yu J, Hung JT, Wang SH, Cheng JY, Yu AL. Targeting glycosphingolipids for cancer immunotherapy. FEBS Lett 2020; 594:3602-3618. [PMID: 32860713 DOI: 10.1002/1873-3468.13917] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 11/07/2022]
Abstract
Aberrant expression of glycosphingolipids (GSLs) is a unique feature of cancer and stromal cells in tumor microenvironments. Although the impact of GSLs on tumor progression remains largely unclear, anticancer immunotherapies directed against GSLs are attracting growing attention. Here, we focus on GD2, a disialoganglioside expressed in tumors of neuroectodermal origin, and Globo H ceramide (GHCer), the most prevalent cancer-associated GSL overexpressed in a variety of epithelial cancers. We first summarize recent advances on our understanding of GD2 and GHCer biology and then discuss the clinical development of the first immunotherapeutic agent targeting a glycolipid, the GD2-specific antibody dinutuximab, its approved indications, and new strategies to improve its efficacy for neuroblastoma. Next, we review ongoing clinical trials on Globo H-targeted immunotherapeutics. We end with highlighting how these studies provide sound scientific rationales for targeting GSLs in cancer and may facilitate a rational design of new GSL-targeted anticancer therapeutics.
Collapse
Affiliation(s)
- John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Sheng-Hung Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Jing-Yan Cheng
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan.,Department of Pediatrics, University of California in San Diego, La Jolla, CA, USA
| |
Collapse
|
13
|
SSEA3 and Sialyl Lewis a Glycan Expression Is Controlled by B3GALT5 LTR through Lamin A-NFYA and SIRT1-STAT3 Signaling in Human ES Cells. Cells 2020; 9:cells9010177. [PMID: 31936807 PMCID: PMC7017369 DOI: 10.3390/cells9010177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 01/07/2023] Open
Abstract
B3GALT5 is involved in the synthesis of embryonic stem (ES) cell marker glycan, stage-specific embryonic antigen-3 (SSEA3). This gene has three native promoters and an integrated retroviral long terminal repeat (LTR) promoter. We found that B3GALT5-LTR is expressed at high levels in human ES cells. B3GALT5-LTR is also involved in the synthesis of the cancer-associated glycan, sialyl Lewis a. Sialyl Lewis a is expressed in ES cells and its expression decreases upon differentiation. Retinoic acid induced differentiation of ES cells, decreased the short form of NFYA (NFYAs), increased phosphorylation of STAT3, and decreased B3GALT5-LTR expression. NFYAs activated, and constitutively-active STAT3 (STAT3C) repressed B3GALT5-LTR promoter. The NFYAs and STAT3C effects were eliminated when their binding sites were deleted. Retinoic acid decreased the binding of NFYA to B3GALT5-LTR promoter and increased phospho-STAT3 binding. Lamin A repressed NFYAs and SSEA3 expression. SSEA3 repression mediated by a SIRT1 inhibitor was reversed by a STAT3 inhibitor. Repression of SSEA3 and sialyl Lewis a synthesis mediated by retinoic acid was partially reversed by lamin A short interfering RNA (siRNA) and a STAT3 inhibitor. In conclusion, B3GALT5-LTR is regulated by lamin A-NFYA and SIRT1-STAT3 signaling that regulates SSEA3 and sialyl Lewis a synthesis in ES cells, and sialyl Lewis a is also a ES cell marker.
Collapse
|
14
|
Tea MN, Poonnoose SI, Pitson SM. Targeting the Sphingolipid System as a Therapeutic Direction for Glioblastoma. Cancers (Basel) 2020; 12:cancers12010111. [PMID: 31906280 PMCID: PMC7017054 DOI: 10.3390/cancers12010111] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most commonly diagnosed malignant brain tumor in adults. The prognosis for patients with GBM remains poor and largely unchanged over the last 30 years, due to the limitations of existing therapies. Thus, new therapeutic approaches are desperately required. Sphingolipids are highly enriched in the brain, forming the structural components of cell membranes, and are major lipid constituents of the myelin sheaths of nerve axons, as well as playing critical roles in cell signaling. Indeed, a number of sphingolipids elicit a variety of cellular responses involved in the development and progression of GBM. Here, we discuss the role of sphingolipids in the pathobiology of GBM, and how targeting sphingolipid metabolism has emerged as a promising approach for the treatment of GBM.
Collapse
Affiliation(s)
- Melinda N. Tea
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia;
| | - Santosh I. Poonnoose
- Department of Neurosurgery, Flinders Medical Centre, Adelaide, SA 5042, Australia;
| | - Stuart M. Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia;
- Adelaide Medical School and School of Biological Sciences, University of Adelaide, SA 5001, Australia
- Correspondence: ; Tel.: +61-8-8302-7832; Fax: +61-8-8302-9246
| |
Collapse
|
15
|
Lin Y, Li Y, Zhu X, Huang Y, Li Y, Li M. Genetic Contexts Characterize Dynamic Histone Modification Patterns Among Cell Types. Interdiscip Sci 2019; 11:698-710. [PMID: 31165438 DOI: 10.1007/s12539-019-00338-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/18/2019] [Accepted: 05/27/2019] [Indexed: 11/29/2022]
Abstract
Histone modifications play critical roles in mammalian development, regulating chromatin structure and gene expression. Dynamic histone modifications among cell types have been shown to associate with changes in mammalian development. However, how to quantitatively measure the histone modification alterations and how histone modifications vary across cell types under different genetic contexts remain largely unexplored and whether these changes are related to the primary DNA sequence remains limited. Here, we employed an entropy-based method to measure histone modification alterations in six definite genomic regions across five cell types and identified lineage-specific histone modification genes. We observed that histone modification alterations prefer to enrich in 5'-UTR exons, and also in 3'-UTR exons and its downstream. Then we built a model to predict the histone modification patterns from the primary DNA sequence. We found that the frequencies of k-mer sequence compositions are predictive of histone modification patterns, suggesting that the primary DNA sequence correlated with the histone modification alterations among cell types. Additionally, the lineage-specific histone modification genes display a higher conservation and lower GC-content. Together, we performed a systematic analysis for histone modification alterations and demonstrated how to identify genomic region-specific elements of epigenetic and genetic regulation and histone modification patterns across different cell types.
