1
|
Raskó T, Pande A, Radscheit K, Zink A, Singh M, Sommer C, Wachtl G, Kolacsek O, Inak G, Szvetnik A, Petrakis S, Bunse M, Bansal V, Selbach M, Orbán TI, Prigione A, Hurst LD, Izsvák Z. A Novel Gene Controls a New Structure: PiggyBac Transposable Element-Derived 1, Unique to Mammals, Controls Mammal-Specific Neuronal Paraspeckles. Mol Biol Evol 2022; 39:6661922. [PMID: 36205081 PMCID: PMC9538788 DOI: 10.1093/molbev/msac175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022] Open
Abstract
Although new genes can arrive from modes other than duplication, few examples are well characterized. Given high expression in some human brain subregions and a putative link to psychological disorders [e.g., schizophrenia (SCZ)], suggestive of brain functionality, here we characterize piggyBac transposable element-derived 1 (PGBD1). PGBD1 is nonmonotreme mammal-specific and under purifying selection, consistent with functionality. The gene body of human PGBD1 retains much of the original DNA transposon but has additionally captured SCAN and KRAB domains. Despite gene body retention, PGBD1 has lost transposition abilities, thus transposase functionality is absent. PGBD1 no longer recognizes piggyBac transposon-like inverted repeats, nonetheless PGBD1 has DNA binding activity. Genome scale analysis identifies enrichment of binding sites in and around genes involved in neuronal development, with association with both histone activating and repressing marks. We focus on one of the repressed genes, the long noncoding RNA NEAT1, also dysregulated in SCZ, the core structural RNA of paraspeckles. DNA binding assays confirm specific binding of PGBD1 both in the NEAT1 promoter and in the gene body. Depletion of PGBD1 in neuronal progenitor cells (NPCs) results in increased NEAT1/paraspeckles and differentiation. We conclude that PGBD1 has evolved core regulatory functionality for the maintenance of NPCs. As paraspeckles are a mammal-specific structure, the results presented here show a rare example of the evolution of a novel gene coupled to the evolution of a contemporaneous new structure.
Collapse
Affiliation(s)
- Tamás Raskó
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | | | | | - Annika Zink
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Manvendra Singh
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Christian Sommer
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Gerda Wachtl
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH, Budapest, Hungary,Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Orsolya Kolacsek
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH, Budapest, Hungary
| | - Gizem Inak
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Attila Szvetnik
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Spyros Petrakis
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece
| | - Mario Bunse
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Vikas Bansal
- Biomedical Data Science and Machine Learning Group, German Center for Neurodegenerative Diseases, Tübingen 72076, Germany
| | - Matthias Selbach
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Tamás I Orbán
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH, Budapest, Hungary
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | | | | |
Collapse
|
2
|
Christensen MB, Levy AM, Mohammadi NA, Niceta M, Kaiyrzhanov R, Dentici ML, Alam CA, Alesi V, Benoit V, Bhatia KP, Bierhals T, Boßelmann CM, Buratti J, Callewaert B, Ceulemans B, Charles P, De Wachter M, Dehghani M, D'haenens E, Doco-Fenzy M, Geßner M, Gobert C, Guliyeva U, Haack TB, Hammer TB, Heinrich T, Hempel M, Herget T, Hoffmann U, Horvath J, Houlden H, Keren B, Kresge C, Kumps C, Lederer D, Lermine A, Magrinelli F, Maroofian R, Mehrjardi MYV, Moudi M, Müller AJ, Oostra AJ, Pletcher BA, Ros-Pardo D, Samarasekera S, Tartaglia M, Van Schil K, Vogt J, Wassmer E, Winkelmann J, Zaki MS, Zech M, Lerche H, Radio FC, Gomez-Puertas P, Møller RS, Tümer Z. Biallelic variants in ZNF142 lead to a syndromic neurodevelopmental disorder. Clin Genet 2022; 102:98-109. [PMID: 35616059 PMCID: PMC9546172 DOI: 10.1111/cge.14165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/14/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
Abstract
Biallelic variants of the gene encoding for the zinc-finger protein 142 (ZNF142) have recently been associated with intellectual disability (ID), speech impairment, seizures, and movement disorders in nine individuals from five families. In this study, we obtained phenotype and genotype information of 26 further individuals from 16 families. Among the 27 different ZNF142 variants identified in the total of 35 individuals only four were missense. Missense variants may give a milder phenotype by changing the local structure of ZF motifs as suggested by protein modelling; but this correlation should be validated in larger cohorts and pathogenicity of the missense variants should be investigated with functional studies. Clinical features of the 35 individuals suggest that biallelic ZNF142 variants lead to a syndromic neurodevelopmental disorder with mild to moderate ID, varying degrees of delay in language and gross motor development, early onset seizures, hypotonia, behavioral features, movement disorders, and facial dysmorphism. The differences in symptom frequencies observed in the unpublished individuals compared to those of published, and recognition of previously underemphasized facial features are likely to be due to the small sizes of the previous cohorts, which underlines the importance of larger cohorts for the phenotype descriptions of rare genetic disorders. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Maria B Christensen
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Amanda M Levy
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Nazanin A Mohammadi
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Centre, Dianalund, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular Disorders, University College London Institute of Neurology, London, United Kingdom
| | - Maria Lisa Dentici
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy.,Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chadi Al Alam
- Pediatric Neurology department, American center for Psychiatry and Neurology, Abu Dhabi and Al Ain, United Arab Emirates.,Pediatric Neurology department, Haykel Hospital, El Koura, Lebanon
| | - Viola Alesi
- Translational Cytogenomics Research Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian M Boßelmann
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Julien Buratti
- Department of Medical Genetics, Pitié-Salpêtrière Hospital, AP- HP, Sorbonne Université, Paris, France
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Berten Ceulemans
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Perrine Charles
- Department of Medical Genetics, Pitié-Salpêtrière Hospital, AP- HP, Sorbonne Université, Paris, France
| | - Matthias De Wachter
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Mohammadreza Dehghani
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Erika D'haenens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Martine Doco-Fenzy
- SFR CAP SANTE, HMB2 CHU, Reims, France.,CHU de Nantes, service de génétique médicale, Nantes, France
| | - Michaela Geßner
- KfH-Board of Trustees for Dialysis and Kidney Transplantation (KfH-Kuratorium für Dialyse und Nierentransplantation e.V.), Neu Isenburg, Germany
| | - Cyrielle Gobert
- Neuropediatric department, Centre Hospitalier Neurologique William Lennox, Ottignies, Belgium
| | | | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Trine B Hammer
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Centre, Dianalund, Denmark
| | - Tilman Heinrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,MVZ Humangenetik und Molekularpathologie GmbH, Rostock, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Theresia Herget
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Judit Horvath
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - Henry Houlden
