1
|
Spelta LEW, Torres YYS, de Oliveira SCWSEF, Yonamine M, Bailey A, Camarini R, Garcia RCT, Marcourakis T. Chronic escalating-dose and acute binge cocaine treatments change the hippocampal cholinergic muscarinic system on drug presence and after withdrawal. Toxicol Appl Pharmacol 2022; 447:116068. [PMID: 35597300 DOI: 10.1016/j.taap.2022.116068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 12/21/2022]
Abstract
Cocaine addiction is a relapsing disorder with loss of control in limiting drug intake. Considering the involvement of acetylcholine in the neurobiology of the disease, our aim was to evaluate whether cocaine induces plastic changes in the hippocampal cholinergic muscarinic system. Male Swiss-Webster mice received saline or cocaine (ip) three times daily (60-min intervals) either acutely or in an escalating-dose binge paradigm for 14 days. Locomotor activity was measured in all treatment days. Dopaminergic and cholinergic muscarinic receptors (D1R, D2R, M1-M5, mAChRs), choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT) and acetylcholinesterase (AChE) were quantified in the hippocampus by immunoblotting one hour after the last injection (on drug) or after 14 days of abstinence (withdrawal). Escalating-dose group showed cocaine-induced locomotor sensitization from day 2. M3 mAChR and ChAT significantly increased after the on-drug acute binge treatment. Escalating-dose on-drug group showed increased ChAT, M1, M5 mAChR and D2R; and decreased D1R. Acute-binge withdrawal group showed increased VAChT, M2 mAChR, D1R, and D2R; and decreased M1 mAChR. Escalating-dose withdrawal group presented increased D1R and VAChT and decreased M1 mAChR and D2R. Locomotor activity was negatively correlated with M1 mAChR and AChE in on-drug group and positively correlated with VAChT in withdrawal group. M1 mAChR was positively correlated with M2 mAChR and ChAT in on-drug group, whereas ChAT was positively correlated with M5 mAChR in withdrawal group. The results indicate that cocaine induced an increase in the hippocampal cholinergic tone in the presence of the drug, whereas withdrawal causes a resetting in the system.
Collapse
Affiliation(s)
- Lidia E W Spelta
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000 São Paulo/SP, Brazil
| | - Yuli Y S Torres
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000 São Paulo/SP, Brazil
| | - Sarah C W S E F de Oliveira
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000 São Paulo/SP, Brazil; Pharmacosciences Department, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Maurício Yonamine
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000 São Paulo/SP, Brazil
| | - Alexis Bailey
- Pharmacology Section, Institute of Medical and Biomedical Education, St George's University of London, Cranmer Terrace, SW17 0RE London, UK
| | - Rosana Camarini
- Department of Pharmacology, Laboratory of Neurochemical and Behavior Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, Prédio 1, 05508-900 São Paulo/SP, Brazil.
| | - Raphael C T Garcia
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Rua São Nicolau, 210, 1° andar, 09913-030 Diadema/SP, Brazil.
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000 São Paulo/SP, Brazil.
| |
Collapse
|
2
|
Angarita GA, Hadizadeh H, Cerdena I, Potenza MN. Can pharmacotherapy improve treatment outcomes in people with co-occurring major depressive and cocaine use disorders? Expert Opin Pharmacother 2021; 22:1669-1683. [PMID: 34042556 DOI: 10.1080/14656566.2021.1931684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Major depressive disorder (MDD) and cocaine use disorder (CUD) are prevalent and frequently co-occur. When co-occurring, the presence of one disorder typically negatively impacts the prognosis for the other. Given the clinical relevance, we sought to examine pharmacotherapies for co-occurring CUD and MDD. While multiple treatment options have been examined in the treatment of each condition individually, studies exploring pharmacological options for their comorbidity are fewer and not conclusive.Areas Covered: For this review, the authors searched the literature in PubMed using clinical query options for therapies and keywords relating to each condition. Then, they described potentially promising pharmacologic therapeutic options based on shared mechanisms between the two conditions and/or results from individual clinical trials conducted to date.Expert opinion: Medications like stimulants, dopamine (D3) receptors partial agonists or antagonists, antagonists of kappa opioid receptors, topiramate, and ketamine could be promising as there is significant overlap relating to reward deficiency models, antireward pathways, and altered glutamatergic systems. However, the available clinical literature on any one of these types of agents is mixed. Additionally, for some agents there is possible concern related to abuse potential (e.g. ketamine and stimulants).
Collapse
Affiliation(s)
- Gustavo A Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, USA
| | - Hasti Hadizadeh
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, USA
| | - Ignacio Cerdena
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Connecticut Mental Health Center, New Haven, CT, USA
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Connecticut Mental Health Center, New Haven, CT, USA.,Child Study Center, Yale University School of Medicine, New Haven, CT, USA.,Department of Neuroscience, Yale University, New Haven, CT, USA.,Connecticut Council on Problem Gambling, Wethersfield, CT, USA
| |
Collapse
|
3
|
De Sa Nogueira D, Bourdy R, Filliol D, Romieu P, Befort K. Hippocampal mu opioid receptors are modulated following cocaine self-administration in rat. Eur J Neurosci 2021; 53:3341-3349. [PMID: 33811699 DOI: 10.1111/ejn.15217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/18/2021] [Indexed: 11/30/2022]
Abstract
Cocaine addiction is a complex pathology induced by long-term brain changes. Understanding the neurochemical changes underlying the reinforcing effects of this drug of abuse is critical for reducing the societal burden of drug addiction. The mu opioid receptor plays a major role in drug reward. This receptor is modulated by chronic cocaine treatment in specific brain structures, but few studies investigated neurochemical adaptations induced by voluntary cocaine intake. In this study, we investigated whether intravenous cocaine-self administration (0.33 mg/kg/injection, fixed-ratio 1 [FR1], 10 days) in rats induces transcriptional and functional changes of the mu opioid receptor in reward-related brain regions. Epigenetic processes with histone modifications were examined for two activating marks, H3K4Me3, and H3K27Ac. We found an increase of mu opioid receptor gene expression along with a potentiation of its functionality in hippocampus of cocaine self-administering animals compared to saline controls. Chromatin immunoprecipitation followed by qPCR revealed no modifications of the histone mark H3K4Me3 and H3K27Ac levels at mu opioid receptor promoter. Our study highlights the hippocampus as an important target to further investigate neuroadaptive processes leading to cocaine addiction.