Collapse
Affiliation(s)
- Yanmei Lin
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yan Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xingyong Zhu
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yuyao Huang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yizhou Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China. .,College of Cybersecurity, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
16
|
Russo D, Capolupo L, Loomba JS, Sticco L, D'Angelo G. Glycosphingolipid metabolism in cell fate specification. J Cell Sci 2018; 131:131/24/jcs219204. [PMID: 30559216 DOI: 10.1242/jcs.219204] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glycosphingolipids (GSLs) are ubiquitous components of eukaryotic plasma membranes that consist of a ceramide backbone linked to a glycan moiety. Both the ceramide and the glycan parts of GSLs display structural variations that result in a remarkable repertoire of diverse compounds. This diversity of GSLs is exploited during embryogenesis, when different GSLs are produced at specific developmental stages and along several differentiation trajectories. Importantly, plasma membrane receptors interact with GSLs to modify their activities. Consequently, two otherwise identical cells can respond differently to the same stimulus owing to their different GSL composition. The metabolic reprograming of GSLs is in fact a necessary part of developmental programs, as its impairment results in developmental failure or tissue-specific defects. Moreover, single-cell variability is emerging as a fundamental player in development: GSL composition displays cell-to-cell variability in syngeneic cell populations owing to the regulatory gene expression circuits involved in microenvironment adaptation and in differentiation. Here, we discuss how GSLs are synthesized and classified and review the role of GSLs in the establishment and maintenance of cell identity. We further highlight the existence of the regulatory circuits that modify GSL pathways and speculate how GSL heterogeneity might contribute to developmental patterning.
Collapse
Affiliation(s)
- Domenico Russo
- Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, Napoli, Italy
| | - Laura Capolupo
- Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, Napoli, Italy.,Institute of Bioengineering, Laboratory of Lipid Cell Biology, École polytechnique fédérale de Lausanne (EPFL) CH-1015 Lausanne, Switzerland
| | - Jaipreet Singh Loomba
- Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, Napoli, Italy.,Institute of Bioengineering, Laboratory of Lipid Cell Biology, École polytechnique fédérale de Lausanne (EPFL) CH-1015 Lausanne, Switzerland
| | - Lucia Sticco
- Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, Napoli, Italy
| | - Giovanni D'Angelo
- Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, Napoli, Italy .,Institute of Bioengineering, Laboratory of Lipid Cell Biology, École polytechnique fédérale de Lausanne (EPFL) CH-1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Säljö K, Barone A, Vizlin-Hodzic D, Johansson BR, Breimer ME, Funa K, Teneberg S. Comparison of the glycosphingolipids of human-induced pluripotent stem cells and human embryonic stem cells. Glycobiology 2018; 27:291-305. [PMID: 27932383 DOI: 10.1093/glycob/cww125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023] Open
Abstract
High expectations are held for human-induced pluripotent stem cells (hiPSC) since they are established from autologous tissues thus overcoming the risk of allogeneic immune rejection when used in regenerative medicine. However, little is known regarding the cell-surface carbohydrate antigen profile of hiPSC compared with human embryonic stem cells (hESC). Here, glycosphingolipids were isolated from an adipocyte-derived hiPSC line, and hiPSC and hESC glycosphingolipids were compared by concurrent characterization by binding assays with carbohydrate-recognizing ligands and mass spectrometry. A high similarity between the nonacid glycosphingolipids of hiPSC and hESC was found. The nonacid glycosphingolipids P1 pentaosylceramide, x2 pentaosylceramide and H type 1 heptaosylceramide, not previously described in human pluripotent stem cells (hPSC), were characterized in both hiPSC and hESC. The composition of acid glycosphingolipids differed, with increased levels of GM3 ganglioside, and reduced levels of GD1a/GD1b in hiPSC when compared with hESC. In addition, the hESC glycosphingolipids sulf-globopentaosylceramide and sialyl-globotetraosylceramide were lacking in hiPSC. Neural stem cells differentiating from hiPSC had a reduced expression of sialyl-lactotetra, whereas expression of the GD1a ganglioside was significantly increased. Thus, while sialyl-lactotetra is a marker of undifferentiated hPSC, GD1a is a novel marker of neural differentiation.
Collapse
Affiliation(s)
- Karin Säljö
- Institute of Clinical Sciences, Department of Surgery, S-41 345 Göteborg, Sweden
| | - Angela Barone
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Dzeneta Vizlin-Hodzic
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Bengt R Johansson
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Michael E Breimer
- Institute of Clinical Sciences, Department of Surgery, S-41 345 Göteborg, Sweden
| | - Keiko Funa
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Susann Teneberg
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
18
|
Russo D, Della Ragione F, Rizzo R, Sugiyama E, Scalabrì F, Hori K, Capasso S, Sticco L, Fioriniello S, De Gregorio R, Granata I, Guarracino MR, Maglione V, Johannes L, Bellenchi GC, Hoshino M, Setou M, D'Esposito M, Luini A, D'Angelo G. Glycosphingolipid metabolic reprogramming drives neural differentiation. EMBO J 2017; 37:embj.201797674. [PMID: 29282205 DOI: 10.15252/embj.201797674] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/17/2017] [Accepted: 11/24/2017] [Indexed: 01/13/2023] Open
Abstract
Neural development is accomplished by differentiation events leading to metabolic reprogramming. Glycosphingolipid metabolism is reprogrammed during neural development with a switch from globo- to ganglio-series glycosphingolipid production. Failure to execute this glycosphingolipid switch leads to neurodevelopmental disorders in humans, indicating that glycosphingolipids are key players in this process. Nevertheless, both the molecular mechanisms that control the glycosphingolipid switch and its function in neurodevelopment are poorly understood. Here, we describe a self-contained circuit that controls glycosphingolipid reprogramming and neural differentiation. We find that globo-series glycosphingolipids repress the epigenetic regulator of neuronal gene expression AUTS2. AUTS2 in turn binds and activates the promoter of the first and rate-limiting ganglioside-producing enzyme GM3 synthase, thus fostering the synthesis of gangliosides. By this mechanism, the globo-AUTS2 axis controls glycosphingolipid reprogramming and neural gene expression during neural differentiation, which involves this circuit in neurodevelopment and its defects in neuropathology.