- Department of Neuromuscular Disorders, University College London Institute of Neurology, London, United Kingdom
| | - Boris Keren
- Department of Medical Genetics, Pitié-Salpêtrière Hospital, AP- HP, Sorbonne Université, Paris, France
| | | | - Candy Kumps
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | | | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Reza Maroofian
- Department of Neuromuscular Disorders, University College London Institute of Neurology, London, United Kingdom
| | | | - Mahdiyeh Moudi
- Department of Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amelie J Müller
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Anna J Oostra
- Neuropediatric department, Ghent University Hospital, Ghent, Belgium.,Centre for Developmental disorders, Ghent, Belgium
| | | | - David Ros-Pardo
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), Madrid, Spain
| | | | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Kristof Van Schil
- Department of Medical Genetics, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Julie Vogt
- West Midlands Regional Genetics Service, Birmingham Women's and Children's Hospital, Birmingham, United Kingdom
| | - Evangeline Wassmer
- Birmingham Women and Children's Hospital, Birmingham, United Kingdom.,Institute of Health and Neurodevelopment, Aston University, Birmingham, United Kingdom
| | - Juliane Winkelmann
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.,Genetics Department, Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Michael Zech
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | | | - Paulino Gomez-Puertas
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), Madrid, Spain
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Centre, Dianalund, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Chen J, Guo J, Yuan Y, Wang Y. Zinc Finger Protein 24 is a Prognostic Factor in Ovarian Serous Carcinoma. Appl Immunohistochem Mol Morphol 2022; 30:136-144. [PMID: 34608874 DOI: 10.1097/pai.0000000000000980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/13/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE As a member of the zinc finger protein family, zinc finger protein 24 (ZNF24) contains a Cys2His2 zinc finger domain and acts as a transcription factor. ZNF24 has been reported to be downregulated in gastric cancer and breast cancer. However, little is known about its expression and function in ovarian serous carcinoma (OSC). PATIENTS AND METHODS We collected 117 OSC patients during 2011 to 2017 and retrospectively retrieved their clinicopathologic characteristics as well as their survival data. Protein level was analyzed by immunohistochemistry, mRNA level was evaluated by RT-qPCR assay, and transcriptional data was obtained from TCGA data sets. The correlations between ZNF24 expression and patients' features were assessed using χ2 test. Univariate and multivariate analyses were used to identify the prognosis predicative potential of ZNF24 in OSC. The function of ZNF24 in the epithelial ovarian cancer cells was also verified by in vitro cellular experiments. RESULTS Among the 117 cases, ZNF24 was downregulated in 52 OSC samples (44.6%) and significantly correlated with tumor stages. According to univariate and multivariate analyses, ZNF24 can act as an independent prognostic indicator for the overall survival of OSC patients, whose lower expression was associated with poorer clinical outcomes. Ectopic overexpression and knockdown assays indicated that ZNF24 can negatively regulate the OSC cell viability. CONCLUSIONS OSC patients with low level of ZNF24 have worse overall survival compared with those possess high-ZNF24 expression. Downregulated ZNF24 may be involved in the proliferation of OSC, and ZNF24 expression can serve as an independent survival predictor.
Collapse
Affiliation(s)
- Jia Chen
- Department of Obstetrics and Gynecology, Chongqing University Central Hospital, Chongqing Emergency Medical Center
| | - Juan Guo
- Department of Obstetrics and Gynecology, The Fifth People Hospital of Chongqing
| | | | - Yadong Wang
- Breast, Chongqing Traditional Chinese Medical Hospital, Chongqing, China
| |
Collapse
|
4
|
Liu Y, Wu D, Cheng H, Chen L, Zhang W, Zou L, Gao Q, Zhao Z, Chen Q, Zeng W, Zhang Z, Jiang W, Huang C, Liu G. Wnt8B, transcriptionally regulated by ZNF191, promotes cell proliferation of hepatocellular carcinoma via Wnt signaling. Cancer Sci 2020; 112:629-640. [PMID: 33197287 PMCID: PMC7894019 DOI: 10.1111/cas.14738] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/25/2020] [Revised: 10/28/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of wingless‐type (Wnt) signaling is implicated in hepatocellular carcinoma (HCC). Wnt family member 8B (Wnt8B), one of the canonical Wnt ligands, is implicated in oncogenesis. However, the role of Wnt8B in human HCCs and its transcriptional regulation mechanism are presently unknown . Here, we report that Wnt8B expression was frequently increased in HCCs and was significantly associated with poorer patient prognosis. Wnt8B knockdown suppresses HCC cell growth both in vitro and in vivo via inhibiting the canonical Wnt signaling. Zinc finger transcription factor 191 (ZNF191) can positively regulate Wnt8B mRNA and protein expression, and promoter luciferase assay indicated that ZNF191 can increase the transcription activity of the 2‐Kbps WNT8B promoter. Chromatin immunoprecipitation‐qPCR and electrophoretic mobility shift assay showed that ZNF191 protein directly binds to the WNT8B promoter, and the binding sites are at nt‐1491(ATTAATT) and nt‐1178(ATTCATT). Moreover, Wnt8B contributes to the effect of ZNF191 on cell proliferation, and Wnt8B expression correlates positively with ZNF191 in human HCCs. Our findings suggested that Wnt8B, directly transcriptionally regulated by ZNF191, plays a pivotal role in HCC proliferation via the canonical Wnt pathway and may serve as a new prognostic biomarker and a potential therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Yufeng Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Di Wu
- The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Hanghang Cheng
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lei Chen
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Weidi Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Liping Zou
- Departmant of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiongmei Gao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhonghua Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qi Chen
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenjiao Zeng
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhigang Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, The Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Cheng Huang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guoyuan Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Lavin KM, Ge Y, Sealfon SC, Nair VD, Wilk K, McAdam JS, Windham ST, Kumar PL, McDonald MLN, Bamman MM. Rehabilitative Impact of Exercise Training on Human Skeletal Muscle Transcriptional Programs in Parkinson's Disease. Front Physiol 2020; 11:653. [PMID: 32625117 PMCID: PMC7311784 DOI: 10.3389/fphys.2020.00653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/08/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is the most common motor neurodegenerative disease, and neuromuscular function deficits associated with PD contribute to disability. Targeting these symptoms, our laboratory has previously evaluated 16-week high-intensity resistance exercise as rehabilitative training (RT) in individuals with PD. We reported significant improvements in muscle mass, neuromuscular function (strength, power, and motor unit activation), indices of neuromuscular junction integrity, total and motor scores on the unified Parkinson's disease rating scale (UPDRS), and total and sub-scores on the 39-item PD Quality of Life Questionnaire (PDQ-39), supporting the use of RT to reverse symptoms. Our objective was to identify transcriptional networks that may contribute to RT-induced neuromuscular