Collapse
Affiliation(s)
- David De Sa Nogueira
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| | - Romain Bourdy
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| | - Dominique Filliol
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| | - Pascal Romieu
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| | - Katia Befort
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Matzeu A, Martin-Fardon R. Drug Seeking and Relapse: New Evidence of a Role for Orexin and Dynorphin Co-transmission in the Paraventricular Nucleus of the Thalamus. Front Neurol 2018; 9:720. [PMID: 30210441 PMCID: PMC6121102 DOI: 10.3389/fneur.2018.00720] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 08/08/2018] [Indexed: 01/19/2023] Open
Abstract
The long-lasting vulnerability to relapse remains the main challenge for the successful treatment of drug addiction. Neural systems that are involved in processing natural rewards and drugs of abuse overlap. However, neuroplasticity that is caused by drug exposure may be responsible for maladaptive, compulsive, and addictive behavior. The orexin (Orx) system participates in regulating numerous physiological processes, including energy metabolism, arousal, and feeding, and is recruited by drugs of abuse. The Orx system is differentially recruited by drugs and natural rewards. Specifically, we found that the Orx system is more engaged by drugs than by non-drugs, such as sweetened condensed milk (SCM) or a glucose saccharin solution (GSS), in an operant model of reward seeking. Although stimuli (S+) that are conditioned to cocaine (COC), ethanol, and SCM/GSS equally elicited reinstatement, Orx receptor blockade reversed conditioned reinstatement for drugs vs. non-drugs. Moreover, the hypothalamic recruitment of Orx cells was greater in rats that were tested with the COC S+ vs. SCM S+, indicating of a preferential role for the Orx system in perseverative, compulsive-like COC seeking and not behavior that is motivated by palatable food. Accumulating evidence indicates that the paraventricular nucleus of the thalamus (PVT), which receives major Orx projections, mediates drug-seeking behavior. All Orx neurons contain dynorphin (Dyn), and Orx and Dyn are co-released. In the VTA, they play opposing roles in reward and motivation. To fully understand the physiological and behavioral roles of Orx transmission in the PVT, one important consideration is that Orx neurons that project to the PVT may co-release Orx with another peptide, such as Dyn. The PVT expresses both Orx receptors and κ opioid receptors, suggesting that Orx and Dyn act in tandem when released in the PVT, in addition to the VTA. The present review discusses recent findings that suggest the maladaptive recruitment of Orx/Dyn-PVT neurotransmission by drugs of abuse vs. a highly palatable food reward.
Collapse
Affiliation(s)
- Alessandra Matzeu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States
| | | |
Collapse
|
5
|
Dunn AD, Reed B, Guariglia C, Dunn AM, Hillman JM, Kreek MJ. Structurally Related Kappa Opioid Receptor Agonists with Substantial Differential Signaling Bias: Neuroendocrine and Behavioral Effects in C57BL6 Mice. Int J Neuropsychopharmacol 2018; 21:847-857. [PMID: 29635340 PMCID: PMC6119295 DOI: 10.1093/ijnp/pyy034] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/30/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The kappa opioid receptor system has been revealed as a potential pharmacotherapeutic target for the treatment of addictions to substances of abuse. Kappa opioid receptor agonists have been shown to block the rewarding and dopamine-releasing effects of psychostimulants. Recent investigations have profiled the in vivo effects of compounds biased towards G-protein-mediated signaling, with less potent arrestin-mediated signaling. The compounds studied here derive from a series of trialkylamines: N-substituted-N- phenylethyl-N-3-hydroxyphenylethyl-amine, with N-substituents including n-butyl (BPHA), methylcyclobutyl (MCBPHA), and methylcyclopentyl (MCPPHA). METHODS BPHA, MCBPHA, and MCPPHA were characterized in vitro in a kappa opioid receptor-expressing cell line in binding assays and functional assays. We also tested the compounds in C57BL6 mice, assaying incoordination with rotarod, as well as circulating levels of the neuroendocrine kappa opioid receptor biomarker, prolactin. RESULTS BPHA, MCBPHA, and MCPPHA showed full kappa opioid receptor agonism for G-protein coupling compared with the reference compound U69,593. BPHA showed no measurable β-arrestin-2 recruitment, indicating that it is extremely G-protein biased. MCBPHA and MCPPHA, however, showed submaximal efficacy for recruiting β-arrestin-2. Studies in C57BL6 mice reveal that all compounds stimulate release of prolactin, consistent with dependence on G-protein signaling. MCBPHA and MCPPHA result in rotarod incoordination, whereas BPHA does not, consistent with the reported requirement of intact kappa opioid receptor/β-arrestin-2 mediated coupling for kappa opioid receptor agonist-induced rotarod incoordination. CONCLUSIONS BPHA, MCBPHA, and MCPPHA are thus novel differentially G-protein-biased kappa opioid receptor agonists. They can be used to investigate how signaling pathways mediate kappa opioid receptor effects in vitro and in vivo and to explore the effects of candidate kappa opioid receptor-targeted pharmacotherapeutics.