Collapse
Affiliation(s)
- Domenico Russo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Floriana Della Ragione
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy.,IRCCS INM, Neuromed, Pozzilli, Italy
| | - Riccardo Rizzo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Eiji Sugiyama
- International Mass Imaging Center, Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | - Francesco Scalabrì
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy.,IRCCS INM, Neuromed, Pozzilli, Italy
| | - Kei Hori
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Serena Capasso
- Institute of Protein Biochemistry, National Research Council, Naples, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico-SDN, Naples, Italy
| | - Lucia Sticco
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | | | - Roberto De Gregorio
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Ilaria Granata
- High Performance Computing and Networking Institute, National Research Council, Naples, Italy
| | - Mario R Guarracino
- High Performance Computing and Networking Institute, National Research Council, Naples, Italy
| | | | - Ludger Johannes
- Chemical Biology of Membranes and Therapeutic Delivery Unit, Institut Curie, INSERM U 1143, CNRS, UMR 3666, PSL Research University, Paris Cedex 05, France
| | | | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Mitsutoshi Setou
- International Mass Imaging Center, Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | - Maurizio D'Esposito
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy.,IRCCS INM, Neuromed, Pozzilli, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico-SDN, Naples, Italy
| | - Giovanni D'Angelo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy .,Istituto di Ricovero e Cura a Carattere Scientifico-SDN, Naples, Italy
| |
Collapse
|
19
|
Breimer ME, Säljö K, Barone A, Teneberg S. Glycosphingolipids of human embryonic stem cells. Glycoconj J 2017; 34:713-723. [PMID: 27325407 PMCID: PMC5711972 DOI: 10.1007/s10719-016-9706-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/10/2016] [Accepted: 06/12/2016] [Indexed: 12/31/2022]
Abstract
The application of human stem cell technology offers theoretically a great potential to treat various human diseases. However, to achieve this goal a large number of scientific issues remain to be solved. Cell surface carbohydrate antigens are involved in a number of biomedical phenomena that are important in clinical applications of stem cells, such as cell differentiation and immune reactivity. Due to their cell surface localization, carbohydrate epitopes are ideally suited for characterization of human pluripotent stem cells. Amongst the most commonly used markers to identify human pluripotent stem cells are the globo-series glycosphingolipids SSEA-3 and SSEA-4. However, our knowledge regarding human pluripotent stem cell glycosphingolipid expression was until recently mainly based on immunological assays of intact cells due to the very limited amounts of cell material available. In recent years the knowledge regarding glycosphingolipids in human embryonic stem cells has been extended by biochemical studies, which is the focus of this review. In addition, the distribution of the human pluripotent stem cell glycosphingolipids in human tissues, and glycosphingolipid changes during human stem cell differentiation, are discussed.
Collapse
Affiliation(s)
- Michael E Breimer
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Karin Säljö
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Angela Barone
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy at University of Gothenburg, P.O. Box 440, S-405 30, Göteborg, Sweden
| | - Susann Teneberg
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy at University of Gothenburg, P.O. Box 440, S-405 30, Göteborg, Sweden.
| |
Collapse
|
20
|
Kuo HH, Lin RJ, Hung JT, Hsieh CB, Hung TH, Lo FY, Ho MY, Yeh CT, Huang YL, Yu J, Yu AL. High expression FUT1 and B3GALT5 is an independent predictor of postoperative recurrence and survival in hepatocellular carcinoma. Sci Rep 2017; 7:10750. [PMID: 28883415 PMCID: PMC5589766 DOI: 10.1038/s41598-017-11136-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023] Open
Abstract
Cancer may arise from dedifferentiation of mature cells or maturation-arrested stem cells. Previously we reported that definitive endoderm from which liver was derived, expressed Globo H, SSEA-3 and SSEA-4. In this study, we examined the expression of their biosynthetic enzymes, FUT1, FUT2, B3GALT5 and ST3GAL2, in 135 hepatocellular carcinoma (HCC) tissues by qRT-PCR. High expression of either FUT1 or B3GALT5 was significantly associated with advanced stages and poor outcome. Kaplan Meier survival analysis showed significantly shorter relapse-free survival (RFS) for those with high expression of either FUT1 or B3GALT5 (P = 0.024 and 0.001, respectively) and shorter overall survival (OS) for those with high expression of B3GALT5 (P = 0.017). Combination of FUT1 and B3GALT5 revealed that high expression of both genes had poorer RFS and OS than the others (P < 0.001). Moreover, multivariable Cox regression analysis identified the combination of B3GALT5 and FUT1 as an independent predictor for RFS (HR: 2.370, 95% CI: 1.505-3.731, P < 0.001) and OS (HR: 2.153, 95% CI: 1.188-3.902, P = 0.012) in HCC. In addition, the presence of Globo H, SSEA-3 and SSEA-4 in some HCC tissues and their absence in normal liver was established by immunohistochemistry staining and mass spectrometric analysis.
Collapse
Affiliation(s)
- Huan-Hsien Kuo
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Ruey-Jen Lin
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Chung-Bao Hsieh
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsai-Hsien Hung
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Fei-Yun Lo
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Ming-Yi Ho
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yen-Lin Huang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - John Yu
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan.
| | - Alice L Yu
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan.
- Department of Pediatrics, University of California in San Diego, San Diego, CA, USA.
| |
Collapse
|
21
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
22
|
Choo M, Tan HL, Ding V, Castangia R, Belgacem O, Liau B, Hartley-Tassell L, Haslam SM, Dell A, Choo A. Characterization of H type 1 and type 1 N-acetyllactosamine glycan epitopes on ovarian cancer specifically recognized by the anti-glycan monoclonal antibody mAb-A4. J Biol Chem 2017; 292:6163-6176. [PMID: 28167527 PMCID: PMC5391748 DOI: 10.1074/jbc.m116.768887] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/02/2017] [Indexed: 01/23/2023] Open
Abstract
Cancer-specific glycans of ovarian cancer are promising epitopes for targeting with monoclonal antibodies (mAb). Despite their potential, structural characterization of these glycan epitopes remains a significant challenge in mAb preclinical development. Our group generated the monoclonal antibody mAb-A4 against human embryonic stem cells (hESC), which also bound specifically to N-glycans present on 11 of 19 ovarian cancer (OC) and 8 of 14 breast cancer cell lines tested. Normal cell lines and tissue were unstained by mAb-A4. To characterize the N-linked glycan epitopes on OC cell lines targeted by mAb-A4, we used glycosidases, glycan microarray, siRNA, and advanced high sensitivity matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The mAb-A4 epitopes were found to be Fucα1-2Galβ1-3GlcNAcβ (H type 1) and Galβ1-3GlcNAcβ (type 1 LacNAc). These structures were found to be present on multiple proteins from hESC and OC. Importantly, endo-β-galactosidase coupled with MALDI-MS allowed these two epitopes, for the first time, to be directly identified on the polylactosamines of N-glycans of SKOV3, IGROV1, OV90, and OVCA433. Furthermore, siRNA knockdown of B3GALT5 expression in SKOV3 demonstrated that mAb-A4 binding was dependent on B3GALT5, providing orthogonal evidence of the epitopes' structures. The recognition of oncofetal H type 1 and type 1 LacNAc on OC by mAb-A4 is a novel and promising way to target OC and supports the theory that cancer can acquire stem-like phenotypes. We propose that the orthogonal framework used in this work could be the basis for advancing anti-glycan mAb characterization.
