1
|
Brodnik ZD, Ferris MJ, Jones SR, España RA. Reinforcing Doses of Intravenous Cocaine Produce Only Modest Dopamine Uptake Inhibition. ACS Chem Neurosci 2017; 8:281-289. [PMID: 27936579 DOI: 10.1021/acschemneuro.6b00304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The reinforcing efficacy of cocaine is thought to stem from inhibition of the dopamine transporter (DAT) and subsequent increases in extracellular dopamine concentrations in the brain. In humans, this hypothesis has generally been supported by positron emission tomography imaging studies where the percent of DATs occupied by cocaine is used as a measure of cocaine activity in the brain. Interpretation of these studies, however, often relies on the assumption that measures of DAT occupancy directly correspond with functional DAT blockade. In the current studies, we used in vivo and in vitro fast scan cyclic voltammetry in mice to measure dopamine uptake inhibition following varying doses of cocaine as well as two high affinity DAT inhibitors. We then compared dopamine clearance rates following these drug treatments to dopamine clearance obtained from DAT knockout mice as a proxy for complete DAT blockade. We found that administration of abused doses of cocaine resulted in approximately 2% of maximal DAT blockade. Overall, our data indicate that abused doses of cocaine produce a relatively modest degree of DA uptake inhibition, and suggest that the relationship between DAT occupancy and functional blockade of the DAT is more complex than originally posited.
Collapse
Affiliation(s)
- Zachary D. Brodnik
- Department
of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, United States
| | - Mark J. Ferris
- Department
of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27501, United States
| | - Sara R. Jones
- Department
of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27501, United States
| | - Rodrigo A. España
- Department
of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, United States
| |
Collapse
|
3
|
Gould RW, Duke AN, Nader MA. PET studies in nonhuman primate models of cocaine abuse: translational research related to vulnerability and neuroadaptations. Neuropharmacology 2014; 84:138-51. [PMID: 23458573 PMCID: PMC3692588 DOI: 10.1016/j.neuropharm.2013.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 01/07/2013] [Accepted: 02/07/2013] [Indexed: 01/11/2023]
Abstract
The current review highlights the utility of positron emission tomography (PET) imaging to study the neurobiological substrates underlying vulnerability to cocaine addiction and subsequent adaptations following chronic cocaine self-administration in nonhuman primate models of cocaine abuse. Environmental (e.g., social rank) and sex-specific influences on dopaminergic function and sensitivity to the reinforcing effects of cocaine are discussed. Cocaine-related cognitive deficits have been hypothesized to contribute to high rates of relapse and are described in nonhuman primate models. Lastly, the long-term consequences of cocaine on neurobiology are discussed. PET imaging and longitudinal, within-subject behavioral studies in nonhuman primates have provided a strong framework for designing pharmacological and behavioral treatment strategies to aid drug-dependent treatment seekers. Non-invasive PET imaging will allow for individualized treatment strategies. Recent advances in radiochemistry of novel PET ligands and other imaging modalities can further advance our understanding of stimulant use on the brain. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'.
Collapse
Affiliation(s)
- Robert W Gould
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Angela N Duke
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1083, USA.
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1083, USA.
| |
Collapse
|
4
|
Effects of the trace amine-associated receptor 1 agonist RO5263397 on abuse-related effects of cocaine in rats. Neuropsychopharmacology 2014; 39:2309-16. [PMID: 24743376 PMCID: PMC4138753 DOI: 10.1038/npp.2014.91] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/09/2014] [Accepted: 04/14/2014] [Indexed: 02/03/2023]
Abstract
Animal knockout studies suggest that trace amine-associated receptor (TAAR) 1 is involved in behavioral effects of psychostimulants such as cocaine. Recently, several highly selective TAAR 1 agonists have been discovered. However, little is known of the impact of TAAR 1 agonists on abuse-related effects of cocaine. Here, we report the effects of a TAAR 1 agonist RO5263397 on several abuse-related behavioral effects of cocaine in rats. RO5263397 was evaluated for its effects on cocaine-induced behavioral sensitization, conditioned place preference (CPP), cue- and cocaine prime-induced reinstatement of cocaine-seeking behavior, and cocaine self-administration using behavioral economic analysis. RO5263397 reduced the expression of cocaine behavioral sensitization, cue- and cocaine prime-induced reinstatement of cocaine seeking, and expression but not development of cocaine CPP. Behavioral economic analysis showed that RO5263397 increased the elasticity of the cocaine demand curve, but did not change cocaine consumption at minimal prices. Taken together, this is the first systematic assessment of a TAAR 1 agonist on a range of behavioral effects of cocaine, showing that RO5263397 was efficacious in reducing cocaine-mediated behaviors. Collectively, these data uncover essential neuromodulatory roles of TAAR 1 on cocaine abuse, and suggest that TAAR 1 may represent a novel drug target for the treatment of cocaine addiction.