Collapse
Affiliation(s)
- Amelia D Dunn
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, New York,Correspondence: Amelia Dunn, BS, BA, 1230 York Ave, Box 243, New York, NY 10065 ()
| | - Brian Reed
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, New York
| | - Catherine Guariglia
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, New York
| | - Alexandra M Dunn
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, New York
| | - Joshua M Hillman
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, New York
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, New York
| |
Collapse
|
6
|
Dynorphin Counteracts Orexin in the Paraventricular Nucleus of the Thalamus: Cellular and Behavioral Evidence. Neuropsychopharmacology 2018; 43:1010-1020. [PMID: 29052613 PMCID: PMC5854806 DOI: 10.1038/npp.2017.250] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 11/08/2022]
Abstract
The orexin (Orx) system plays a critical role in drug addiction and reward-related behaviors. The dynorphin (Dyn) system promotes depressive-like behavior and plays a key role in the aversive effects of stress. Orx and Dyn are co-released and have opposing functions in reward and motivation in the ventral tegmental area (VTA). Previous studies suggested that OrxA transmission in the posterior paraventricular nucleus of the thalamus (pPVT) participates in cocaine-seeking behavior. This study determined whether Orx and Dyn interact in the pPVT. Using the brain slice preparation for cellular recordings, superfusion of DynA onto pPVT neurons decreased the frequency of spontaneous and miniature excitatory postsynaptic currents (s/mEPSCs). OrxA increased the frequency of sEPSCs but had no effect on mEPSCs, suggesting a network-driven effect of OrxA. The amplitudes of s/mEPSCs were unaffected by the peptides, indicating a presynaptic action on glutamate release. Augmentation of OrxA-induced glutamate release was reversed by DynA. Utilizing a behavioral approach, separate groups of male Wistar rats were trained to self-administer cocaine or sweetened condensed milk (SCM). After extinction, rats received intra-pPVT administration of OrxA±DynA±the κ-opioid receptor antagonist nor-binaltorphimine (NorBNI) under extinction conditions. OrxA reinstated cocaine- and SCM-seeking behavior, with a greater effect in cocaine animals. DynA blocked OrxA-induced cocaine seeking but not SCM seeking. NorBNI did not induce or potentiate cocaine-seeking behavior induced by OrxA but reversed DynA effect. This indicates that the κ-opioid system in the pPVT counteracts OrxA-induced cocaine seeking, suggesting a novel therapeutic target to prevent cocaine relapse.
Collapse
|
7
|
Reed B, Butelman ER, Fry RS, Kimani R, Kreek MJ. Repeated Administration of Opra Kappa (LY2456302), a Novel, Short-Acting, Selective KOP-r Antagonist, in Persons with and without Cocaine Dependence. Neuropsychopharmacology 2018; 43:739-750. [PMID: 28857070 PMCID: PMC5809790 DOI: 10.1038/npp.2017.205] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/14/2017] [Accepted: 08/27/2017] [Indexed: 12/14/2022]
Abstract
The κ-opioid receptor (KOP-r) system and its endogenous ligands, the dynorphins, are involved in the neurobiological regulation of addictive states, and of mood. There are limited data on the impact of selective KOP-r antagonism in humans on basic biobehavioral functions, or on addictive diseases and mood disorders. Previously studied selective KOP-r antagonists have unusual pharmacodynamic and pharmacokinetic properties (slow development of KOP-r selectivity, extremely long duration of action) that limit translation to human studies. A recently developed selective KOP-r-antagonist, Opra Kappa (LY2456302; CERC-501), has medication-like duration of action, oral bioavailability, and target engagement. The current study is the first investigation of the effects of a KOP-r-antagonist in cocaine-dependent persons in comparison with normal volunteers. In a stress-minimized inpatient setting, we determined the neuroendocrine and neurobehavioral effects of repeated administration of an active dose of Opra Kappa (10 mg p.o. daily, four consecutive days in comparison with an initial baseline day). Healthy volunteers (n=40), persons diagnosed with cocaine dependence in early abstinence (<2 months, EACD) (n=23), and drug-free former cocaine-dependent persons (7-month to 25-year abstinence, DFFCD) (n=7) were studied, with measurements including circulating neuroendocrine hormones, affect, and, in cocaine-dependent persons, cocaine craving. Modest adverse events related to Opra Kappa included pruritus, observed in a subset of individuals. No significant change was observed in serum prolactin levels following Opra Kappa administration, but modest increases in circulating adrenocorticotropic hormone and cortisol were observed. No significant changes were noted in measures of depression or cocaine craving in this stress-minimized setting. Overall, these studies demonstrate that effects of 10 mg Opra Kappa are largely consistent with those predicted for a selective KOP-r antagonist. This medication regimen was tolerable, and is therefore feasible for further studies in cocaine-dependent persons.