Collapse
Affiliation(s)
- Matthew Choo
- From the Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
- the Bioprocessing Technology Institute, Singapore 138668, Singapore
| | - Heng Liang Tan
- the Bioprocessing Technology Institute, Singapore 138668, Singapore
| | - Vanessa Ding
- the Bioprocessing Technology Institute, Singapore 138668, Singapore
| | | | | | - Brian Liau
- the Bioprocessing Technology Institute, Singapore 138668, Singapore
| | - Lauren Hartley-Tassell
- the Institute for Glycomics, Griffith University, Southport, Queensland 4215, Australia, and
| | - Stuart M Haslam
- From the Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Anne Dell
- From the Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom,
| | - Andre Choo
- the Bioprocessing Technology Institute, Singapore 138668, Singapore,
| |
Collapse
|
23
|
Glycosphingolipid-Protein Interaction in Signal Transduction. Int J Mol Sci 2016; 17:ijms17101732. [PMID: 27754465 PMCID: PMC5085762 DOI: 10.3390/ijms17101732] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 12/31/2022] Open
Abstract
Glycosphingolipids (GSLs) are a class of ceramide-based glycolipids essential for embryo development in mammals. The synthesis of specific GSLs depends on the expression of distinctive sets of GSL synthesizing enzymes that is tightly regulated during development. Several reports have described how cell surface receptors can be kept in a resting state or activate alternative signalling events as a consequence of their interaction with GSLs. Specific GSLs, indeed, interface with specific protein domains that are found in signalling molecules and which act as GSL sensors to modify signalling responses. The regulation exerted by GSLs on signal transduction is orthogonal to the ligand–receptor axis, as it usually does not directly interfere with the ligand binding to receptors. Due to their properties of adjustable production and orthogonal action on receptors, GSLs add a new dimension to the control of the signalling in development. GSLs can, indeed, dynamically influence progenitor cell response to morphogenetic stimuli, resulting in alternative differentiation fates. Here, we review the available literature on GSL–protein interactions and their effects on cell signalling and development.
Collapse
|
24
|
Yu AL, Hung JT, Ho MY, Yu J. Alterations of Glycosphingolipids in Embryonic Stem Cell Differentiation and Development of Glycan-Targeting Cancer Immunotherapy. Stem Cells Dev 2016; 25:1532-1548. [DOI: 10.1089/scd.2016.0138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alice L. Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Yi Ho
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
25
|
Glycosphingolipid dynamics in human embryonic stem cell and cancer: their characterization and biomedical implications. Glycoconj J 2016; 34:765-777. [PMID: 27549315 DOI: 10.1007/s10719-016-9715-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/09/2016] [Accepted: 07/13/2016] [Indexed: 01/16/2023]
Abstract
Glycosphingolipids (GSLs) are composed of complex glycans linked to sphingosines and various fatty acid chains. Antibodies against several GSLs designated as stage-specific embryonic antigens (SSEAs), have been widely used to characterize differentiation of embryonic stem (ES) cells. In view of the cross-reactivities of these antibodies with multiple glycans, a few laboratories have employed advanced mass spectrometry (MS) technologies to define the dynamic changes of surface GSLs upon ES differentiation. However, the amphiphilic nature and heterogeneity of GSLs make them difficult to decipher. In our studies, systematic survey of GSL expression profiles in human ES cells and differentiated derivatives was conducted, primarily with matrix-assisted laser desorption/ionization MS (MALDI-MS) and MS/MS analyses. In addition to the well-known ES-specific markers, SSEA-3 and SSEA-4, several previously undisclosed globo- and lacto-series GSLs, including Gb4Cer, Lc4Cer, fucosyl Lc4Cer, Globo H, and disialyl Gb5Cer were identified in the undifferentiated human ES and induced pluripotent stem cells. Furthermore, during differentiation to embryoid body outgrowth, the core structures of GSLs switched from globo- and lacto- to ganglio-series. Lineage-specific differentiation was also marked by alterations of specific GSLs. During differentiation into neural progenitors, core structures shifted to primarily ganglio-series dominated by GD3. GSL patterns shifted to prominent expression of Gb4Cer with little SSEA-3 and- 4 or GD3 during endodermal differentiation. Several issues relevant to MS analysis and novel GSLs in ES cells were discussed. Finally, unique GSL signatures in ES and cancer cells are exploited in glycan-targeted anti-cancer immunotherapy and their mechanistic investigations were discussed using anti-GD2 mAb and Globo H as examples.
Collapse
|
26
|
Teixeira V, Costa V. Unraveling the role of the Target of Rapamycin signaling in sphingolipid metabolism. Prog Lipid Res 2015; 61:109-33. [PMID: 26703187 DOI: 10.1016/j.plipres.2015.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023]
Abstract
Sphingolipids are important bioactive molecules that regulate basic aspects of cellular metabolism and physiology, including cell growth, adhesion, migration, senescence, apoptosis, endocytosis, and autophagy in yeast and higher eukaryotes. Since they have the ability to modulate the activation of several proteins and signaling pathways, variations in the relative levels of different sphingolipid species result in important changes in overall cellular functions and fate. Sphingolipid metabolism and their route of synthesis are highly conserved from yeast to mammalian cells. Studies using the budding yeast Saccharomyces cerevisiae have served in many ways to foster our understanding of sphingolipid dynamics and their role in the regulation of cellular processes. In the past decade, studies in S. cerevisiae have unraveled a functional association between the Target of Rapamycin (TOR) pathway and sphingolipids, showing that both TOR Complex 1 (TORC1) and TOR Complex 2 (TORC2) branches control temporal and spatial aspects of sphingolipid metabolism in response to physiological and environmental cues. In this review, we report recent findings in this emerging and exciting link between the TOR pathway and sphingolipids and implications in human health and disease.