Collapse
|
5
|
Howell LL, Nye JA, Stehouwer JS, Voll RJ, Mun J, Narasimhan D, Nichols J, Sunahara R, Goodman MM, Carroll FI, Woods JH. A thermostable bacterial cocaine esterase rapidly eliminates cocaine from brain in nonhuman primates. Transl Psychiatry 2014; 4:e407. [PMID: 24984194 PMCID: PMC4119218 DOI: 10.1038/tp.2014.48] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/12/2014] [Accepted: 05/22/2014] [Indexed: 11/09/2022] Open
Abstract
A long-acting, thermostable bacterial cocaine esterase (CocE) has been identified that rapidly degrades cocaine with a K(M) of 1.33+0.085 μM. In vivo evaluation of CocE has shown protection against convulsant and lethal effects of cocaine in rodents, confirming the therapeutic potential of CocE against cocaine overdose. However, the current study is the first to evaluate the effects of CocE on cocaine brain levels. Positron emission tomogrpahy neuroimaging of [(11)C]cocaine was used to evaluate the time course of cocaine elimination from brain in the presence and absence of CocE in nonhuman primates. Systemic administration of CocE eliminated cocaine from the rhesus-monkey brain approximately three times faster than control conditions via peripheral actions through attenuating the input function from blood plasma. The efficiency of this process is sufficient to alleviate or prevent adverse central nervous system effects induced by cocaine. Although the present study used tracer doses of cocaine to access brain clearance, these findings further support the development of CocE for the treatment of acute cocaine toxicity.
Collapse
Affiliation(s)
- L L Howell
- Division of Neuropharmacology and Neurologic Diseases, Emory University, Yerkes National Primate Research Center, Atlanta, GA, USA,Division of Neuropharmacology and Neurologic Diseases, Emory University, Yerkes National Primate Research Center, 954 Gatewood Road, NE, Atlanta, GA 30329, USA. E-mail:
| | - J A Nye
- Division of Neuropharmacology and Neurologic Diseases, Emory University, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - J S Stehouwer
- Division of Neuropharmacology and Neurologic Diseases, Emory University, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - R J Voll
- Division of Neuropharmacology and Neurologic Diseases, Emory University, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - J Mun
- Division of Neuropharmacology and Neurologic Diseases, Emory University, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - D Narasimhan
- Division of Neuropharmacology and Neurologic Diseases, Emory University, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - J Nichols
- Division of Neuropharmacology and Neurologic Diseases, Emory University, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - R Sunahara
- Division of Neuropharmacology and Neurologic Diseases, Emory University, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - M M Goodman
- Division of Neuropharmacology and Neurologic Diseases, Emory University, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - F I Carroll
- Division of Neuropharmacology and Neurologic Diseases, Emory University, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - J H Woods
- Division of Neuropharmacology and Neurologic Diseases, Emory University, Yerkes National Primate Research Center, Atlanta, GA, USA
| |
Collapse
|
6
|
Groman SM, Jentsch JD. Identifying the molecular basis of inhibitory control deficits in addictions: neuroimaging in non-human primates. Curr Opin Neurobiol 2013; 23:625-31. [PMID: 23528268 DOI: 10.1016/j.conb.2013.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 01/14/2023]
Abstract
Deep insights into the structural, molecular and functional phenotypes underlying addiction have been made possible through in vivo neuroimaging techniques implemented in non-human and human primates. In addition to providing evidence that many of the neural alterations detected in stimulant-dependent individuals can emerge solely through experience with drugs, these studies have identified potential biological phenotypes that influence addiction liability. Here, we review recent advances that have been made in understanding the pathophysiology of stimulant addiction using neuroimaging techniques in non-human primates. Evidence indicates that dysfunction of the dopamine system can be both a cause and consequence of stimulant use and that this bi-directional relationship may be mediated by the ability of individuals to exert inhibitory control over behaviors. Further, recent data has demonstrated an involvement of the serotonin system in addiction-related behaviors and neurobiology, suggesting that the relationship between dopamine and serotonin systems may be altered in addiction. This approach aids in the development of novel targets that can be used in the treatment of addiction.
Collapse
Affiliation(s)
- Stephanie M Groman
- Department of Psychology, University of California, Los Angeles, United States
| | | |
Collapse
|
7
|
Czoty PW, Nader MA. Effects of dopamine D2/D3 receptor ligands on food-cocaine choice in socially housed male cynomolgus monkeys. J Pharmacol Exp Ther 2012; 344:329-38. [PMID: 23211363 DOI: 10.1124/jpet.112.201012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dopamine D2/D3 receptor partial agonists have been suggested as medications for cocaine dependence. The present experiments examined the effect of acute and repeated administration of drugs with varying intrinsic efficacy at D2/D3 receptors on the relative reinforcing strength of cocaine. Use of socially housed cynomolgus monkeys permitted the assessment of whether social status, known to alter D2/D3 receptor availability, influenced the behavioral effects of D2/D3 receptor compounds. The high-efficacy agonist R(-)-norpropylapomorphine [(-)-NPA], low-efficacy agonist aripiprazole (ARI), and antagonist eticlopride (ETIC) were administered acutely to monkeys self-administering cocaine under a food-cocaine choice procedure in which a cocaine self-administration dose-effect curve was determined daily. The effects of 5-day treatment with ARI and (-)-NPA were characterized under conditions in which monkeys did (ARI) or did not [ARI and (-)-NPA] self-administer cocaine during treatment. When administered acutely, ARI and ETIC increased the choice of low cocaine doses, and only (-)-NPA decreased the choice of higher cocaine doses and cocaine intake; effects were similar across social ranks. When administered repeatedly while self administration occurred only on days 1 and 5 of treatment, ARI, but not (-)-NPA, decreased cocaine choice in dominant monkeys, whereas (-)-NPA, but not ARI, did so in subordinates. When dominant monkeys self-administered cocaine on all five days of ARI treatment, however, these effects were not observed. The results indicate that the behavioral effects of D2/D3 receptor agonists can differ according to intrinsic efficacy and subject characteristics. Moreover, these results suggest that exposure to cocaine during treatment can counteract treatment-induced reductions in the reinforcing effects of cocaine.
Collapse
Affiliation(s)
- Paul W Czoty
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, USA
| | | |
Collapse
|