1
|
Checa-Robles FJ, Salvetat N, Cayzac C, Menhem M, Favier M, Vetter D, Ouna I, Nani JV, Hayashi MAF, Brietzke E, Weissmann D. RNA Editing Signatures Powered by Artificial Intelligence: A New Frontier in Differentiating Schizophrenia, Bipolar, and Schizoaffective Disorders. Int J Mol Sci 2024; 25:12981. [PMID: 39684694 DOI: 10.3390/ijms252312981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Mental health disorders are devastating illnesses, often misdiagnosed due to overlapping clinical symptoms. Among these conditions, bipolar disorder, schizophrenia, and schizoaffective disorder are particularly difficult to distinguish, as they share alternating positive and negative mood symptoms. Accurate and timely diagnosis of these diseases is crucial to ensure effective treatment and to tailor therapeutic management to each individual patient. In this context, it is essential to move beyond standard clinical assessment and employ innovative approaches to identify new biomarkers that can be reliably quantified. We previously identified a panel of RNA editing biomarkers capable of differentiating healthy controls from depressed patients and, among depressed patients, those with major depressive disorder and those with bipolar disorder. In this study, we integrated Adenosine-to-Inosine RNA editing blood biomarkers with clinical data through machine learning algorithms to establish specific signatures for bipolar disorder and schizophrenia spectrum disorders. This groundbreaking study paves the way for the application of RNA editing in other psychiatric disorders, such as schizophrenia and schizoaffective disorder. It represents a first proof-of-concept and provides compelling evidence for the establishment of an RNA editing signature for the diagnosis of these psychiatric conditions.
Collapse
Affiliation(s)
- Francisco J Checa-Robles
- ALCEDIAG, Parc Euromédecine, 34184 Montpellier Cedex 4, France
- Sys2Diag, UMR 9005 CNRS/ALCEN, Parc Euromédecine, 34184 Montpellier Cedex 4, France
| | - Nicolas Salvetat
- ALCEDIAG, Parc Euromédecine, 34184 Montpellier Cedex 4, France
- Sys2Diag, UMR 9005 CNRS/ALCEN, Parc Euromédecine, 34184 Montpellier Cedex 4, France
| | - Christopher Cayzac
- ALCEDIAG, Parc Euromédecine, 34184 Montpellier Cedex 4, France
- Sys2Diag, UMR 9005 CNRS/ALCEN, Parc Euromédecine, 34184 Montpellier Cedex 4, France
| | - Mary Menhem
- ALCEDIAG, Parc Euromédecine, 34184 Montpellier Cedex 4, France
- Sys2Diag, UMR 9005 CNRS/ALCEN, Parc Euromédecine, 34184 Montpellier Cedex 4, France
| | - Mathieu Favier
- ALCEDIAG, Parc Euromédecine, 34184 Montpellier Cedex 4, France
- Sys2Diag, UMR 9005 CNRS/ALCEN, Parc Euromédecine, 34184 Montpellier Cedex 4, France
| | - Diana Vetter
- ALCEDIAG, Parc Euromédecine, 34184 Montpellier Cedex 4, France
- Sys2Diag, UMR 9005 CNRS/ALCEN, Parc Euromédecine, 34184 Montpellier Cedex 4, France
| | - Ilhème Ouna
- Sys2Diag, UMR 9005 CNRS/ALCEN, Parc Euromédecine, 34184 Montpellier Cedex 4, France
| | - João V Nani
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo CEP 04044-20, Brazil
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto CEP 14040-900, Brazil
| | - Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo CEP 04044-20, Brazil
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto CEP 14040-900, Brazil
| | - Elisa Brietzke
- Department of Psychiatry, School of Medicine, Queen's University, Kingston, ON K7L 7X3, Canada
| | - Dinah Weissmann
- ALCEDIAG, Parc Euromédecine, 34184 Montpellier Cedex 4, France
- Sys2Diag, UMR 9005 CNRS/ALCEN, Parc Euromédecine, 34184 Montpellier Cedex 4, France
| |
Collapse
|
2
|
Kinsey N, Belanger JM, Oberbauer AM. Differential Gene Expression Associated with Idiopathic Epilepsy in Belgian Shepherd Dogs. Genes (Basel) 2024; 15:1474. [PMID: 39596674 PMCID: PMC11593353 DOI: 10.3390/genes15111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/09/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Idiopathic epilepsy (IE) disproportionately affects Belgian shepherd dogs and although genomic risk markers have been identified previously in the breed, causative variants have not been described. METHODS The current study analyzed differences in whole blood RNA expression associated with IE and with a previously identified IE risk haplotype on canine chromosome (CFA) 14 using a transcriptomics RNA-seq approach. RESULTS MFSD2A and a likely pseudogene of RPL19, both of which are genes implicated in seizure activity, were upregulated in dogs with IE. Genes in the interferon signaling pathway were downregulated in Belgian shepherds with IE. The CFA14 risk haplotype was associated with upregulation of CLIC1, ACE2, and PIGN and downregulation of EPDR1, all known to be involved with epilepsy or the Wnt/β-catenin signaling pathway. CONCLUSIONS These results highlight the value of assessing gene expression in canine IE research to uncover genomic contributory factors.
