1
|
Zhang JJ, Fu H, Lin R, Zhou J, Haider A, Fang W, Elghazawy NH, Rong J, Chen J, Li Y, Ran C, Collier TL, Chen Z, Liang SH. Imaging Cholinergic Receptors in the Brain by Positron Emission Tomography. J Med Chem 2023; 66:10889-10916. [PMID: 37583063 PMCID: PMC10461233 DOI: 10.1021/acs.jmedchem.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 08/17/2023]
Abstract
Cholinergic receptors represent a promising class of diagnostic and therapeutic targets due to their significant involvement in cognitive decline associated with neurological disorders and neurodegenerative diseases as well as cardiovascular impairment. Positron emission tomography (PET) is a noninvasive molecular imaging tool that has helped to shed light on the roles these receptors play in disease development and their diverse functions throughout the central nervous system (CNS). In recent years, there has been a notable advancement in the development of PET probes targeting cholinergic receptors. The purpose of this review is to provide a comprehensive overview of the recent progress in the development of these PET probes for cholinergic receptors with a specific focus on ligand structure, radiochemistry, and pharmacology as well as in vivo performance and applications in neuroimaging. The review covers the structural design, pharmacological properties, radiosynthesis approaches, and preclinical and clinical evaluations of current state-of-the-art PET probes for cholinergic receptors.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hualong Fu
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ruofan Lin
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jingyin Zhou
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ahmed Haider
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Weiwei Fang
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Nehal H. Elghazawy
- Department
of Pharmaceutical, Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Jian Rong
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jiahui Chen
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Yinlong Li
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Chongzhao Ran
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02114, United States
| | - Thomas L. Collier
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Zhen Chen
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Steven H. Liang
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| |
Collapse
|
2
|
Horti AG, Wong DF. Clinical Perspective and Recent Development of PET Radioligands for Imaging Cerebral Nicotinic Acetylcholine Receptors. PET Clin 2016; 4:89-100. [PMID: 20046884 DOI: 10.1016/j.cpet.2009.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
3
|
Preshlock S, Tredwell M, Gouverneur V. (18)F-Labeling of Arenes and Heteroarenes for Applications in Positron Emission Tomography. Chem Rev 2016; 116:719-66. [PMID: 26751274 DOI: 10.1021/acs.chemrev.5b00493] [Citation(s) in RCA: 477] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Diverse radiochemistry is an essential component of nuclear medicine; this includes imaging techniques such as positron emission tomography (PET). As such, PET can track diseases at an early stage of development, help patient care planning through personalized medicine and support drug discovery programs. Fluorine-18 is the most frequently used radioisotope in PET radiopharmaceuticals for both clinical and preclinical research. Its physical and nuclear characteristics (97% β(+) decay, 109.8 min half-life, 635 keV positron energy) and high specific activity make it an attractive nuclide for labeling and molecular imaging. Arenes and heteroarenes are privileged candidates for (18)F-incorporation as they are metabolically robust and therefore widely used by medicinal chemists and radiochemists alike. For many years, the range of (hetero)arenes amenable to (18)F-fluorination was limited by the lack of chemically diverse precursors, and of radiochemical methods allowing (18)F-incorporation in high selectivity and efficiency (radiochemical yield and purity, specific activity, and radio-scalability). The appearance of late-stage fluorination reactions catalyzed by transition metal or small organic molecules (organocatalysis) has encouraged much research on the use of these activation manifolds for (18)F-fluorination. In this piece, we review all of the reactions known to date to install the (18)F substituent and other key (18)F-motifs (e.g., CF3, CHF2, OCF3, SCF3, OCHF2) of medicinal relevance onto (hetero)arenes. The field has changed significantly in the past five years, and the current trend suggests that the radiochemical space available for PET applications will expand rapidly in the near future.