Collapse
Affiliation(s)
- Brian Reed
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, NY, USA,Laboratory of the Biology of Addictive Diseases, Rockefeller University, Box 171, New York, NY 10065, USA, Tel: 212 327 8247, Fax: 212 327 8574, E-mail:
| | - Eduardo R Butelman
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, NY, USA
| | - Rebecca S Fry
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, NY, USA
| | - Rachel Kimani
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, NY, USA
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, NY, USA
| |
Collapse
|
8
|
Georgiou P, Zanos P, Ehteramyan M, Hourani S, Kitchen I, Maldonado R, Bailey A. Differential regulation of mGlu5 R and ΜOPr by priming- and cue-induced reinstatement of cocaine-seeking behaviour in mice. Addict Biol 2015; 20:902-12. [PMID: 25522112 DOI: 10.1111/adb.12208] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The key problem for the treatment of drug addiction is relapse to drug use after abstinence that can be triggered by drug-associated cues, re-exposure to the drug itself and stress. Understanding the neurobiological mechanisms underlying relapse is essential in order to develop effective pharmacotherapies for its prevention. Given the evidence implicating the metabotropic glutamate receptor 5 (mGlu5 R), μ-opioid receptor (MOPr), κ-opioid receptor (ΚOPr) and oxytocin receptor (OTR) systems in cocaine addiction and relapse, our aim was to assess the modulation of these receptors using a mouse model of cue- and priming-induced reinstatement of cocaine seeking. Male mice were trained to self-administer cocaine (1 mg/kg/infusion, i.v.) and were randomized into different groups: (1) cocaine self-administration; (2) cocaine extinction; (3) cocaine-primed (10 mg/kg i.p.); or (4) cue-induced reinstatement of cocaine seeking. Mice undergoing the same protocols but receiving saline instead of cocaine were used as controls. Quantitative autoradiography of mGlu5 R, MOPr, KOPr and OTR showed a persistent cocaine-induced upregulation of the mGlu5 R and OTR in the lateral septum and central amygdala, respectively. Moreover, a downregulation of mGlu5 R and MOPr was observed in the basolateral amygdala and striatum, respectively. Further, we showed that priming- but not cue-induced reinstatement upregulates mGlu5 R and MOPr binding in the nucleus accumbens core and basolateral amygdala, respectively, while cue- but not priming-induced reinstatement downregulates MOPr binding in caudate putamen and nucleus accumbens core. This is the first study to provide direct evidence of reinstatement-induced receptor alterations that are likely to contribute to the neurobiological mechanisms underpinning relapse to cocaine seeking.
Collapse
Affiliation(s)
- Polymnia Georgiou
- Sleep, Chronobiology & Addiction Group; School of Biosciences and Medicine; Faculty of Health and Medical Sciences; University of Surrey; UK
| | - Panos Zanos
- Sleep, Chronobiology & Addiction Group; School of Biosciences and Medicine; Faculty of Health and Medical Sciences; University of Surrey; UK
| | - Mazdak Ehteramyan
- Department of Experimental and Health Sciences; University of Pompeu Fabra; Spain
| | - Susanna Hourani
- Sleep, Chronobiology & Addiction Group; School of Biosciences and Medicine; Faculty of Health and Medical Sciences; University of Surrey; UK
| | - Ian Kitchen
- Sleep, Chronobiology & Addiction Group; School of Biosciences and Medicine; Faculty of Health and Medical Sciences; University of Surrey; UK
| | - Rafael Maldonado
- Department of Experimental and Health Sciences; University of Pompeu Fabra; Spain
| | - Alexis Bailey
- Sleep, Chronobiology & Addiction Group; School of Biosciences and Medicine; Faculty of Health and Medical Sciences; University of Surrey; UK
| |
Collapse
|
9
|
Noble F, Lenoir M, Marie N. The opioid receptors as targets for drug abuse medication. Br J Pharmacol 2015; 172:3964-79. [PMID: 25988826 DOI: 10.1111/bph.13190] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/24/2015] [Accepted: 05/10/2015] [Indexed: 12/24/2022] Open
Abstract
The endogenous opioid system is largely expressed in the brain, and both endogenous opioid peptides and receptors are present in areas associated with reward and motivation. It is well known that this endogenous system plays a key role in many aspects of addictive behaviours. The present review summarizes the modifications of the opioid system induced by chronic treatment with drugs of abuse reported in preclinical and clinical studies, as well as the action of opioid antagonists and agonists on the reinforcing effects of drugs of abuse, with therapeutic perspectives. We have focused on the effects of chronic psychostimulants, alcohol and nicotine exposure. Taken together, the changes in both opioid peptides and opioid receptors in different brain structures following acute or chronic exposure to these drugs of abuse clearly identify the opioid system as a potential target for the development of effective pharmacotherapy for the treatment of addiction and the prevention of relapse.
Collapse
Affiliation(s)
- Florence Noble
- Centre National de la Recherche Scientifique, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Paris Descartes, Paris, France
| | - Magalie Lenoir
- Centre National de la Recherche Scientifique, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Paris Descartes, Paris, France
| | - Nicolas Marie
- Centre National de la Recherche Scientifique, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Paris Descartes, Paris, France
| |
Collapse
|
10
|
Epigenetically modified nucleotides in chronic heroin and cocaine treated mice. Toxicol Lett 2014; 229:451-7. [PMID: 25064621 DOI: 10.1016/j.toxlet.2014.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 12/19/2022]
Abstract
Epigenetic changes include the addition of a methyl group to the 5' carbon of the cytosine ring, known as DNA methylation, which results in the generation of the fifth DNA base, namely 5-methylcytosine. During active or passive demethylation, an intermediate modified base is formed, 5-hydroxymethylcytosine. We have currently quantified 5-methylcytosine and 5-hydroxymethylcytosine in the liver and brain of mice treated with cocaine or heroin, using liquid chromatography/tandem mass spectrometry (LC-MS/MS). Our results show that global 5-methylcytosine levels are not affected by heroin or cocaine administration, neither in the liver nor in the brain. However, 5-hydroxymethylcytosine levels are reduced in the liver following cocaine administration, while they are not affected by cocaine in the brain or by heroin administration in the liver and the brain. Elucidation of the epigenetic phenomena that takes place with respect to drug abuse and addiction, via quantitative analysis of different modified bases, may enable a better understanding of the underlying mechanisms and may lead to more personalized and effective treatment options.