remodeling in PD. We generated transcriptome-wide skeletal muscle RNA-sequencing in 5 participants with PD [4M/1F, 67 ± 2 years, Hoehn and Yahr stages 2 (n = 3) and 3 (n = 2)] before and after 16-week high intensity RT to identify transcriptional networks that may in part underpin RT-induced neuromuscular remodeling in PD. Following RT, 304 genes were significantly upregulated, notably related to remodeling and nervous system/muscle development. Additionally, 402 genes, primarily negative regulators of muscle adaptation, were downregulated. We applied the recently developed Pathway-Level Information ExtractoR (PLIER) method to reveal coordinated gene programs (as latent variables, LVs) that differed in skeletal muscle among young (YA) and old (OA) healthy adults and PD (n = 12 per cohort) at baseline and in PD pre- vs. post-RT. Notably, one LV associated with angiogenesis, axon guidance, and muscle remodeling was significantly lower in PD than YA at baseline and was significantly increased by exercise. A different LV annotated to denervation, autophagy, and apoptosis was increased in both PD and OA relative to YA and was also reduced by 16-week RT in PD. Thus, this analysis identified two novel skeletal muscle transcriptional programs that are dysregulated by PD and aging, respectively. Notably, RT has a normalizing effect on both programs in individuals with PD. These results identify potential molecular transducers of the RT-induced improvements in neuromuscular remodeling and motor function that may aid in optimizing exercise rehabilitation strategies for individuals with PD.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stuart C. Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Venugopalan D. Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Katarzyna Wilk
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jeremy S. McAdam
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Samuel T. Windham
- UAB Center for Exercise Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Preeti Lakshman Kumar
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Merry-Lynn N. McDonald
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marcas M. Bamman
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Birmingham/Atlanta VA Geriatric Research, Education, and Clinical Center, Birmingham, AL, United States
- Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Huang X, Liu N, Xiong X. ZNF24 is upregulated in prostate cancer and facilitates the epithelial-to-mesenchymal transition through the regulation of Twist1. Oncol Lett 2020; 19:3593-3601. [PMID: 32269634 DOI: 10.3892/ol.2020.11456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/26/2019] [Accepted: 12/12/2019] [Indexed: 11/06/2022] Open
Abstract
Zinc finger protein 24 (ZNF24) has been demonstrated to regulate proliferation, differentiation and migration as well as invasion in several types of cells. However, the molecular role and clinical effects of ZNF24 in prostate cancer (PCa) remain unclear. The present study revealed that ZNF24 expression is upregulated in PCa, and associated with tumor volume, Gleason score, pathological grade and metastasis. Wound healing and Transwell invasion assays revealed that ectopic ZNF24 expression facilitated cell migration and invasion through the Twist1-induced epithelial-to-mesenchymal transition (EMT) process. In addition, colony formation and Cell Counting Kit-8 assays were used to determine the regulatory effects of ZNF24 on proliferation. The results suggested that ZNF24 also promoted cell proliferation in PCa. ZNF24 acted as an oncogene and promoted migration, invasion and EMT of PCa cells via the regulation of Twist1.
Collapse
Affiliation(s)
- Xiangjiang Huang
- Department of Urology Surgery, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China.,Department of Urology Surgery, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Nanxin Liu
- Department of Urology Surgery, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China.,Department of Urology Surgery, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Xing Xiong
- Department of Urology Surgery, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China.,Department of Urology Surgery, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
7
|
Al-Naama N, Mackeh R, Kino T. C 2H 2-Type Zinc Finger Proteins in Brain Development, Neurodevelopmental, and Other Neuropsychiatric Disorders: Systematic Literature-Based Analysis. Front Neurol 2020; 11:32. [PMID: 32117005 PMCID: PMC7034409 DOI: 10.3389/fneur.2020.00032] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/14/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are multifaceted pathologic conditions manifested with intellectual disability, autistic features, psychiatric problems, motor dysfunction, and/or genetic/chromosomal abnormalities. They are associated with skewed neurogenesis and brain development, in part through dysfunction of the neural stem cells (NSCs) where abnormal transcriptional regulation on key genes play significant roles. Recent accumulated evidence highlights C2H2-type zinc finger proteins (C2H2-ZNFs), the largest transcription factor family in humans, as important targets for the pathologic processes associated with NDDs. In this review, we identified their significant accumulation (74 C2H2-ZNFs: ~10% of all human member proteins) in brain physiology and pathology. Specifically, we discuss their physiologic contribution to brain development, particularly focusing on their actions in NSCs. We then explain their pathologic implications in various forms of NDDs, such as morphological brain abnormalities, intellectual disabilities, and psychiatric disorders. We found an important tendency that poly-ZNFs and KRAB-ZNFs tend to be involved in the diseases that compromise gross brain structure and human-specific higher-order functions, respectively. This may be consistent with their characteristic appearance in the course of species evolution and corresponding contribution to these brain activities.
Collapse
Affiliation(s)
- Njoud Al-Naama
- Laboratory of Molecular and Genomic Endocrinology, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Rafah Mackeh
- Laboratory of Molecular and Genomic Endocrinology, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Tomoshige Kino
- Laboratory of Molecular and Genomic Endocrinology, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| |
Collapse
|
8
|
Zheng JT, Zhang N, Yu YH, Gong PT, Li XH, Wu N, Wang C, Wang XC, Li X, Li JH, Zhang XC. Identification of a TRBD zinc finger-interacting protein in Giardia duodenalis and its regulation of telomerase. Parasit Vectors 2019; 12:568. [PMID: 31783771 PMCID: PMC6884763 DOI: 10.1186/s13071-019-3821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/16/2019] [Accepted: 11/21/2019] [Indexed: 11/10/2022] Open
Abstract
Background Giardia duodenalis causes giardiasis, with diarrhea as the primary symptom. The trophozoite proliferation of this zoonotic parasite is mainly affected by telomerase, although the mechanism of telomerase regulation has not been thoroughly analyzed. Methods This study was performed to identify the telomerase RNA-binding domain (TRBD)-interacting protein in G. duodenalis and its regulation of telomerase. Interaction between TRBD and interacting proteins was verified via pulldown assays and co-immunoprecipitation (co-IP) techniques, and the subcellular localization of the protein interactions was determined in vivo via split SNAP-tag labeling. The hammerhead ribozyme was designed to deplete the mRNA of TRBD-interacting proteins. Results Using TRBD as bait, we identified zinc-finger domain (ZFD)-containing proteins and verified it via pulldown and co-IP experiments. Protein-protein interaction occurred in the nuclei of 293T cells and both nuclei of G. duodenalis. The hammerhead ribozyme depleted ZFD mRNA levels, which reduced the reproduction rate of G. duodenalis, telomerase activity and telomere length. Conclusions Our findings suggest that ZFD may regulate telomere function in G. duodenalis nuclei.