Collapse
Affiliation(s)
- Vitor Teixeira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
27
|
Glycolipid dynamics in generation and differentiation of induced pluripotent stem cells. Sci Rep 2015; 5:14988. [PMID: 26477663 PMCID: PMC4609952 DOI: 10.1038/srep14988] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 09/07/2015] [Indexed: 12/25/2022] Open
Abstract
Glycosphingolipids (GSLs) are glycoconjugates that function as mediators of cell adhesion and modulators of signal transduction. Some well-defined markers of undifferentiated human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) are glycoconjugates, such as SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81. However, Comprehensive GSL profiles of hiPSCs have not yet been elucidated. The global images of GSLs from the parental cells, hiPSCs, and differentiated cells revealed that there are parental cell-independent specific glycolipids, including Globo H (fucosyl-Gb5Cer) and H type1 antigen (fucosyl-Lc4Cer) that are novel markers for undifferentiated hiPSCs. Interestingly, undifferentiated hiPSCs expressed H type 1 antigen, specific for blood type O, regardless of the cells’ genotypes. Thus, in this study, we defined the dynamics of GSL remodeling during reprogramming from parental cell sets to iPSC sets and thence to iPSC-neural cells.
Collapse
|
28
|
Gene Signature of Human Oral Mucosa Fibroblasts: Comparison with Dermal Fibroblasts and Induced Pluripotent Stem Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:121575. [PMID: 26339586 PMCID: PMC4538314 DOI: 10.1155/2015/121575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/03/2015] [Accepted: 04/10/2015] [Indexed: 01/27/2023]
Abstract
Oral mucosa is a useful material for regeneration therapy with the advantages of its accessibility and versatility regardless of age and gender. However, little is known about the molecular characteristics of oral mucosa. Here we report the first comparative profiles of the gene signatures of human oral mucosa fibroblasts (hOFs), human dermal fibroblasts (hDFs), and hOF-derived induced pluripotent stem cells (hOF-iPSCs), linking these with biological roles by functional annotation and pathway analyses. As a common feature of fibroblasts, both hOFs and hDFs expressed glycolipid metabolism-related genes at higher levels compared with hOF-iPSCs. Distinct characteristics of hOFs compared with hDFs included a high expression of glycoprotein genes, involved in signaling, extracellular matrix, membrane, and receptor proteins, besides a low expression of HOX genes, the hDFs-markers. The results of the pathway analyses indicated that tissue-reconstructive, proliferative, and signaling pathways are active, whereas senescence-related genes in p53 pathway are inactive in hOFs. Furthermore, more than half of hOF-specific genes were similarly expressed to those of hOF-iPSC genes and might be controlled by WNT signaling. Our findings demonstrated that hOFs have unique cellular characteristics in specificity and plasticity. These data may provide useful insight into application of oral fibroblasts for direct reprograming.
Collapse
|
29
|
Son MY, Kwak JE, Seol B, Lee DY, Jeon H, Cho YS. A novel human model of the neurodegenerative disease GM1 gangliosidosis using induced pluripotent stem cells demonstrates inflammasome activation. J Pathol 2015; 237:98-110. [PMID: 25925601 DOI: 10.1002/path.4551] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/16/2015] [Accepted: 04/17/2015] [Indexed: 12/22/2022]
Abstract
GM1 gangliosidosis (GM1) is an inherited neurodegenerative disorder caused by mutations in the lysosomal β-galactosidase (β-gal) gene. Insufficient β-gal activity leads to abnormal accumulation of GM1 gangliosides in tissues, particularly in the central nervous system, resulting in progressive neurodegeneration. Here, we report an in vitro human GM1 model, based on induced pluripotent stem cell (iPSC) technology. Neural progenitor cells differentiated from GM1 patient-derived iPSCs (GM1-NPCs) recapitulated the biochemical and molecular phenotypes of GM1, including defective β-gal activity and increased lysosomes. Importantly, the characterization of GM1-NPCs established that GM1 is significantly associated with the activation of inflammasomes, which play a critical role in the pathogenesis of various neurodegenerative diseases. Specific inflammasome inhibitors potently alleviated the disease-related phenotypes of GM1-NPCs in vitro and in vivo. Our data demonstrate that GM1-NPCs are a valuable in vitro human GM1 model and suggest that inflammasome activation is a novel target pathway for GM1 drug development.
Collapse
Affiliation(s)
- Mi-Young Son
- Stem Cell Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Jae Eun Kwak
- Stem Cell Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Binna Seol
- Stem Cell Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Da Yong Lee
- Stem Cell Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Hyejin Jeon
- Stem Cell Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yee Sook Cho
- Stem Cell Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
30
|
Kim JS, Hwang ST, Lee SH. Porous membrane culture method for expansion of human pluripotent stem cells. Methods Mol Biol 2015; 1212:65-72. [PMID: 25556655 DOI: 10.1007/7651_2014_174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
For the clinical application of human pluripotent stem cells (hPSCs), it is critical to develop novel culture techniques that completely exclude the use of animal feeder cells and enzyme treatments used in conventional hPSC culture systems. Here, we describe a novel culture method using a porous membrane that allows to maintain stable attachment and expansion of hPSCs, obviates the need for enzyme treatment, and also reduces feeder layer contamination.
Collapse
Affiliation(s)
- Jin-Su Kim
- Department of Biomedical Science, CHA University, CHA Bio Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, Republic of Korea
| | | | | |
Collapse
|
31
|
Barone A, Säljö K, Benktander J, Blomqvist M, Månsson JE, Johansson BR, Mölne J, Aspegren A, Björquist P, Breimer ME, Teneberg S. Sialyl-lactotetra, a novel cell surface marker of undifferentiated human pluripotent stem cells. J Biol Chem 2014; 289:18846-59. [PMID: 24841197 PMCID: PMC4081926 DOI: 10.1074/jbc.m114.568832] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cell surface glycoconjugates are used as markers for undifferentiated pluripotent stem cells. Here, antibody binding and mass spectrometry characterization of acid glycosphingolipids isolated from a large number (1 × 109 cells) of human embryonic stem cell (hESC) lines allowed identification of several novel acid glycosphingolipids, like the gangliosides sialyl-lactotetraosylceramide and sialyl-globotetraosylceramide, and the sulfated glycosphingolipids sulfatide, sulf-lactosylceramide, and sulf-globopentaosylceramide. A high cell surface expression of sialyl-lactotetra on hESC and human induced pluripotent stem cells (hiPSC) was demonstrated by flow cytometry, immunohistochemistry, and electron microscopy, whereas sulfated glycosphingolipids were only found in intracellular compartments. Immunohistochemistry showed distinct cell surface anti-sialyl-lactotetra staining on all seven hESC lines and three hiPSC lines analyzed, whereas no staining of hESC-derived hepatocyte-like or cardiomyocyte-like cells was obtained. Upon differentiation of hiPSC into hepatocyte-like cells, the sialyl-lactotetra epitope was rapidly down-regulated and not detectable after 14 days. These findings identify sialyl-lactotetra as a promising marker of undifferentiated human pluripotent stem cells.