Collapse
|
11
|
Fragou D, Zanos P, Kouidou S, Njau S, Kitchen I, Bailey A, Kovatsi L. Effect of chronic heroin and cocaine administration on global DNA methylation in brain and liver. Toxicol Lett 2013; 218:260-5. [DOI: 10.1016/j.toxlet.2013.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/22/2013] [Accepted: 01/25/2013] [Indexed: 12/11/2022]
|
12
|
Metaxas A, Keyworth H, Yoo J, Chen Y, Kitchen I, Bailey A. The stereotypy-inducing and OCD-like effects of chronic 'binge' cocaine are modulated by distinct subtypes of nicotinic acetylcholine receptors. Br J Pharmacol 2013; 167:450-64. [PMID: 22568685 DOI: 10.1111/j.1476-5381.2012.02023.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE High rates of cigarette smoking occur in cocaine-dependent individuals, reflecting an involvement of nicotinic acetylcholine receptors (nAChRs) in cocaine-elicited behaviour. This study was designed to assess the contribution of different nAChR subtypes to the behavioural and neurochemical effects of chronic cocaine treatment. EXPERIMENTAL APPROACH Cocaine (15 mg·kg(-1) , i.p.) was administered to male C57BL/6J mice in a chronic 'binge' paradigm, with and without the coadministration of the α7 preferring nAChR antagonist methyllycaconitine (MLA; 5 mg·kg(-1) , i.p.) or the β2* nAChR antagonist dihydro-β-erythroidine (DHβE; 2 mg·kg(-1) , i.p.). Quantitative autoradiography was used to examine the effect of cocaine exposure on α7 and α4β2* nAChRs, and on the high-affinity choline transporter. KEY RESULTS MLA+cocaine administration induced an intense self-grooming behaviour, indicating a likely role for α7 nAChRs in modulating this anxiogenic, compulsive-like effect of cocaine. In the major island of Calleja, a key area of action for neuroleptics, MLA+cocaine reduced choline transporter binding compared with cocaine (with or without DHβE) administration. DHβE treatment prevented the induction of stereotypy sensitisation to cocaine but prolonged locomotor sensitisation, implicating heteromeric β2* nAChRs in the neuroadaptations mediating cocaine-induced behavioural sensitisation. 'Binge' cocaine treatment region-specifically increased α4β2* nAChR binding in the midbrain dopaminergic regions: ventral tegmental area and substantia nigra pars compacta. CONCLUSIONS AND IMPLICATIONS We have shown a differential, subtype-selective, contribution of nAChRs to the behavioural and neurochemical sequelae of chronic cocaine administration. These data support the clinical utility of targeting specific nAChR subtypes for the alleviation of cocaine-abuse symptomatology.
Collapse
Affiliation(s)
- A Metaxas
- Department of Biochemistry and Physiology, Faculty of Health and Medical Sciences, Institute of Health and Medical Sciences, University of Surrey, Guildford, UK.
| | | | | | | | | | | |
Collapse
|
13
|
Yoo JH, Kitchen I, Bailey A. The endogenous opioid system in cocaine addiction: what lessons have opioid peptide and receptor knockout mice taught us? Br J Pharmacol 2012; 166:1993-2014. [PMID: 22428846 DOI: 10.1111/j.1476-5381.2012.01952.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cocaine addiction has become a major concern in the UK as Britain tops the European 'league table' for cocaine abuse. Despite its devastating health and socio-economic consequences, no effective pharmacotherapy for treating cocaine addiction is available. Identifying neurochemical changes induced by repeated drug exposure is critical not only for understanding the transition from recreational drug use towards compulsive drug abuse but also for the development of novel targets for the treatment of the disease and especially for relapse prevention. This article focuses on the effects of chronic cocaine exposure and withdrawal on each of the endogenous opioid peptides and receptors in rodent models. In addition, we review the studies that utilized opioid peptide or receptor knockout mice in order to identify and/or clarify the role of different components of the opioid system in cocaine-addictive behaviours and in cocaine-induced alterations of brain neurochemistry. The review of these studies indicates a region-specific activation of the µ-opioid receptor system following chronic cocaine exposure, which may contribute towards the rewarding effect of the drug and possibly towards cocaine craving during withdrawal followed by relapse. Cocaine also causes a region-specific activation of the κ-opioid receptor/dynorphin system, which may antagonize the rewarding effect of the drug, and at the same time, contribute to the stress-inducing properties of the drug and the triggering of relapse. These conclusions have important implications for the development of effective pharmacotherapy for the treatment of cocaine addiction and the prevention of relapse.
Collapse
Affiliation(s)
- Ji Hoon Yoo
- Division of Biochemistry, Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | | | |
Collapse
|
14
|
Short- and long-lasting behavioral and neurochemical adaptations: relationship with patterns of cocaine administration and expectation of drug effects in rats. Transl Psychiatry 2012; 2:e175. [PMID: 23092979 PMCID: PMC3565811 DOI: 10.1038/tp.2012.103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cocaine dependence is a significant public health problem, characterized by periods of abstinence. Chronic exposure to drugs of abuse induces important modifications on neuronal systems, including the dopaminergic system. The pattern of administration is an important factor that should be taken into consideration to study the neuroadaptations. We compared the effects of intermittent (once daily) and binge (three times a day) cocaine treatments for 1 (WD1) and 14 (WD14) days after the last cocaine injection on spontaneous locomotor activity and dopamine (DA) levels in the nucleus accumbens (Nac). The intermittent treatment led to a spontaneous increase in DA (WD1/WD14), and in locomotor activity (WD1) at the exact hour which rats were habituated to receive a cocaine injection. These results underline that taking into consideration the hours of the day at which the experiments are performed is crucial. We also investigated these behavioral and neurochemical adaptations in response to an acute cocaine challenge on WD1 and WD14. We observed that only the binge treatment led to sensitization of locomotor effects of cocaine, associated to a DA release sensitization in the Nac, whereas the intermittent treatment did not. We demonstrate that two different patterns of administration induced distinct behavioral and neurochemical consequences. We unambiguously demonstrated that the intermittent treatment induced drug expectation associated with higher basal DA level in the Nac when measured at the time of chronic cocaine injection and that the binge treatment led to behavioral and sensitization effects of cocaine.