Collapse
Affiliation(s)
- Jing-Tong Zheng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China.,Department of Pathogenobiology, College of Basic Medicine, Jilin University, Changchun, 130021, Jilin, China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China.,State and Local Joint Engineering Laboratory for Animal Models of Human Diseases, Academy of Translational Medicine, First Hospital, Jilin University, Changchun, 130021, China
| | - Yan-Hui Yu
- Clinical Laboratory of Second Hospital, Jilin University, Changchun, 130021, China
| | - Peng-Tao Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xian-He Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Na Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Can Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xiao-Cen Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xin Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Jian-Hua Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China.
| | - Xi-Chen Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China.
| |
Collapse
|
9
|
Quevedo M, Meert L, Dekker MR, Dekkers DHW, Brandsma JH, van den Berg DLC, Ozgür Z, van IJcken WFJ, Demmers J, Fornerod M, Poot RA. Mediator complex interaction partners organize the transcriptional network that defines neural stem cells. Nat Commun 2019; 10:2669. [PMID: 31209209 PMCID: PMC6573065 DOI: 10.1038/s41467-019-10502-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/13/2018] [Accepted: 05/10/2019] [Indexed: 01/13/2023] Open
Abstract
The Mediator complex regulates transcription by connecting enhancers to promoters. High Mediator binding density defines super enhancers, which regulate cell-identity genes and oncogenes. Protein interactions of Mediator may explain its role in these processes but have not been identified comprehensively. Here, we purify Mediator from neural stem cells (NSCs) and identify 75 protein-protein interaction partners. We identify super enhancers in NSCs and show that Mediator-interacting chromatin modifiers colocalize with Mediator at enhancers and super enhancers. Transcription factor families with high affinity for Mediator dominate enhancers and super enhancers and can explain genome-wide Mediator localization. We identify E-box transcription factor Tcf4 as a key regulator of NSCs. Tcf4 interacts with Mediator, colocalizes with Mediator at super enhancers and regulates neurogenic transcription factor genes with super enhancers and broad H3K4me3 domains. Our data suggest that high binding-affinity for Mediator is an important organizing feature in the transcriptional network that determines NSC identity. The Mediator complex regulates transcription by connecting enhancers to promoters. Here, the authors purify Mediator from neural stem cells (NSCs), identify 75 novel protein-protein interaction partners and characterize the Mediator-interacting network that regulates transcription and establishes NSC identity.
Collapse
Affiliation(s)
- Marti Quevedo
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, Netherlands
| | - Lize Meert
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, Netherlands
| | - Mike R Dekker
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, Netherlands
| | - Dick H W Dekkers
- Center for Proteomics, Erasmus MC, 3015 CN, Rotterdam, Netherlands
| | - Johannes H Brandsma
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, Netherlands
| | | | - Zeliha Ozgür
- Center for Biomics, Erasmus MC, 3015 CN, Rotterdam, Netherlands
| | | | - Jeroen Demmers
- Center for Proteomics, Erasmus MC, 3015 CN, Rotterdam, Netherlands
| | - Maarten Fornerod
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, Netherlands
| | - Raymond A Poot
- Department of Cell Biology, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, Netherlands.
| |
Collapse
|
10
|
Yang H, Jin L, Sun X. A thirteen‑gene set efficiently predicts the prognosis of glioblastoma. Mol Med Rep 2019; 19:1613-1621. [PMID: 30628650 PMCID: PMC6390043 DOI: 10.3892/mmr.2019.9801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of brain cancer; it usually recurs and patients have a short survival time. The present study aimed to construct a gene expression classifier and to screen key genes associated with GBM prognosis. GSE7696 microarray data set included samples from 10 recurrent GBM tissues, 70 primary GBM tissues and 4 normal brain tissues. Seed genes were identified by the 'survival' package in R and subjected to pathway enrichment analysis. Prognostic genes were selected from the seed genes using the 'rbsurv' package in R, unsupervised hierarchical clustering, survival analysis and enrichment analysis. Multivariate survival analysis was performed for the prognostic genes, and the GBM data set from The Cancer Genome Atlas database was utilized to validate the prognostic genes. Of the 1,785 seed genes analyzed, 13 prognostic feature genes, including collagen type XXVIII α1 chain (COL28A1), PDS5 cohesin‑associated factor A (PDS5A), zinc‑finger DHHC‑type containing 2 (ZDHHC2), zinc‑finger protein 24 (ZNF24), myosin VA (MYO5A) and myeloid/lymphoid or mixed‑lineage leukemia translocated to 4 (MLLT4), were identified. These genes performed well on sample classification and prognostic risk differentiation, and six pathways, including adherens junction, cyclic adenosine 3',5'‑monophosphate signaling and Ras signaling pathways, were enriched for these feature genes. The high‑risk group was slightly older compared with the low‑risk group. The validation data set confirmed the prognostic value of the 13 feature genes for GBM; of these, COL28A1, PDS5A, ZDHHC2, ZNF24, MYO5A and MLLT4 may be crucial. These results may aid the understanding of the pathogenesis of GBM and provide important clues for the development of novel diagnostic markers or therapeutic targets.
Collapse
Affiliation(s)
- Huyin Yang
- Department of Neurosurgery, Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Luhao Jin
- Department of Neurosurgery, Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xiaoyang Sun
- Department of Neurosurgery, Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
11
|
Berto S, Nowick K. Species-Specific Changes in a Primate Transcription Factor Network Provide Insights into the Molecular Evolution of the Primate Prefrontal Cortex. Genome Biol Evol 2018; 10:2023-2036. [PMID: 30059966 PMCID: PMC6105097 DOI: 10.1093/gbe/evy149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 07/27/2018] [Indexed: 02/07/2023] Open
Abstract
The human prefrontal cortex (PFC) differs from that of other primates with respect to size, histology, and functional abilities. Here, we analyzed genome-wide expression data of humans, chimpanzees, and rhesus macaques to discover evolutionary changes in transcription factor (TF) networks that may underlie these phenotypic differences. We determined the co-expression networks of all TFs with species-specific expression including their potential target genes and interaction partners in the PFC of all three species. Integrating these networks allowed us inferring an ancestral network for all three species. This ancestral network as well as the networks for each species is enriched for genes involved in forebrain development, axonogenesis, and synaptic transmission. Our analysis allows us to directly compare the networks of each species to determine which links have been gained or lost during evolution. Interestingly, we detected that most links were gained on the human lineage, indicating increase TF cooperativity in humans. By comparing network changes between different tissues, we discovered that in brain tissues, but not in the other tissues, the human networks always had the highest connectivity. To pinpoint molecular changes underlying species-specific phenotypes, we analyzed the sub-networks of TFs derived only from genes with species-specific expression changes in the PFC. These sub-networks differed significantly in structure and function between the human and chimpanzee. For example, the human-specific sub-network is enriched for TFs implicated in cognitive disorders and for genes involved in synaptic plasticity and cognitive functions. Our results suggest evolutionary changes in TF networks that might have shaped morphological and functional differences between primate brains, in particular in the human PFC.