Collapse
Affiliation(s)
- Sean Preshlock
- Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom
| | - Matthew Tredwell
- Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom
| | - Véronique Gouverneur
- Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom
| |
Collapse
|
4
|
Smits R, Fischer S, Hiller A, Deuther-Conrad W, Wenzel B, Patt M, Cumming P, Steinbach J, Sabri O, Brust P, Hoepping A. Synthesis and biological evaluation of both enantiomers of [(18)F]flubatine, promising radiotracers with fast kinetics for the imaging of α4β2-nicotinic acetylcholine receptors. Bioorg Med Chem 2013; 22:804-12. [PMID: 24369841 DOI: 10.1016/j.bmc.2013.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/29/2013] [Accepted: 12/05/2013] [Indexed: 11/30/2022]
Abstract
Both enantiomers of the epibatidine analogue flubatine display high affinity towards the α4β2 nicotinic acetylcholine receptor (nAChR) in vitro, accompanied by negligible interactions with diverse off-target proteins. Extended single dose toxicity studies in rodent indicated a NOEL (No Observed Effect Level) of 6.2μg/kg for (-)-flubatine and 1.55μg/kg for (+)-flubatine. We developed syntheses for both flubatine enantiomers and their corresponding precursors for radiolabeling. The newly synthesized trimethylammonium precursors allowed for highly efficient (18)F-radiolabelling in radiochemical yields >60% and specific activities >750GBq/μmol, thus making the radioligands practical for clinical investigation.
Collapse
Affiliation(s)
- René Smits
- ABX Advanced Biochemical Compounds GmbH, Heinrich-Glaeser-Strasse 10-14, D-01454 Radeberg, Germany
| | - Steffen Fischer
- Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Institute of Radiopharmacy, Permoserstrasse-15, D-04318 Leipzig, Germany
| | - Achim Hiller
- Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Institute of Radiopharmacy, Permoserstrasse-15, D-04318 Leipzig, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Institute of Radiopharmacy, Permoserstrasse-15, D-04318 Leipzig, Germany
| | - Barbara Wenzel
- Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Institute of Radiopharmacy, Permoserstrasse-15, D-04318 Leipzig, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Liebigstrasse 18, D-04103 Leipzig, Germany
| | - Paul Cumming
- ABX Advanced Biochemical Compounds GmbH, Heinrich-Glaeser-Strasse 10-14, D-01454 Radeberg, Germany
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Institute of Radiopharmacy, Permoserstrasse-15, D-04318 Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Liebigstrasse 18, D-04103 Leipzig, Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Institute of Radiopharmacy, Permoserstrasse-15, D-04318 Leipzig, Germany
| | - Alexander Hoepping
- ABX Advanced Biochemical Compounds GmbH, Heinrich-Glaeser-Strasse 10-14, D-01454 Radeberg, Germany.
| |
Collapse
|
5
|
Fischer S, Hiller A, Smits R, Hoepping A, Funke U, Wenzel B, Cumming P, Sabri O, Steinbach J, Brust P. Radiosynthesis of racemic and enantiomerically pure (-)-[18F]flubatine--a promising PET radiotracer for neuroimaging of α4β2 nicotinic acetylcholine receptors. Appl Radiat Isot 2013; 74:128-36. [PMID: 23416407 DOI: 10.1016/j.apradiso.2013.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 12/07/2012] [Accepted: 01/01/2013] [Indexed: 10/27/2022]
Abstract
(-)-[(18)F]flubatine is a promising agent for visualization by PET of cerebral α4β2 nicotinic acetylcholine receptors (nAChRs), which are implicated in psychiatric and neurodegenerative disorders. Here, we describe a substantially improved two-step radiosynthesis strategy for (-)-[(18)F]flubatine, based on the nucleophilic radiofluorination of an enantiomerically pure precursor followed by deprotection of the intermediate. An extensive leaving group/protecting group library of precursors was tested. Application of a trimethylammonium-iodide precursor with a Boc-protecting group provided the best results: labeling efficiencies of 80-95%, RCY of 60±5%, radiochemical purity of >98%, and a specific activity of >350GBq/μmol. The radiosynthesis is easily transferable to an automated synthesis module.