Collapse
Affiliation(s)
- Angela Barone
- From the Institute of Clinical Sciences, Department of Surgery, S-41 345 Göteborg, Sweden
| | - Karin Säljö
- From the Institute of Clinical Sciences, Department of Surgery, S-41 345 Göteborg, Sweden
| | - John Benktander
- the Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, S-40530 Göteborg, Sweden
| | - Maria Blomqvist
- the Institute of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine, S-413 45 Göteborg, Sweden
| | - Jan-Eric Månsson
- the Institute of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine, S-413 45 Göteborg, Sweden
| | - Bengt R Johansson
- the Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, S-40530 Göteborg, Sweden
| | - Johan Mölne
- the Institute of Biomedicine, Department of Pathology, S-413 45 Göteborg, Sweden, and
| | - Anders Aspegren
- the Cellectis Stem Cells, Cellartis AB, S-413 46 Göteborg, Sweden
| | - Petter Björquist
- the Cellectis Stem Cells, Cellartis AB, S-413 46 Göteborg, Sweden
| | - Michael E Breimer
- From the Institute of Clinical Sciences, Department of Surgery, S-41 345 Göteborg, Sweden,
| | - Susann Teneberg
- the Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, S-40530 Göteborg, Sweden,
| |
Collapse
|
32
|
Alisson-Silva F, de Carvalho Rodrigues D, Vairo L, Asensi KD, Vasconcelos-dos-Santos A, Mantuano NR, Dias WB, Rondinelli E, Goldenberg RCDS, Urmenyi TP, Todeschini AR. Evidences for the involvement of cell surface glycans in stem cell pluripotency and differentiation. Glycobiology 2014; 24:458-68. [DOI: 10.1093/glycob/cwu012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
33
|
D'Angelo G, Capasso S, Sticco L, Russo D. Glycosphingolipids: synthesis and functions. FEBS J 2013; 280:6338-53. [PMID: 24165035 DOI: 10.1111/febs.12559] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 12/21/2022]
Abstract
Glycosphingolipids (GSLs) comprise a heterogeneous group of membrane lipids formed by a ceramide backbone covalently linked to a glycan moiety. Hundreds of different glycans can be linked to tens of different ceramide molecules, giving rise to an astonishing variety of structurally different compounds, each of which has the potential for a specific biological function. GSLs have been suggested to modulate membrane-protein function and to contribute to cell-cell communication. Although GSLs are dispensable for cellular life, they are indeed collectively required for the development of multicellular organisms, and are thus considered to be key molecules in 'cell sociology'. Consequently, the GSL make-up of individual cells is highly dynamic and is strictly linked to the cellular developmental and environmental state. In the present review, we discuss some of the available knowledge, open questions and future perspectives relating to the study of GSL biology.
Collapse
Affiliation(s)
- Giovanni D'Angelo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | | | | | | |
Collapse
|
34
|
Ohtake A, Daikoku S, Suzuki K, Ito Y, Kanie O. Analysis of the Cellular Dynamics of Fluorescently Tagged Glycosphingolipids by Using a Nanoliquid Chromatography–Tandem Mass Spectrometry Platform. Anal Chem 2013; 85:8475-82. [DOI: 10.1021/ac401632t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Atsuko Ohtake
- Japan Science and Technology Agency (JST), ERATO, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 Japan
- RIKEN,
Synthetic Cellular Chemistry Laboratory, 2-1 Hirosawa, Wako-shi, Saitama
351-0198 Japan
| | - Shusaku Daikoku
- Japan Science and Technology Agency (JST), ERATO, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 Japan
- RIKEN,
Synthetic Cellular Chemistry Laboratory, 2-1 Hirosawa, Wako-shi, Saitama
351-0198 Japan
| | - Katsuhiko Suzuki
- Japan Science and Technology Agency (JST), ERATO, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 Japan
- RIKEN,
Synthetic Cellular Chemistry Laboratory, 2-1 Hirosawa, Wako-shi, Saitama
351-0198 Japan
| | - Yukishige Ito
- Japan Science and Technology Agency (JST), ERATO, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 Japan
- RIKEN,
Synthetic Cellular Chemistry Laboratory, 2-1 Hirosawa, Wako-shi, Saitama
351-0198 Japan
| | - Osamu Kanie
- Japan Science and Technology Agency (JST), ERATO, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 Japan
- RIKEN,
Synthetic Cellular Chemistry Laboratory, 2-1 Hirosawa, Wako-shi, Saitama
351-0198 Japan
- Tokai University, Institute of Glycoscience, 4-1-1
Kitakaname, Hiratsuka-shi, Kanagawa 259-1292 Japan
| |
Collapse
|
35
|
hESC expansion and stemness are independent of connexin forty-three-mediated intercellular communication between hESCs and hASC feeder cells. PLoS One 2013; 8:e69175. [PMID: 23922689 PMCID: PMC3724839 DOI: 10.1371/journal.pone.0069175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 06/11/2013] [Indexed: 01/29/2023] Open
Abstract
Background Human embryonic stem cells (hESCs) are a promising and powerful source of cells for applications in regenerative medicine, tissue engineering, cell-based therapies, and drug discovery. Many researchers have employed conventional culture techniques using feeder cells to expand hESCs in significant numbers, although feeder-free culture techniques have recently been developed. In regard to stem cell expansion, gap junctional intercellular communication (GJIC) is thought to play an important role in hESC survival and differentiation. Indeed, it has been reported that hESC-hESC communication through connexin 43 (Cx43, one of the major gap junctional proteins) is crucial for the maintenance of hESC stemness during expansion. However, the role of GJIC between hESCs and feeder cells is unclear and has not yet been reported. Methodology/Principal Findings This study therefore examined whether a direct Cx43-mediated interaction between hESCs and human adipose-derived stem cells (hASCs) influences the maintenance of hESC stemness. Over 10 passages, hESCs cultured on a layer of Cx43-downregulated hASC feeder cells showed normal morphology, proliferation (colony growth), and stemness, as assessed by alkaline phosphatase (AP), OCT4 (POU5F1-Human gene Nomenclature Database), SOX2, and NANOG expression. Conclusions/Significance These results demonstrate that Cx43-mediated GJIC between hESCs and hASC feeder cells is not an important factor for the conservation of hESC stemness and expansion.