Collapse
|
15
|
Kreek MJ, Levran O, Reed B, Schlussman SD, Zhou Y, Butelman ER. Opiate addiction and cocaine addiction: underlying molecular neurobiology and genetics. J Clin Invest 2012; 122:3387-93. [PMID: 23023708 DOI: 10.1172/jci60390] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Addictive diseases, including addiction to heroin, prescription opioids, or cocaine, pose massive personal and public health costs. Addictions are chronic relapsing diseases of the brain caused by drug-induced direct effects and persisting neuroadaptations at the epigenetic, mRNA, neuropeptide, neurotransmitter, or protein levels. These neuroadaptations, which can be specific to drug type, and their resultant behaviors are modified by various internal and external environmental factors, including stress responsivity, addict mindset, and social setting. Specific gene variants, including variants encoding pharmacological target proteins or genes mediating neuroadaptations, also modify vulnerability at particular stages of addiction. Greater understanding of these interacting factors through laboratory-based and translational studies have the potential to optimize early interventions for the therapy of chronic addictive diseases and to reduce the burden of relapse. Here, we review the molecular neurobiology and genetics of opiate addiction, including heroin and prescription opioids, and cocaine addiction.
Collapse
Affiliation(s)
- Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York 10065, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Butelman ER, Yuferov V, Kreek MJ. κ-opioid receptor/dynorphin system: genetic and pharmacotherapeutic implications for addiction. Trends Neurosci 2012; 35:587-96. [PMID: 22709632 DOI: 10.1016/j.tins.2012.05.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/27/2012] [Accepted: 05/17/2012] [Indexed: 11/17/2022]
Abstract
Addictions to cocaine or heroin/prescription opioids [short-acting μ-opioid receptor (MOPr) agonists] involve relapsing cycles, with experimentation/escalating use, withdrawal/abstinence, and relapse/re-escalation. κ-Opioid receptors (KOPr; encoded by OPRK1), and their endogenous agonists, the dynorphins (encoded by PDYN), have counter-modulatory effects on reward caused by cocaine or MOPr agonist exposure, and exhibit plasticity in addictive-like states. KOPr/dynorphin activation is implicated in depression/anxiety, often comorbid with addictions. In this opinion article we propose that particular stages of the addiction cycle are differentially affected by KOPr/dynorphin systems. Vulnerability and resilience can be due to pre-existing (e.g., genetic) factors, or epigenetic modifications of the OPRK1 or PDYN genes during the addiction cycle. Pharmacotherapeutic approaches limiting changes in KOPr/dynorphin tone, especially with KOPr partial agonists, may hold potential for the treatment of specific drug addictions and psychiatric comorbidity.
Collapse
MESH Headings
- Adaptation, Biological/genetics
- Adaptation, Biological/physiology
- Animals
- Behavior, Addictive/drug therapy
- Behavior, Addictive/genetics
- Behavior, Addictive/physiopathology
- Disease Models, Animal
- Drug Discovery/methods
- Dynorphins/physiology
- Enkephalins/genetics
- Genetic Predisposition to Disease/genetics
- Humans
- Illicit Drugs/pharmacology
- Narcotic Antagonists/pharmacology
- Narcotic Antagonists/therapeutic use
- Polymorphism, Genetic
- Protein Precursors/genetics
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/physiology
- Recurrence
Collapse
Affiliation(s)
- Eduardo R Butelman
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
17
|
Tejeda HA, Shippenberg TS, Henriksson R. The dynorphin/κ-opioid receptor system and its role in psychiatric disorders. Cell Mol Life Sci 2012; 69:857-96. [PMID: 22002579 PMCID: PMC11114766 DOI: 10.1007/s00018-011-0844-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 10/16/2022]
Abstract
The dynorphin/κ-opioid receptor system has been implicated in the pathogenesis and pathophysiology of several psychiatric disorders. In the present review, we present evidence indicating a key role for this system in modulating neurotransmission in brain circuits that subserve mood, motivation, and cognitive function. We overview the pharmacology, signaling, post-translational, post-transcriptional, transcriptional, epigenetic and cis regulation of the dynorphin/κ-opioid receptor system, and critically review functional neuroanatomical, neurochemical, and pharmacological evidence, suggesting that alterations in this system may contribute to affective disorders, drug addiction, and schizophrenia. We also overview the dynorphin/κ-opioid receptor system in the genetics of psychiatric disorders and discuss implications of the reviewed material for therapeutics development.