Collapse
Affiliation(s)
- Steffen Fischer
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmacy, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Permoserstrasse 15, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Gao Y, Wang H, Mease RC, Pomper MG, Horti AG. Improved Syntheses of Precursors for PET Radioligands [F]XTRA and [F]AZAN. Tetrahedron Lett 2010; 51:5333-5335. [PMID: 20835363 PMCID: PMC2936105 DOI: 10.1016/j.tetlet.2010.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Improved syntheses of 7-methyl-2-exo-[3'-(2-bromopyridin-3-yl)-5'-pyridinyl]-7-azabicyclo[2.2.1]heptanes (3) and 7-methyl-2-exo-[3'-(6-bromopyridin-2-yl)-5'-pyridinyl]-7-azabicyclo[2.2.1]heptanes (4), precursors for PET radioligands [(18)F]XTRA (1) and [(18)F]AZAN (2), involving a key Stille coupling step followed by deprotection of Boc group and N-methylation are described. The new synthetic procedures provided the title compounds in more than 40% overall yields.
Collapse
Affiliation(s)
- Yongjun Gao
- Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, 600 North Wolfe Street, Baltimore, Maryland 21287-0816
| | - Haofan Wang
- Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, 600 North Wolfe Street, Baltimore, Maryland 21287-0816
| | - Ronnie C. Mease
- Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, 600 North Wolfe Street, Baltimore, Maryland 21287-0816
| | - Martin G. Pomper
- Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, 600 North Wolfe Street, Baltimore, Maryland 21287-0816
| | - Andrew G. Horti
- Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, 600 North Wolfe Street, Baltimore, Maryland 21287-0816
| |
Collapse
|
7
|
Development of radioligands with optimized imaging properties for quantification of nicotinic acetylcholine receptors by positron emission tomography. Life Sci 2009; 86:575-84. [PMID: 19303028 DOI: 10.1016/j.lfs.2009.02.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 02/05/2009] [Accepted: 02/12/2009] [Indexed: 11/20/2022]
Abstract
AIMS There is an urgent need for positron emission tomography (PET) imaging of the nicotinic acetylcholine receptors (nAChR) to study the role of the nicotinic system in Alzheimer's and Parkinson's diseases, schizophrenia, drug dependence and many other disorders. Greater understanding of the underlying mechanisms of the nicotinic system could direct the development of medications to treat these disorders. Central nAChRs also contribute to a variety of brain functions, including cognition, behavior and memory. MAIN METHODS Currently, only two radiotracers, (S)-3-(azetidin-2-ylmethoxy)-2-[(18)F]fluoropyridine (2-[(18)F]FA) and (S)-5-(azetidin-2-ylmethoxy)-2-[(18)F]fluoropyridine (6-[(18)F]FA), are available for studying nAChRs in human brain using PET. However, the "slow" brain kinetics of these radiotracers hamper mathematical modeling and reliable measurement of kinetic parameters since it takes 4-7 h of PET scanning for the tracers to reach steady state. The imaging drawbacks of the presently available nAChR radioligands have initiated the development of radioligands with faster brain kinetics by several research groups. KEY FINDINGS This minireview attempts to survey the important achievements of several research groups in the discovery of PET nicotinic radioligands reached recently. Specifically, this article reviews papers published from 2006 through 2008 describing the development of fifteen new nAChR (11)C-and (18)F-ligands that show improved imaging properties over 2-[(18)F]FA. SIGNIFICANCE The continuous efforts of radiomedicinal chemists led to the development of several interesting PET radioligands for imaging of nAChR including [(18)F]AZAN, a potentially superior alternative to 2-[(18)F]FA.