Collapse
|
36
|
Ruh H, Sandhoff R, Meyer B, Gretz N, Hopf C. Quantitative Characterization of Tissue Globotetraosylceramides in a Rat Model of Polycystic Kidney Disease by PrimaDrop Sample Preparation and Indirect High-Performance Thin Layer Chromatography–Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight-Mass Spectrometry with Automated Data Acquisition. Anal Chem 2013; 85:6233-40. [DOI: 10.1021/ac400931u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hermelindis Ruh
- Instrumental Analysis and Bioanalysis, Department of
Biotechnology, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim,
Germany
- Applied Research
Center in Biomedical
Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
- Institute of Medical Technology, University of Heidelberg and Mannheim University of Applied Sciences, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Medical Research Center, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Roger Sandhoff
- Applied Research
Center in Biomedical
Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
- Lipid Pathobiochemistry, German Cancer Research Center, Im Neuenheimer Feld
280, 69120 Heidelberg, Germany
| | - Björn Meyer
- Instrumental Analysis and Bioanalysis, Department of
Biotechnology, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim,
Germany
- Applied Research
Center in Biomedical
Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
- Institute of Medical Technology, University of Heidelberg and Mannheim University of Applied Sciences, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Norbert Gretz
- Applied Research
Center in Biomedical
Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
- Institute of Medical Technology, University of Heidelberg and Mannheim University of Applied Sciences, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Medical Research Center, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Carsten Hopf
- Instrumental Analysis and Bioanalysis, Department of
Biotechnology, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim,
Germany
- Applied Research
Center in Biomedical
Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
- Institute of Medical Technology, University of Heidelberg and Mannheim University of Applied Sciences, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
37
|
Liang YJ, Ding Y, Levery SB, Lobaton M, Handa K, Hakomori SI. Differential expression profiles of glycosphingolipids in human breast cancer stem cells vs. cancer non-stem cells. Proc Natl Acad Sci U S A 2013; 110:4968-73. [PMID: 23479608 PMCID: PMC3612608 DOI: 10.1073/pnas.1302825110] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Previous studies demonstrated that certain glycosphingolipids (GSLs) are involved in various cell functions, such as cell growth and motility. Recent studies showed changes in GSL expression during differentiation of human embryonic stem cells; however, little is known about expression profiles of GSLs in cancer stem cells (CSCs). CSCs are a small subpopulation in cancer and are proposed as cancer-initiating cells, have been shown to be resistant to numerous chemotherapies, and may cause cancer recurrence. Here, we analyzed GSLs expressed in human breast CSCs by applying a CSC model induced through epithelial-mesenchymal transition, using mass spectrometry, TLC immunostaining, and cell staining. We found that (i) Fuc-(n)Lc4Cer and Gb3Cer were drastically reduced in CSCs, whereas GD2, GD3, GM2, and GD1a were greatly increased in CSCs; (ii) among various glycosyltransferases tested, mRNA levels for ST3GAL5, B4GALNT1, ST8SIA1, and ST3GAL2 were increased in CSCs, which could explain the increased expression of GD3, GD2, GM2, and GD1a in CSCs; (iii) the majority of GD2+ cells and GD3+ cells were detected in the CD44(hi)/CD24(lo) cell population; and (iv) knockdown of ST8SIA1 and B4GALNT1 significantly reduced the expression of GD2 and GD3 and caused a phenotype change from CSC to a non-CSC, which was detected by reduced mammosphere formation and cell motility. Our results provide insight into GSL profiles in human breast CSCs, indicate a functional role of GD2 and GD3 in CSCs, and suggest a possible novel approach in targeting human breast CSCs to interfere with cancer recurrence.
Collapse
Affiliation(s)
- Yuh-Jin Liang
- Division of Biomembrane Research, Pacific Northwest Research Institute, Seattle, WA 98122
- Departments of Pathobiology and Global Health, University of Washington, Seattle, WA 98195
- Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; and
| | - Yao Ding
- Division of Biomembrane Research, Pacific Northwest Research Institute, Seattle, WA 98122
- Departments of Pathobiology and Global Health, University of Washington, Seattle, WA 98195
| | - Steven B. Levery
- Copenhagen Center for Glycomics and Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marlin Lobaton
- Division of Biomembrane Research, Pacific Northwest Research Institute, Seattle, WA 98122
| | - Kazuko Handa
- Division of Biomembrane Research, Pacific Northwest Research Institute, Seattle, WA 98122
| | - Sen-itiroh Hakomori
- Division of Biomembrane Research, Pacific Northwest Research Institute, Seattle, WA 98122
- Departments of Pathobiology and Global Health, University of Washington, Seattle, WA 98195
| |
Collapse
|
38
|
Jennemann R, Gröne HJ. Cell-specific in vivo functions of glycosphingolipids: lessons from genetic deletions of enzymes involved in glycosphingolipid synthesis. Prog Lipid Res 2013; 52:231-48. [PMID: 23473748 DOI: 10.1016/j.plipres.2013.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/20/2013] [Accepted: 02/25/2013] [Indexed: 11/16/2022]
Abstract
Glycosphingolipids (GSLs) are believed to be involved in many cellular events including trafficking, signaling and cellular interactions. Over the past decade considerable progress was made elucidating the function of GSLs by generating and exploring animal models with GSL-deficiency. Initial studies focused on exploring the role of complex sialic acid containing GSLs (gangliosides) in neuronal tissue. Although complex gangliosides were absent, surprisingly, the phenotype observed was rather mild. In subsequent studies, several mouse models with combinations of gene-deletions encoding GSL-synthesizing enzymes were developed. The results indicated that reduction of GSL-complexity correlated with severity of phenotypes. However, in these mice, accumulation of precursor GSLs or neobiosynthesized GSL-series seemed to partly compensate the loss of GSLs. Thus, UDP-glucose:ceramide glucosyltransferase (Ugcg), catalyzing the basic step of the glucosylceramide-based GSL-biosynthesis, was genetically disrupted. A total systemic deletion of Ugcg caused early embryonic lethality. Therefore, Ugcg was eliminated in a cell-specific manner using the cre/loxP-system. New insights into the cellular function of GSLs were gained. It was demonstrated that neurons require GSLs for differentiation and maintenance. In keratinocytes, preservation of the skin barrier depends on GSL synthesis and in enterocytes of the small intestine GSLs are involved in endocytosis and vesicular transport.