Collapse
Affiliation(s)
- Stefano Berto
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX.,Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, Germany
| | - Katja Nowick
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, Germany.,Faculty for Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Germany
| |
Collapse
|
12
|
Le Z, Niu X, Chen Y, Ou X, Zhao G, Liu Q, Tu W, Hu C, Kong L, Liu Y. Predictive single nucleotide polymorphism markers for acute oral mucositis in patients with nasopharyngeal carcinoma treated with radiotherapy. Oncotarget 2017; 8:63026-63037. [PMID: 28968968 PMCID: PMC5609900 DOI: 10.18632/oncotarget.18450] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/13/2017] [Accepted: 05/22/2017] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to investigate the association between the susceptibility of severe oral mucositis (OM) in Chinese nasopharyngeal carcinoma (NPC) patients treated with radiotherapy and single nucleotide polymorphisms (SNPs) across the whole genome. SNPs were screened in a total of 24 patients with NPC and an additional 6 were subjected to mRNA expression analysis. Patients were subdivided into CTC 0-2 (CTC toxicity grade 0, 1, and 2) and CTC 3+ (CTC toxicity grade 3 and above) groups according to their CTC (common toxicity criteria) scores. The GTEx dataset was used to performed eQTL analyses and in-vitro functional assays were performed for eQTL-associated genes. Our data identified 7 functional SNPs associated with the development of OM. We observed that rs11081899-A, located in the 5′-UTR of the ZNF24 gene, was significantly correlated with a higher risk of severe mucositis (OR = 14.631, 95% CI = 2.61-105.46, p = 1.2 × 10−4), and positively associated with ZNF24 mRNA expression (p = 4.1 × 10−6) from GTEx dataset. In addition, high ZNF24 mRNA expression was associated with severe OM in patients with NPC (p = 0.02). Further functional assays revealed that ZNF24 knockdown reduced p65 expression and suppressed TNF-α-induced NF-κB activation and pro-inflammatory cytokines release. These findings suggested that rs11081899-A may be a genetic susceptibility factor for radiation-induced OM in patients with NPC, although its value in clinical application needs to be further verified in a large cohort. Also, we suggested that downregulation of ZNF24 may attenuate the development of mucositis by suppressing NF-κB activation.
Collapse
Affiliation(s)
- Ziyu Le
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Xiaoshuang Niu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Ying Chen
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201620, P. R. China
| | - Xiaomin Ou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Guoqi Zhao
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201620, P. R. China
| | - Qi Liu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201620, P. R. China
| | - Wenzhi Tu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201620, P. R. China
| | - Chaosu Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Lin Kong
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Yong Liu
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
13
|
van Arensbergen J, Dussaud S, Pardanaud-Glavieux C, García-Hurtado J, Sauty C, Guerci A, Ferrer J, Ravassard P. A distal intergenic region controls pancreatic endocrine differentiation by acting as a transcriptional enhancer and as a polycomb response element. PLoS One 2017; 12:e0171508. [PMID: 28225770 PMCID: PMC5321433 DOI: 10.1371/journal.pone.0171508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/17/2016] [Accepted: 01/02/2017] [Indexed: 12/11/2022] Open
Abstract
Lineage-selective expression of developmental genes is dependent on the interplay between activating and repressive mechanisms. Gene activation is dependent on cell-specific transcription factors that recognize transcriptional enhancer sequences. Gene repression often depends on the recruitment of Polycomb group (PcG) proteins, although the sequences that underlie the recruitment of PcG proteins, also known as Polycomb response elements (PREs), remain poorly understood in vertebrates. While distal PREs have been identified in mammals, a role for positive-acting enhancers in PcG-mediated repression has not been described. Here we have used a highly efficient procedure based on lentiviral-mediated transgenesis to carry out in vivo fine-mapping of, cis-regulatory sequences that control lineage-specific activation of Neurog3, a master regulator of pancreatic endocrine differentiation. Our findings reveal an enhancer region that is sufficient to drive correct spacio-temporal expression of Neurog3 and demonstrate that this same region serves as a PRE in alternative lineages where Neurog3 is inactive.
Collapse
Affiliation(s)
- Joris van Arensbergen
- Genomic Programming of Beta-Cells Laboratory, IDIBAPS, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas, Barcelona, Spain
| | - Sebastien Dussaud
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Institut du cerveau et de la moelle (ICM)–Hôpital Pitié-Salpêtrière, Boulevard de l’Hôpital, Paris, France
| | - Corinne Pardanaud-Glavieux
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Institut du cerveau et de la moelle (ICM)–Hôpital Pitié-Salpêtrière, Boulevard de l’Hôpital, Paris, France
| | - Javier García-Hurtado
- Genomic Programming of Beta-Cells Laboratory, IDIBAPS, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas, Barcelona, Spain
| | - Claire Sauty
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Institut du cerveau et de la moelle (ICM)–Hôpital Pitié-Salpêtrière, Boulevard de l’Hôpital, Paris, France
| | - Aline Guerci
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Institut du cerveau et de la moelle (ICM)–Hôpital Pitié-Salpêtrière, Boulevard de l’Hôpital, Paris, France
| | - Jorge Ferrer
- Genomic Programming of Beta-Cells Laboratory, IDIBAPS, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas, Barcelona, Spain
- Department of Medicine, Imperial Centre for Translational and Experimental Medicine, Imperial College, London, United Kingdom
- * E-mail: (PR); (JF)
| | - Philippe Ravassard
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Institut du cerveau et de la moelle (ICM)–Hôpital Pitié-Salpêtrière, Boulevard de l’Hôpital, Paris, France
- * E-mail: (PR); (JF)
| |
Collapse
|
14
|
Khalfallah O, Jarjat M, Davidovic L, Nottet N, Cestèle S, Mantegazza M, Bardoni B. Depletion of the Fragile X Mental Retardation Protein in Embryonic Stem Cells Alters the Kinetics of Neurogenesis. Stem Cells 2016; 35:374-385. [PMID: 27664080 DOI: 10.1002/stem.2505] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/08/2016] [Revised: 08/07/2016] [Accepted: 08/30/2016] [Indexed: 01/14/2023]
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and a leading cause of autism. FXS is due to the silencing of the Fragile X Mental Retardation Protein (FMRP), an RNA binding protein mainly involved in translational control, dendritic spine morphology and synaptic plasticity. Despite extensive studies, there is currently no cure for FXS. With the purpose to decipher the initial molecular events leading to this pathology, we developed a stem-cell-based disease model by knocking-down the expression of Fmr1 in mouse embryonic stem cells (ESCs). Repressing FMRP in ESCs increased the expression of amyloid precursor protein (APP) and Ascl1. When inducing neuronal differentiation, βIII-tubulin, p27kip1 , NeuN, and NeuroD1 were upregulated, leading to an accelerated neuronal differentiation that was partially compensated at later stages. Interestingly, we observed that neurogenesis is also accelerated in the embryonic brain of Fmr1-knockout mice, indicating that our cellular model recapitulates the molecular alterations present in vivo. Importantly, we rescued the main phenotype of the Fmr1 knockdown cell line, not only by reintroducing FMRP but also by pharmacologically targeting APP processing, showing the role of this protein in the pathophysiology of FXS during the earliest steps of neurogenesis. Our work allows to define an early therapeutic window but also to identify more effective molecules for treating this disorder. Stem Cells 2017;35:374-385.