Collapse
Affiliation(s)
- H. A. Tejeda
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, 20 Penn St., Baltimore, MD 21201 USA
| | - T. S. Shippenberg
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
| | - R. Henriksson
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
- Department of Clinical Neuroscience, Karolinska Institutet, CMM, L8:04, 17176 Stockholm, Sweden
| |
Collapse
|
18
|
Al-Hasani R, Foster J, Metaxas A, Ledent C, Hourani S, Kitchen I, Chen Y. Increased desensitization of dopamine D2 receptor-mediated response in the ventral tegmental area in the absence of adenosine A2A receptors. Neuroscience 2011; 190:103-11. [DOI: 10.1016/j.neuroscience.2011.05.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/10/2011] [Accepted: 05/27/2011] [Indexed: 11/24/2022]
|
19
|
Mu P, Panksepp J, Schlüter O, Dong Y, Dong Y. Exposure to cocaine alters dynorphin-mediated regulation of excitatory synaptic transmission in nucleus accumbens neurons. Biol Psychiatry 2011; 69:228-35. [PMID: 21030009 PMCID: PMC3790254 DOI: 10.1016/j.biopsych.2010.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 08/23/2010] [Accepted: 09/08/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND Dysregulation of excitatory synaptic input to nucleus accumbens (NAc) medium spiny neurons (MSNs) underlies a key pathophysiology of drug addiction and addiction-associated emotional and motivational alterations. Dynorphin peptides, which exhibit higher affinity to κ type opioid receptors, are upregulated within the NAc upon exposure to cocaine administration, and the increased dynorphin-signaling in the NAc has been critically implicated in negative mood observed in cocaine- or stress-exposed animals. Despite such apparent behavioral significance of the NAc dynorphins, the understanding of how dynorphins regulate excitatory synaptic transmission in the NAc remains incomplete. METHODS We used electrophysiological recording in brain slices to examine the effects of dynorphins on excitatory synaptic transmission in the NAc. RESULTS We focused on two key dynorphins, dynorphin A and B. Our current results show that dynorphin A and B differentially regulated excitatory postsynaptic currents (EPSCs) in NAc MSNs. Whereas perfusions of both dynorphin A and B to NAc slices decreased EPSCs in MSNs, the effect of dynorphin A but not dynorphin B was completely reversed by the κ receptor-selective antagonist nor-binaltorphimine. These results implicate κ receptor-independent mechanisms in dynorphin B-mediated synaptic effects in the NAc. Furthermore, repeated exposure to cocaine (15 mg/kg/day via intraperitoneal injection for 5 days, with 1, 2, or 14 days withdrawal) completely abolished dynorphin A-mediated modulation of EPSCs in NAc MSNs, whereas the effect of dynorphin B remained largely unchanged. CONCLUSIONS Given the quantitatively higher abundance of dynorphin B in the NAc, our present results suggest that the dynorphin B-mediated, κ receptor-independent pathways predominate in the overall effect of dynorphins in cocaine-pretreated animals and potentially in cocaine-induced alterations in mood.
Collapse
Affiliation(s)
- Ping Mu
- Program in Neuroscience, Washington State University, Pullman, WA 99164-6520
| | - Jaak Panksepp
- Program in Neuroscience, Washington State University, Pullman, WA 99164-6520
| | - Oliver Schlüter
- Department of Molecular Neurobiology, European Neuroscience Institute, Grisebachstr. 5, 37077 Göttingen, Germany
| | - Yan Dong
- Program in Neuroscience, Washington State University, Pullman, WA 99164-6520
| | | |
Collapse
|
20
|
Bailey A, Metaxas A, Al-Hasani R, Keyworth HL, Forster DM, Kitchen I. Mouse strain differences in locomotor, sensitisation and rewarding effect of heroin; association with alterations in MOP-r activation and dopamine transporter binding. Eur J Neurosci 2010; 31:742-53. [PMID: 20384817 DOI: 10.1111/j.1460-9568.2010.07104.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
There is growing agreement that genetic factors play an important role in the risk to develop heroin addiction, and comparisons of heroin addiction vulnerability in inbred strains of mice could provide useful information on the question of individual vulnerability to heroin addiction. This study examined the rewarding and locomotor-stimulating effects of heroin in male C57BL/6J and DBA/2J mice. Heroin induced locomotion and sensitisation in C57BL/6J but not in DBA/2J mice. C57BL/6J mice developed conditioned place preference (CPP) to the highest doses of heroin, while DBA/2J showed CPP to only the lowest heroin doses, indicating a higher sensitivity of DBA/2J mice to the rewarding properties of heroin vs C57BL/6J mice. In order to investigate the neurobiological substrate underlying some of these differences, the effect of chronic 'intermittent' escalating dose heroin administration on the opioid, dopaminergic and stress systems was explored. Twofold higher mu-opioid receptor (MOP-r)-stimulated [35S]GTPgammaS binding was observed in the nucleus accumbens and caudate of saline-treated C57BL/6J mice compared with DBA/2J. Heroin decreased MOP-r density in brain regions of C57BL/6J mice, but not in DBA/2J. A higher density of dopamine transporters (DAT) was observed in nucleus accumbens shell and caudate of heroin-treated DBA/2J mice compared with heroin-treated C57BL/6J. There were no effects on D1 and D2 binding. Chronic heroin administration decreased corticosterone levels in both strains with no effect of strain. These results suggest that genetic differences in MOP-r activation and DAT expression may be responsible for individual differences in vulnerability to heroin addiction.
Collapse
Affiliation(s)
- Alexis Bailey
- Faculty of Health and Medical Sciences, AY Building, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| | | | | | | | | | | |
Collapse
|
21
|
Piras AP, Zhou Y, Schlussman SD, Ho A, Kreek MJ. Acute withdrawal from chronic escalating-dose binge cocaine administration alters kappa opioid receptor stimulation of [35S] guanosine 5'-O-[gamma-thio]triphosphate acid binding in the rat ventral tegmental area. Neuroscience 2010; 169:751-7. [PMID: 20452406 DOI: 10.1016/j.neuroscience.2010.04.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 04/21/2010] [Accepted: 04/24/2010] [Indexed: 11/30/2022]
Abstract
There is evidence that the kappa opioid system plays an important role in cocaine addiction and that chronic cocaine administration and withdrawal from chronic cocaine alter kappa opioid receptor (KOPr) density. The present study employed in situ [(35)S]guanosine 5'-O-[gamma-thio]triphosphate acid (GTPgammaS) binding autoradiography to measure KOPr-stimulated activation of G-protein in the caudate putamen, nucleus accumbens core and shell, lateral hypothalamus, basolateral amygdala, substantia nigra compacta, substantia nigra reticulata and ventral tegmental area (VTA), in response to chronic cocaine administration or acute and chronic withdrawal from chronic cocaine. Male Fischer rats were injected i.p. with saline or cocaine three times daily at 1 h intervals in an escalating-dose paradigm for 14 days (from 3x15 mg/kg/injection on days 1-3 up to 3x30 mg/kg/injection on days 10-14). Identically treated separate groups were withdrawn from cocaine or saline for 24 h or 14 days. No significant change in KOPr agonist U-69593-stimulated [(35)S]GTPgammaS was found in the seven regions studied 30 min or 14 days after chronic 14 days escalating-dose binge cocaine administration. However there was an increase in KOPr -stimulated [(35)S]GTPgammaS binding in the VTA (P<0.01) of rats withdrawn for 24 h from chronic cocaine. Our results show a cocaine withdrawal induced increase of KOPr signaling in the VTA, and suggest that the KOPr may play a role in acute withdrawal from cocaine.
