1
|
Navarrete M, Zhou Y. The 14-3-3 Protein Family and Schizophrenia. Front Mol Neurosci 2022; 15:857495. [PMID: 35359567 PMCID: PMC8964262 DOI: 10.3389/fnmol.2022.857495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a debilitating mental disorder that affects approximately 1% of the world population, yet the disorder is not very well understood. The genetics of schizophrenia is very heterogenous, making it hard to pinpoint specific alterations that may cause the disorder. However, there is growing evidence from human studies suggesting a link between alterations in the 14-3-3 family and schizophrenia. The 14-3-3 proteins are abundantly expressed in the brain and are involved in many important cellular processes. Knockout of 14-3-3 proteins in mice has been shown to cause molecular, structural, and behavioral alterations associated with schizophrenia. Thus, 14-3-3 animal models allow for further exploration of the relationship between 14-3-3 and schizophrenia as well as the study of schizophrenia pathology. This review considers evidence from both human and animal model studies that implicate the 14-3-3 family in schizophrenia. In addition, possible mechanisms by which alterations in 14-3-3 proteins may contribute to schizophrenia-like phenotypes such as dopaminergic, glutamatergic, and cytoskeletal dysregulations are discussed.
Collapse
Affiliation(s)
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
2
|
Han H, Xia X, Zheng H, Zhao C, Xu Y, Tao J, Wang X. The Gene Polymorphism of VMAT2 Is Associated with Risk of Schizophrenia in Male Han Chinese. Psychiatry Investig 2020; 17:1073-1078. [PMID: 33099987 PMCID: PMC7711117 DOI: 10.30773/pi.2020.0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/02/2020] [Accepted: 06/11/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE To investigate the association between gene polymorphism of vesicular monoamine transporter type 2(VMAT2) and schizophrenia in Han Chinese population. METHODS 430 patients with schizophrenia and 470 age-sex matched controls were recruited from four mental health centers. All patients were diagnosed by two psychiatrists based on the Structured Clinical Interview for DSM Disorders (SCID). The ligase detection reactions (LDR) method was used to assess the polymorphism of the two SNPs (rs363371 and rs363324) of VMAT2. RESULTS No associations of two SNPs with schizophrenia was found. When we stratified males and females for the analysis, we found that that in the recessive model of rs363371, there was an obvious significant association between rs363371 and schizophrenia in males (OR=0.564, 95% CI=0.357-0.892, p=0.014) but not females. For the association between rs363324 and schizophrenia, no association was found in either males or females. No association was found when stratifying early-onset schizophrenia and late-onset schizophrenia. CONCLUSION Our findings indicate that both rs363371 and rs363324 were not associated with schizophrenia, while it seemed that the AA genotype of rs363371 plays a protective effect in male Chinese in developing schizophrenia.
Collapse
Affiliation(s)
- Hongying Han
- Department of Psychiatry, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaowei Xia
- Department of Psychiatry, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huirong Zheng
- Guangdong Mental Health Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Affiliated School of Medicine of South China University of Technology, Guangzhou, China
| | - Chongbang Zhao
- Department of Psychiatry, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiong Tao
- Department of Psychiatry, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xianglan Wang
- Department of Psychiatry, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Cliburn RA, Dunn AR, Stout KA, Hoffman CA, Lohr KM, Bernstein AI, Winokur EJ, Burkett J, Schmitz Y, Caudle WM, Miller GW. Immunochemical localization of vesicular monoamine transporter 2 (VMAT2) in mouse brain. J Chem Neuroanat 2016; 83-84:82-90. [PMID: 27836486 DOI: 10.1016/j.jchemneu.2016.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/31/2016] [Accepted: 11/04/2016] [Indexed: 12/16/2022]
Abstract
Vesicular monoamine transporter 2 (VMAT2, SLC18A2) is a transmembrane transporter protein that packages dopamine, serotonin, norepinephrine, and histamine into vesicles in preparation for neurotransmitter release from the presynaptic neuron. VMAT2 function and related vesicle dynamics have been linked to susceptibility to oxidative stress, exogenous toxicants, and Parkinson's disease. To address a recent depletion of commonly used antibodies to VMAT2, we generated and characterized a novel rabbit polyclonal antibody generated against a 19 amino acid epitope corresponding to an antigenic sequence within the C-terminal tail of mouse VMAT2. We used genetic models of altered VMAT2 expression to demonstrate that the antibody specifically recognizes VMAT2 and localizes to synaptic vesicles. Furthermore, immunohistochemical labeling using this VMAT2 antibody produces immunoreactivity that is consistent with expected VMAT2 regional distribution. We show the distribution of VMAT2 in monoaminergic brain regions of mouse brain, notably the midbrain, striatum, olfactory tubercle, dopaminergic paraventricular nuclei, tuberomammillary nucleus, raphe nucleus, and locus coeruleus. Normal neurotransmitter vesicle dynamics are critical for proper health and functioning of the nervous system, and this well-characterized VMAT2 antibody will be a useful tool in studying neurodegenerative and neuropsychiatric conditions characterized by vesicular dysfunction.
Collapse
Affiliation(s)
- Rachel A Cliburn
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States.
| | - Amy R Dunn
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Kristen A Stout
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Carlie A Hoffman
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Kelly M Lohr
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Alison I Bernstein
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Emily J Winokur
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - James Burkett
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Yvonne Schmitz
- Department of Neurology, Columbia University Medical Center, New York City, NY 10032, United States
| | - William M Caudle
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Gary W Miller
- Department of Environmental Health, Rollins School of Public Health, Department of Pharmacology, Department of Neurology, Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|