Collapse
Affiliation(s)
- Olfa Khalfallah
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France.,CNRS, LIA « NEOGENEX », Valbonne Sophia-Antipolis, France
| | - Marielle Jarjat
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France.,CNRS, LIA « NEOGENEX », Valbonne Sophia-Antipolis, France
| | - Laetitia Davidovic
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France
| | - Nicolas Nottet
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France
| | - Sandrine Cestèle
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France
| | - Massimo Mantegazza
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France
| | - Barbara Bardoni
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France.,CNRS, LIA « NEOGENEX », Valbonne Sophia-Antipolis, France
| |
Collapse
|
15
|
Jia D, Huang L, Bischoff J, Moses MA. The endogenous zinc finger transcription factor, ZNF24, modulates the angiogenic potential of human microvascular endothelial cells. FASEB J 2014; 29:1371-82. [PMID: 25550468 DOI: 10.1096/fj.14-258947] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/18/2014] [Accepted: 11/24/2014] [Indexed: 11/11/2022]
Abstract
We have previously identified a zinc finger transcription factor, ZNF24 (zinc finger protein 24), as a novel inhibitor of tumor angiogenesis and have demonstrated that ZNF24 exerts this effect by repressing the transcription of VEGF in breast cancer cells. Here we focused on the role of ZNF24 in modulating the angiogenic potential of the endothelial compartment. Knockdown of ZNF24 by siRNA in human primary microvascular endothelial cells (ECs) led to significantly decreased cell migration and invasion compared with control siRNA. ZNF24 knockdown consistently led to significantly impaired VEGF receptor 2 (VEGFR2) signaling and decreased levels of matrix metalloproteinase-2 (MMP-2), with no effect on levels of major regulators of MMP-2 activity such as the tissue inhibitors of metalloproteinases and MMP-14. Moreover, silencing ZNF24 in these cells led to significantly decreased EC proliferation. Quantitative PCR array analyses identified multiple cell cycle regulators as potential ZNF24 downstream targets which may be responsible for the decreased proliferation in ECs. In vivo, knockdown of ZNF24 specifically in microvascular ECs led to significantly decreased formation of functional vascular networks. Taken together, these results demonstrate that ZNF24 plays an essential role in modulating the angiogenic potential of microvascular ECs by regulating the proliferation, migration, and invasion of these cells.
Collapse
Affiliation(s)
- Di Jia
- *Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA; and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Lan Huang
- *Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA; and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Joyce Bischoff
- *Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA; and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Marsha A Moses
- *Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA; and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Yang J, Yang J, Gao Y, Zhao L, Liu L, Qin Y, Wang X, Song T, Huang C. Identification of potential serum proteomic biomarkers for clear cell renal cell carcinoma. PLoS One 2014; 9:e111364. [PMID: 25368985 PMCID: PMC4219714 DOI: 10.1371/journal.pone.0111364] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2014] [Accepted: 09/23/2014] [Indexed: 12/23/2022] Open
Abstract
Objective To investigate discriminating protein patterns and serum biomarkers between clear cell renal cell carcinoma (ccRCC) patients and healthy controls, as well as between paired pre- and post-operative ccRCC patients. Methods We used magnetic bead-based separation followed by matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) to identify patients with ccRCC. A total of 162 serum samples were analyzed in this study, among which there were 58 serum samples from ccRCC patients, 40 from additional paired pre- and post-operative ccRCC patients (n = 20), and 64 from healthy volunteers as healthy controls. ClinProTools software identified several distinct markers between ccRCC patients and healthy controls, as well as between pre- and post-operative patients. Results Patients with ccRCC could be identified with a mean sensitivity of 88.38% and a mean specificity of 91.67%. Of 67 m/z peaks that differed among the ccRCC, healthy controls, pre- and post-operative ccRCC patients, 24 were significantly different (P<0.05). Three candidate peaks, which were upregulated in ccRCC group and showed a tendency to return to healthy control values after surgery, were identified as peptide regions of RNA-binding protein 6 (RBP6), tubulin beta chain (TUBB), and zinc finger protein 3 (ZFP3) with the m/z values of 1466.98, 1618.22, and 5905.23, respectively. Conclusion MB-MALDI-TOF-MS method could generate serum peptidome profiles of ccRCC, and provide a new approach to identify potential biomarkers for diagnosis as well as prognosis of this malignancy.
Collapse
Affiliation(s)
- Juan Yang
- Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Department of Genetics and Molecular Biology, Medical School of Xi′an Jiaotong University, Xi′an, China
| | - Jin Yang
- Department of Medical Oncology, First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi′an, China
| | - Yan Gao
- Department of Medical Oncology, First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi′an, China
| | - Lingyu Zhao
- Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Department of Genetics and Molecular Biology, Medical School of Xi′an Jiaotong University, Xi′an, China
| | - Liying Liu
- Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Department of Genetics and Molecular Biology, Medical School of Xi′an Jiaotong University, Xi′an, China
| | - Yannan Qin
- Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Department of Genetics and Molecular Biology, Medical School of Xi′an Jiaotong University, Xi′an, China
| | - Xiaofei Wang
- Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Department of Genetics and Molecular Biology, Medical School of Xi′an Jiaotong University, Xi′an, China
| | - Tusheng Song
- Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Department of Genetics and Molecular Biology, Medical School of Xi′an Jiaotong University, Xi′an, China
| | - Chen Huang
- Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Department of Genetics and Molecular Biology, Medical School of Xi′an Jiaotong University, Xi′an, China
- * E-mail:
| |
Collapse
|
17
|
Bai J, Kito Y, Okubo H, Nagayama T, Takeuchi T. Expression of ZNF396 in basal cell carcinoma. Arch Dermatol Res 2014; 306:399-404. [PMID: 24445935 DOI: 10.1007/s00403-014-1442-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2013] [Revised: 12/12/2013] [Accepted: 01/02/2014] [Indexed: 11/28/2022]
Abstract
Zfp191 represses differentiation and keeps various cells in the stem/progenitor stage. Here, we report that a Zfp191 homolog protein, ZNF396, is expressed in basal cell carcinoma (BCC) and possibly represses the expression of a Notch system effector molecule, Hes1 (hairy and enhancer of split-1), and prevents BCC cells from undergoing Notch-mediated squamous cell differentiation. ZNF396 immunoreactivity was found in the nucleus of 35 of 38 cutaneous BCC and 4 of 74 squamous cell carcinoma tissue specimens. In non-tumorous epidermal tissues, ZNF396 immunoreactivity was restricted in basal cells. siRNA-mediated silencing of ZNF396 induced the expression of Notch2, Hes1, and involucrin in cultured BCC cells. Finally, we found that siRNA-mediated silencing of ZNF396 gene inhibited the proliferation of TE354.T basal cell carcinoma cells. ZNF396 might repress Notch-Hes1 signaling axis and prevent tumor cells from undergoing squamous differentiation in BCC.