Collapse
Affiliation(s)
- A P Piras
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, Box 171, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
This paper is the thirtieth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2007 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd.,Flushing, NY 11367, United States.
| |
Collapse
|
23
|
Kreek MJ, Schlussman SD, Reed B, Zhang Y, Nielsen DA, Levran O, Zhou Y, Butelman ER. Bidirectional translational research: Progress in understanding addictive diseases. Neuropharmacology 2008; 56 Suppl 1:32-43. [PMID: 18725235 DOI: 10.1016/j.neuropharm.2008.07.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 11/17/2022]
Abstract
The focus of this review is primarily on recent developments in bidirectional translational research on the addictions, within the Laboratory of the Biology of Addictive Diseases at The Rockefeller University. This review is subdivided into major interacting aspects, including (a) Investigation of neurobiological and molecular adaptations (e.g., in genes for the opioid receptors or endogenous neuropeptides) in response to cocaine or opiates, administered under laboratory conditions modeling chronic patterns of human self-exposure (e.g., chronic escalating "binge"). (b) The impact of such drug exposure on the hypothalamic-pituitary-adrenal (HPA) axis and interacting neuropeptidergic systems (e.g., opioid, orexin and vasopressin). (c) Molecular genetic association studies using candidate gene and whole genome approaches, to define particular systems involved in vulnerability to develop specific addictions, and response to pharmacotherapy. (d) Neuroendocrine challenge studies in normal volunteers and current addictive disease patients along with former addicts in treatment, to investigate differential pharmacodynamics and responsiveness of molecular targets, in particular those also investigated in the experimental and molecular genetic approaches as described above.
Collapse
Affiliation(s)
- M J Kreek
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Bailey A, Metaxas A, Yoo JH, McGee T, Kitchen I. Decrease of D2 receptor binding but increase in D2-stimulated G-protein activation, dopamine transporter binding and behavioural sensitization in brains of mice treated with a chronic escalating dose 'binge' cocaine administration paradigm. Eur J Neurosci 2008; 28:759-70. [PMID: 18671743 DOI: 10.1111/j.1460-9568.2008.06369.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the neurobiology of the transition from initial drug use to excessive drug use has been a challenge in drug addiction. We examined the effect of chronic 'binge' escalating dose cocaine administration, which mimics human compulsive drug use, on behavioural responses and the dopaminergic system of mice and compared it with a chronic steady dose (3 x 15 mg/kg/day) 'binge' cocaine administration paradigm. Male C57BL/6J mice were injected with saline or cocaine in an escalating dose paradigm for 14 days. Locomotor and stereotypy activity were measured and quantitative autoradiographic mapping of D(1) and D(2) receptors, dopamine transporters and D(2)-stimulated [(35)S]GTPgammaS binding was performed in the brains of mice treated with this escalating and steady dose paradigm. An initial sensitization to the locomotor effects of cocaine followed by a dose-dependent increase in the duration of the locomotor effect of cocaine was observed in the escalating but not the steady dose paradigm. Sensitization to the stereotypy effect of cocaine and an increase in cocaine-induced stereotypy score was observed from 3 x 20 to 3 x 25 mg/kg/day cocaine. There was a significant decrease in D(2) receptor density, but an increase in D(2)-stimulated G-protein activity and dopamine transporter density in the striatum of cocaine-treated mice, which was not observed in our steady dose paradigm. Our results document that chronic 'binge' escalating dose cocaine treatment triggers profound behavioural and neurochemical changes in the dopaminergic system, which might underlie the transition from drug use to compulsive drug use associated with addiction, which is a process of escalation.
Collapse
Affiliation(s)
- A Bailey
- Faculty of Health and Medical Sciences, AY Building, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| | | | | | | | | |
Collapse
|
25
|
Abstract
The articulated goals of Dialogues in Clinical Neuroscience are to serve as "an interface between clinical neuropsychiatry and the neurosciences by providing state-of-the-art information and original insights into relevant clinical, biological, and therapeutic aspects." My laboratory the Laboratory of the Biology of Addictive Diseases at The Rockefeller University, has for years been focused on "bidirectional translational research," that is, learning by careful observations and study in patient populations with the disorders under study, in this case primarily specific addictive diseases, and then using that knowledge to create improved animal models or other laboratory-based research paradigms, while, at the same time, taking research findings made at the bench into the clinic as promptly as that is appropriate and feasible. In this invited review, therefore, the focus will be on perspectives of our Laboratory of the Biology of Addictive Diseases and related National Institutes of Health/National Institute on Drug Abuse research Center, including laboratory-based molecular neurobiological research, research using several animal models designed to mimic human patterns of drug abuse and addiction, as well as basic clinical research, intertwined with treatment-related research.
Collapse
Affiliation(s)
- Mary Jeanne Kreek
- Laboratory of Biology of Addictive Diseases, Rockefeller University, New York, NY 10021, USA.
| |
Collapse
|