Collapse
|
8
|
Suarez SV, Amadon A, Giacomini E, Wiklund A, Changeux JP, Le Bihan D, Granon S. Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: a BOLD fMRI study. Psychopharmacology (Berl) 2009; 202:599-610. [PMID: 18818904 DOI: 10.1007/s00213-008-1338-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 09/10/2008] [Indexed: 01/08/2023]
Abstract
RATIONALE The behavioral effects of nicotine and the role of the beta2-containing nicotinic receptors in these behaviors are well documented. However, the behaviors altered by nicotine rely on the functioning on multiple brain circuits where the high-affinity beta2-containing nicotinic receptors (beta2*nAChRs) are located. OBJECTIVES We intend to see which brain circuits are activated when nicotine is given in animals naïve for nicotine and whether the beta2*nAChRs are needed for its activation of the blood oxygen level dependent (BOLD) signal in all brain areas. MATERIALS AND METHODS We used functional magnetic resonance imaging (fMRI) to measure the brain activation evoked by nicotine (1 mg/kg delivered at a slow rate for 45 min) in anesthetized C57BL/6J mice and beta2 knockout (KO) mice. RESULTS Acute nicotine injection results in a significant increased activation in anterior frontal, motor, and somatosensory cortices and in the ventral tegmental area and the substantia nigra. Anesthetized mice receiving no nicotine injection exhibited a major decreased activation in all cortical and subcortical structures, likely due to prolonged anesthesia. At a global level, beta2 KO mice were not rescued from the globally declining BOLD signal. However, nicotine still activated regions of a meso-cortico-limbic circuit likely via alpha7 nicotinic receptors. CONCLUSIONS Acute nicotine exposure compensates for the drop in brain activation due to anesthesia through the meso-cortico-limbic network via the action of nicotine on beta2*nAChRs. The developed fMRI method is suitable for comparing responses in wild-type and mutant mice.
Collapse
Affiliation(s)
- S V Suarez
- Unité de Neurobiologie Intégrative du Système Cholinergique, URA CNRS 2182, Institut Pasteur, Département de Neuroscience, 25 rue du Dr. Roux, 75015 Paris, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Dollé F, Langle S, Roger G, Fulton RR, Lagnel-de Bruin B, Henderson DJ, Hinnen F, Paine T, Coster MJ, Valette H, Bottlaender M, Kassiou M. Synthesis and In-Vivo Evaluation of [11C]p-PVP-MEMA as a PET Radioligand for Imaging Nicotinic Receptors. Aust J Chem 2008. [DOI: 10.1071/ch08083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Within the class of (4-pyridinyl)vinylpyridines developed by Abbott laboratories as potent neuronal nicotinic acetylcholine receptor ligands, p-PVP-MEMA ({(R)-2-[6-chloro-5-((E)-2-pyridin-4-ylvinyl)pyridin-3-yloxy]-1-methylethyl}methylamine) is the lead compound of a novel series that do not display the traditional nicotinic-like pyrrole-ring but still possessing high subnanomolar affinity (Ki 0.077 nm—displacement of [3H](–)cytisine from whole rat brain synaptic membranes). In the present study, p-PVP-MEMA and its nor-derivative ({(R)-2-[6-chloro-5-((E)-2-pyridin-4-ylvinyl)pyridin-3-yloxy]-1-methylethyl}methylamine) as precursor for labelling with the short-lived positron-emitter carbon-11 (T1/2 20.4 min) were synthesized in 10 chemical steps from 2-hydroxy-5-nitropyridine and Boc-d-alanine. N-Alkylation of nor-p-PVP-MEMA with [11C]methyl iodide afforded [11C]p-PVP-MEMA (>98% radiochemically pure, specific activity of 86.4 GBq μmol–1) in 2% (non-decay corrected and non-optimized) radiochemical yield, in 34 min (including HPLC purification and formulation). Preliminary positron emission tomography (PET) results obtained in a Papio hamadryas baboon showed that [11C]p-PVP-MEMA is not a suitable PET-radioligand.
Collapse
|