Collapse
Affiliation(s)
- Juncheng Bai
- Department of Immunopathology, Gifu University Graduate School of Medicine, Yanagido, Gifu, 501-1193, Japan
| | | | | | | | | |
Collapse
|
18
|
Li JZ, Chen X, Gong XL, Hu HY, Shi D, Lu YM, Qiu L, Lu F, Hu ZL, Zhang JP. Identification of a functional nuclear localization signal mediating nuclear import of the zinc finger transcription factor ZNF24. PLoS One 2013; 8:e79910. [PMID: 24224020 PMCID: PMC3815127 DOI: 10.1371/journal.pone.0079910] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2012] [Accepted: 09/26/2013] [Indexed: 02/05/2023] Open
Abstract
ZNF24 is a member of the SCAN domain family of Krüppel-like zinc finger (ZF) transcription factors, which plays a critical role in cell proliferation and differentiation. However, how ZNF24 enters the nucleus in order to exert its function remains unclear since its nuclear localization signal(s) (NLS) has not been identified. Here, we generated a series of GFP-tagged deletion and point mutants and assessed their subcellular localization. Our results delimit the NLS to ZF1-2. Deletion of ZF1-2 caused cytoplasmic accumulation of ZNF24. Fusion of the ZF1-2 to green fluorescent protein (GFP) targeted GFP to the nucleus, demonstrating that the ZF1-2 is both necessary and sufficient for nuclear localization. ZNF24 containing histidine to leucine mutations that disrupt the structure of ZF1 or/and ZF2 retains appropriate nuclear localization, indicating that neither the tertiary structure of the zinc fingers nor specific DNA binding are necessary for nuclear localization. K286A and R290A mutation led to partial cytoplasmic accumulation. Co-immunoprecipitation demonstrated that ZNF24 interacted with importin-β and this interaction required the ZF motifs. The β-Catenin (CTNNB1) luciferase assays showed that the ZNF24 mutants defective in nuclear localization could not promote CTNNB1promoter activation as the wild-type ZNF24 did. Taken together, these results suggest that consecutive ZF1-2 is critical for the regulation of ZNF24 nuclear localization and its transactivation function.
Collapse
Affiliation(s)
- Jian-Zhong Li
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
- * E-mail: (JZL); (JPZ)
| | - Xia Chen
- Cancer Institute, Second Military Medical University, Shanghai, China
| | - Xue-Lian Gong
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
- Department of Health Toxicology, Second Military Medical University, Shanghai, China
| | - Hong-Yuan Hu
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Duo Shi
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Yi-Ming Lu
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Lei Qiu
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Fa Lu
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Zhen-Lin Hu
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Jun-Ping Zhang
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
- * E-mail: (JZL); (JPZ)
| |
Collapse
|
19
|
A proteomic characterization of factors enriched at nascent DNA molecules. Cell Rep 2013; 3:1105-16. [PMID: 23545495 DOI: 10.1016/j.celrep.2013.03.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2012] [Revised: 02/13/2013] [Accepted: 03/08/2013] [Indexed: 01/07/2023] Open
Abstract
DNA replication is facilitated by multiple factors that concentrate in the vicinity of replication forks. Here, we developed an approach that combines the isolation of proteins on nascent DNA chains with mass spectrometry (iPOND-MS), allowing a comprehensive proteomic characterization of the human replisome and replisome-associated factors. In addition to known replisome components, we provide a broad list of proteins that reside in the vicinity of the replisome, some of which were not previously associated with replication. For instance, our data support a link between DNA replication and the Williams-Beuren syndrome and identify ZNF24 as a replication factor. In addition, we reveal that SUMOylation is widespread for factors that concentrate near replisomes, which contrasts with lower UQylation levels at these sites. This resource provides a panoramic view of the proteins that concentrate in the surroundings of the replisome, which should facilitate future investigations on DNA replication and genome maintenance.
Collapse
|
20
|
Abstract
VEGF is a key regulator of normal and pathologic angiogenesis. Although many trans-activating factors of VEGF have been described, the transcriptional repression of VEGF remains much less understood. We have previously reported the identification of a SCAN domain-containing C2H2 zinc finger protein, ZNF24, that represses the transcription of VEGF. In the present study, we identify the mechanism by which ZNF24 represses VEGF transcription. Using reporter gene and electrophoretic mobility shift assays, we identify an 11-bp fragment of the proximal VEGF promoter as the ZNF24-binding site that is essential for ZNF24-mediated repression. We demonstrate in 2 in vivo models the potent inhibitory effect of ZNF24 on the vasculature. Expression of human ZNF24 induced in vivo vascular defects consistent with those induced by VEGF knockdown using a transgenic zebrafish model. These defects could be rescued by VEGF overexpression. Overexpression of ZNF24 in human breast cancer cells also inhibited tumor angiogenesis in an in vivo tumor model. Analyses of human breast cancer tissues showed that ZNF24 and VEGF levels were inversely correlated in malignant compared with normal tissues. These data demonstrate that ZNF24 represses VEGF transcription through direct binding to an 11-bp fragment of the VEGF proximal promoter and that it functions as a negative regulator of tumor growth by inhibiting angiogenesis.
Collapse
|
21
|
Ren YR, Chaerkady R, Hu S, Wan J, Qian J, Zhu H, Pandey A, Kern SE. Unbiased discovery of interactions at a control locus driving expression of the cancer-specific therapeutic and diagnostic target, mesothelin. J Proteome Res 2012; 11:5301-10. [PMID: 23025254 DOI: 10.1021/pr300797v] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
Although significant effort is expended on identifying transcripts/proteins that are up-regulated in cancer, there are few reports on systematic elucidation of transcriptional mechanisms underlying such druggable cancer-specific targets. The mesothelin (MSLN) gene offers a promising subject, being expressed in a restricted pattern normally, yet highly overexpressed in almost one-third of human malignancies and a target of cancer immunotherapeutic trials. CanScript, a cis promoter element, appears to control MSLN cancer-specific expression; its related genomic sequences may up-regulate other cancer markers. CanScript is a 20-nt bipartite element consisting of an SP1-like motif and a consensus MCAT sequence. The latter recruits TEAD (TEA domain) family members, which are universally expressed. Exploration of the active CanScript element, especially the proteins binding to the SP1-like motif, thus could reveal cancer-specific features having diagnostic or therapeutic interest. The efficient identification of sequence-specific DNA-binding proteins at a given locus, however, has lagged in biomarker explorations. We used two orthogonal proteomics approaches--unbiased SILAC (stable isotope labeling by amino acids in cell culture)/DNA affinity-capture/mass spectrometry survey (SD-MS) and a large transcription factor protein microarray (TFM)--and functional validation to explore systematically the CanScript interactome. SD-MS produced nine candidates, and TFM, 18. The screens agreed in confirming binding by TEAD proteins and by newly identified NAB1 and NFATc. Among other identified candidates, we found functional roles for ZNF24, NAB1 and RFX1 in MSLN expression by cancer cells. Combined interactome screens yield an efficient, reproducible, sensitive, and unbiased approach to identify sequence-specific DNA-binding proteins and other participants in disease-specific DNA elements.