Collapse
Affiliation(s)
- Richard Jennemann
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | |
Collapse
|
39
|
Barone A, Benktander J, Ångström J, Aspegren A, Björquist P, Teneberg S, Breimer ME. Structural complexity of non-acid glycosphingolipids in human embryonic stem cells grown under feeder-free conditions. J Biol Chem 2013; 288:10035-10050. [PMID: 23404501 DOI: 10.1074/jbc.m112.436162] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Due to their pluripotency and growth capability, there are great expectations for human embryonic stem cells, both as a resource for functional studies of early human development and as a renewable source of cells for use in regenerative medicine and transplantation. However, to bring human embryonic stem cells into clinical applications, their cell surface antigen expression and its chemical structural complexity have to be defined. In the present study, total non-acid glycosphingolipid fractions were isolated from two human embryonic stem cell lines (SA121 and SA181) originating from leftover in vitro fertilized human embryos, using large amounts of starting material (1 × 10(9) cells/cell line). The total non-acid glycosphingolipid fractions were characterized by antibody and lectin binding, mass spectrometry, and proton NMR. In addition to the globo-series and type 1 core chain glycosphingolipids previously described in human embryonic stem cells, a number of type 2 core chain glycosphingolipids (neo-lactotetraosylceramide, the H type 2 pentaosylceramide, the Le(x) pentaosylceramide, and the Le(y) hexaosylceramide) were identified as well as the blood group A type 1 hexaosylceramide. Finally, the mono-, di-, and triglycosylceramides were characterized as galactosylceramide, glucosylceramide, lactosylceramide, galabiaosylceramide, globotriaosylceramide, and lactotriaosylceramide. Thus, the glycan diversity of human embryonic stem cells, including cell surface immune determinants, is more complex than previously appreciated.
Collapse
Affiliation(s)
- Angela Barone
- Department of Surgery, Sahlgrenska University Hospital, S-41 345 Göteborg, Sweden
| | - John Benktander
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, P.O. Box 440, University of Gothenburg, S-405 30 Göteborg, Sweden
| | - Jonas Ångström
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, P.O. Box 440, University of Gothenburg, S-405 30 Göteborg, Sweden
| | - Anders Aspegren
- Cellectis Stem Cells, Cellartis AB, Arvid Wallgrens Backe 20, S-413 46 Göteborg, Sweden
| | - Petter Björquist
- Cellectis Stem Cells, Cellartis AB, Arvid Wallgrens Backe 20, S-413 46 Göteborg, Sweden
| | - Susann Teneberg
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, P.O. Box 440, University of Gothenburg, S-405 30 Göteborg, Sweden.
| | - Michael E Breimer
- Department of Surgery, Sahlgrenska University Hospital, S-41 345 Göteborg, Sweden
| |
Collapse
|
40
|
Surface markers in stem cells and cancer from the perspective of glycomic analysis. Int J Biol Markers 2012; 27:e344-52. [PMID: 23250773 DOI: 10.5301/jbm.2012.10361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2012] [Indexed: 11/20/2022]
Abstract
Most cancers are detected when patients present with symptoms, and at that point the disease is usually quite advanced and often not curable. Therefore, new biomarkers are needed for detection and therapy. The recent success of using monoclonal antibodies against nonprotein gangliosides for the treatment of high-risk neuroblastoma provides an incentive to search for new glycan-targeted immunotherapies for cancer using markers found through glycomic analysis as targets. Since more than 85% of cell surface components are glycosylated, glycomic analysis is useful to probe systematically the cancer cell surface, in search for novel glycoproteins and glycolipids. Furthermore, cancer cells tend to dedifferentiate and express many oncofetoproteins, since human embryonic stem cells (ESCs) are derived from epiblast of embryo, representing the early stage of normal embryonic development before gastrulation. Unique ESC surface markers are likely to be found in cancer cells, but not in normal mature tissues. Moreover, stem cells and cancer cells share several common features in related regulatory mechanisms and signaling pathways. Thus, identification of the cancer stem cells in cancer and definition of the glycoproteomic changes that accompany their transformation are important for the development of strategies for early detection and treatment of cancer.
Collapse
|
41
|
Identification and characterisation of the early differentiating cells in neural differentiation of human embryonic stem cells. PLoS One 2012; 7:e37129. [PMID: 22615918 PMCID: PMC3352872 DOI: 10.1371/journal.pone.0037129] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 04/13/2012] [Indexed: 01/06/2023] Open
Abstract
One of the challenges in studying early differentiation of human embryonic stem cells (hESCs) is being able to discriminate the initial differentiated cells from the original pluripotent stem cells and their committed progenies. It remains unclear how a pluripotent stem cell becomes a lineage-specific cell type during early development, and how, or if, pluripotent genes, such as Oct4 and Sox2, play a role in this transition. Here, by studying the dynamic changes in the expression of embryonic surface antigens, we identified the sequential loss of Tra-1-81 and SSEA4 during hESC neural differentiation and isolated a transient Tra-1-81(−)/SSEA4(+) (TR−/S4+) cell population in the early stage of neural differentiation. These cells are distinct from both undifferentiated hESCs and their committed neural progenitor cells (NPCs) in their gene expression profiles and response to extracellular signalling; they co-express both the pluripotent gene Oct4 and the neural marker Pax6. Furthermore, these TR−/S4+ cells are able to produce cells of both neural and non-neural lineages, depending on their environmental cues. Our results demonstrate that expression of the pluripotent factor Oct4 is progressively downregulated and is accompanied by the gradual upregulation of neural genes, whereas the pluripotent factor Sox2 is consistently expressed at high levels, indicating that these pluripotent factors may play different roles in the regulation of neural differentiation. The identification of TR-S4+ cells provides a cell model for further elucidation of the molecular mechanisms underlying hESC neural differentiation.
Collapse
|