Collapse
Affiliation(s)
- Yunzhao R Ren
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Li J, Chen X, He J, Li M, Liu Y, Zi H, Hu Z, Zhang J. A yeast two‐hybrid screen identifies histone H2A.Z as a transcription factor ZNF24 interactor. J Cell Biochem 2012; 113:3411-8. [DOI: 10.1002/jcb.24217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jianzhong Li
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Xia Chen
- Cancer Institute, Second Military Medical University, Shanghai, China
| | - Jielu He
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Mengwen Li
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Ying Liu
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Haiyang Zi
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Zhenlin Hu
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Junping Zhang
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
23
|
Liang Y, Huimei Hong F, Ganesan P, Jiang S, Jauch R, Stanton LW, Kolatkar PR. Structural analysis and dimerization profile of the SCAN domain of the pluripotency factor Zfp206. Nucleic Acids Res 2012; 40:8721-32. [PMID: 22735705 PMCID: PMC3458555 DOI: 10.1093/nar/gks611] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022] Open
Abstract
Zfp206 (also named as Zscan10) belongs to the subfamily of C2H2 zinc finger transcription factors, which is characterized by the N-terminal SCAN domain. The SCAN domain mediates self-association and association between the members of SCAN family transcription factors, but the structural basis and selectivity determinants for complex formation is unknown. Zfp206 is important for maintaining the pluripotency of embryonic stem cells presumably by combinatorial assembly of itself or other SCAN family members on enhancer regions. To gain insights into the folding topology and selectivity determinants for SCAN dimerization, we solved the 1.85 Å crystal structure of the SCAN domain of Zfp206. In vitro binding studies using a panel of 20 SCAN proteins indicate that the SCAN domain Zfp206 can selectively associate with other members of SCAN family transcription factors. Deletion mutations showed that the N-terminal helix 1 is critical for heterodimerization. Double mutations and multiple mutations based on the Zfp206SCAN–Zfp110SCAN model suggested that domain swapped topology is a possible preference for Zfp206SCAN–Zfp110SCAN heterodimer. Together, we demonstrate that the Zfp206SCAN constitutes a protein module that enables C2H2 transcription factor dimerization in a highly selective manner using a domain-swapped interface architecture and identify novel partners for Zfp206 during embryonal development.
Collapse
Affiliation(s)
- Yu Liang
- Laboratory for Structural Biochemistry, Stem Cell and Developmental Biology, Genome Institute of Singapore, Genome, 60 Biopolis Street, Singapore
| | | | | | | | | | | | | |
Collapse
|
24
|
Liu G, Jiang S, Wang C, Jiang W, Liu Z, Liu C, Saiyin H, Yang X, Shen S, Jiang D, Zhou P, Han D, Hu X, Yi Q, Yu L. Zinc finger transcription factor 191, directly binding to β-catenin promoter, promotes cell proliferation of hepatocellular carcinoma. Hepatology 2012; 55:1830-9. [PMID: 22213192 DOI: 10.1002/hep.25564] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Abstract
UNLABELLED Activation of β-catenin, the central effector of the canonical wingless-type (Wnt) pathway, has been implicated in hepatocellular carcinoma (HCC). However, the transcription regulation mechanism of the β-catenin gene in HCC remains unknown. Here we report that human zinc finger protein 191 (ZNF191) is a potential regulator of β-catenin transcription. ZNF191, a Krüppel-like protein, specifically interacts with the TCAT motif, which constitutes the HUMTH01 microsatellite in the tyrosine hydroxylase (TH) gene ex vivo. We demonstrate that ZNF191 is significantly overexpressed in human HCC specimens and is associated with growth of human HCC cells. Global profiling of gene expression in ZNF191 knockdown human hepatic L02 cells revealed that the important Wnt signal pathway genes β-catenin and cyclin D1 messenger RNAs (mRNAs) are significantly down-regulated. In agreement with transcription level, β-catenin and cyclin D1 proteins are also down-regulated in transient and stable ZNF191 knockdown L02 and hepatoma Hep3B cell lines. Moreover, significant correlation between ZNF191 and β-catenin mRNA expression was detected in human HCCs. Promoter luciferase assay indicated that ZNF191 can increase transcription activity of the full-length β-catenin (CTNNB1) promoter, and nucleotide (nt)-1407/-907 of the CTNNB1 promoter exhibited the maximum transcriptional activity. Electrophoretic mobility shift assay showed that purified ZNF191 protein can directly bind to the CTNNB1 promoter, and the binding region is located at nt-1254/-1224. Finally, we demonstrate that the key binding sequence of ZNF191 in vivo is ATTAATT. CONCLUSION ZNF191 can directly bind to the CTNNB1 promoter and activate the expression of β-catenin and its downstream target genes such as cyclin D1 in hepatoma cell lines. This study uncovers a new molecular mechanism of transcription regulation of the β-catenin gene in HCC.
Collapse
Affiliation(s)
- Guoyuan Liu
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Isolation and characterization of a novel zinc finger gene, ZNFD, activating AP1(PMA) transcriptional activities. Mol Cell Biochem 2010; 340:63-71. [PMID: 20162441 DOI: 10.1007/s11010-010-0401-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/11/2009] [Accepted: 02/03/2010] [Indexed: 01/31/2023]
Abstract
ZFPs (Zinc Finger Proteins) play important roles in various cellular functions, including transcriptional activation, transcriptional repression, cell proliferation, and development. C(2)H(2) (Cys-Cys-His-His motif) ZFPs are the most abundant proteins among the founding members of the ZFP super family in eukaryotes. In this study, we isolate a novel C(2)H(2) ZNF (Zinc Finger) gene ZNFD. It contains an ORF (Open Reading Frame) with a length of 990 bp, encoding 329 amino acids. The predicted protein contains a C(2)H(2) zinc finger. RT-PCR analysis in 18 human adult tissues indicated that it was expressed in five human adult tissues. Green fluorescence protein localization analysis showed that human ZNFD was located in the nucleus of Hela cells. Overexpression of ZNFD in the COS7 cells activates the transcriptional activities of AP1(PMA) (Activator of protein 1, that responds specifically to phorbol ester). Together the data indicate that ZNFD is probably a new type of C(2)H(2) ZFP and the ZNFD protein may act as a transcriptional activator in PKC (protein kinase C) signal pathway to mediate cellular functions.
Collapse
|
26
|
Howng SYB, Avila RL, Emery B, Traka M, Lin W, Watkins T, Cook S, Bronson R, Davisson M, Barres BA, Popko B. ZFP191 is required by oligodendrocytes for CNS myelination. Genes Dev 2010; 24:301-11. [PMID: 20080941 DOI: 10.1101/gad.1864510] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023]
Abstract
The controlling factors that prompt mature oligodendrocytes to myelinate axons are largely undetermined. In this study, we used a forward genetics approach to identify a mutant mouse strain characterized by the absence of CNS myelin despite the presence of abundant numbers of late-stage, process-extending oligodendrocytes. Through linkage mapping and complementation testing, we identified the mutation as a single nucleotide insertion in the gene encoding zinc finger protein 191 (Zfp191), which is a widely expressed, nuclear-localized protein that belongs to a family whose members contain both DNA-binding zinc finger domains and protein-protein-interacting SCAN domains. Zfp191 mutants express an array of myelin-related genes at significantly reduced levels, and our in vitro and in vivo data indicate that mutant ZFP191 acts in a cell-autonomous fashion to disrupt oligodendrocyte function. Therefore, this study demonstrates that ZFP191 is required for the myelinating function of differentiated oligodendrocytes.
Collapse
Affiliation(s)
- Shen Yi B Howng
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|