Collapse
Affiliation(s)
| | | | - Anita M. Oberbauer
- Department of Animal Science, University of California, Davis, CA 95616, USA; (N.K.); (J.M.B.)
| |
Collapse
|
3
|
Modarres Mousavi SM, Alipour F, Noorbakhsh F, Jafarian M, Ghadipasha M, Gharehdaghi J, Kellinghaus C, Speckmann EJ, Stummer W, Khaleghi Ghadiri M, Gorji A. Clinical Correlation of Altered Molecular Signatures in Epileptic Human Hippocampus and Amygdala. Mol Neurobiol 2024; 61:725-752. [PMID: 37658249 PMCID: PMC10861640 DOI: 10.1007/s12035-023-03583-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 08/14/2023] [Indexed: 09/03/2023]
Abstract
Widespread alterations in the expression of various genes could contribute to the pathogenesis of epilepsy. The expression levels of various genes, including major inhibitory and excitatory receptors, ion channels, cell type-specific markers, and excitatory amino acid transporters, were assessed and compared between the human epileptic hippocampus and amygdala, and findings from autopsy controls. Moreover, the potential correlation between molecular alterations in epileptic brain tissues and the clinical characteristics of patients undergoing epilepsy surgery was evaluated. Our findings revealed significant and complex changes in the expression of several key regulatory genes in both the hippocampus and amygdala of patients with intractable epilepsy. The expression changes in various genes differed considerably between the epileptic hippocampus and amygdala. Different correlation patterns were observed between changes in gene expression and clinical characteristics, depending on whether the patients were considered as a whole or were subdivided. Altered molecular signatures in different groups of epileptic patients, defined within a given category, could be viewed as diagnostic biomarkers. Distinct patterns of molecular changes that distinguish these groups from each other appear to be associated with epilepsy-specific functional consequences.
Collapse
Affiliation(s)
| | - Fatemeh Alipour
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Farshid Noorbakhsh
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Maryam Jafarian
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Masoud Ghadipasha
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Jaber Gharehdaghi
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | | | - Erwin-Josef Speckmann
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Kim JE, Park H, Lee JE, Kim TH, Kang TC. PTEN Is Required for The Anti-Epileptic Effects of AMPA Receptor Antagonists in Chronic Epileptic Rats. Int J Mol Sci 2020; 21:ijms21165643. [PMID: 32781725 PMCID: PMC7460838 DOI: 10.3390/ijms21165643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 01/13/2023] Open
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) is one of the ligand-gated ion channels for glutamate, which is an important player in the generation and spread of seizures. The efficacy of AMPAR functionality is regulated by the trafficking, synaptic targeting, and phosphorylation. Paradoxically, AMPAR expression and its phosphorylation level are decreased in the epileptic hippocampus. Therefore, the roles of AMPAR in seizure onset and neuronal hyperexcitability in ictogenesis remain to be elucidated. In the present study, we found that AMPAR antagonists (perampanel and GYKI 52466) decreased glutamate ionotropic receptor AMPA type subunit 1 (GRIA1) surface expression in the epileptic rat hippocampus. They also upregulated phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression and restored to basal levels the upregulated phosphoinositide 3-kinase (PI3K)/AKT1 phosphorylations. Dipotassium bisperoxovanadium(pic) dihydrate (BpV(pic), a PTEN inhibitor) co-treatment abolished the anti-epileptic effects of perampanel and GYKI 52466. Therefore, our findings suggest that PTEN may be required for the anti-epileptic effects of AMPAR antagonists.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Hana Park
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Ji-Eun Lee
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
5
|
Keikhaei F, Mirshekar MA, Shahraki MR, Dashipour A. Antiepileptogenic effect of myricitrin on spatial memory and learning in a kainate-induced model of temporal lobe epilepsy. LEARNING AND MOTIVATION 2020. [DOI: 10.1016/j.lmot.2019.101610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Jochner MCE, An J, Lättig-Tünnemann G, Kirchner M, Dagane A, Dittmar G, Dirnagl U, Eickholt BJ, Harms C. Unique properties of PTEN-L contribute to neuroprotection in response to ischemic-like stress. Sci Rep 2019; 9:3183. [PMID: 30816308 PMCID: PMC6395706 DOI: 10.1038/s41598-019-39438-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/14/2018] [Indexed: 12/18/2022] Open
Abstract
Phosphatase and tensin homolog (PTEN) signalling might influence neuronal survival after brain ischemia. However, the influence of the less studied longer variant termed PTEN-L (or PTENα) has not been studied to date. Therefore, we examined the translational variant PTEN-L in the context of neuronal survival. We identified PTEN-L by proteomics in murine neuronal cultures and brain lysates and established a novel model to analyse PTEN or PTEN-L variants independently in vitro while avoiding overexpression. We found that PTEN-L, unlike PTEN, localises predominantly in the cytosol and translocates to the nucleus 10-20 minutes after glutamate stress. Genomic ablation of PTEN and PTEN-L increased neuronal susceptibility to oxygen-glucose deprivation. This effect was rescued by expression of either PTEN-L indicating that both PTEN isoforms might contribute to a neuroprotective response. However, in direct comparison, PTEN-L replaced neurons were protected against ischemic-like stress compared to neurons expressing PTEN. Neurons expressing strictly nuclear PTEN-L NLS showed increased vulnerability, indicating that nuclear PTEN-L alone is not sufficient in protecting against stress. We identified mutually exclusive binding partners of PTEN-L or PTEN in cytosolic or nuclear fractions, which were regulated after ischemic-like stress. GRB2-associated-binding protein 2, which is known to interact with phosphoinositol-3-kinase, was enriched specifically with PTEN-L in the cytosol in proximity to the plasma membrane and their interaction was lost after glutamate exposure. The present study revealed that PTEN and PTEN-L have distinct functions in response to stress and might be involved in different mechanisms of neuroprotection.
Collapse
Affiliation(s)
- Magdalena C E Jochner
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence, Department of Experimental Neurology, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), QUEST-Centre for Transforming Biomedical Research, 10178 Berlin, Germany
| | - Junfeng An
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence, Department of Experimental Neurology, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Medical Research Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gisela Lättig-Tünnemann
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence, Department of Experimental Neurology, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marieluise Kirchner
- Max Delbrück Centre for Molecular Medicine (MDC), Proteomics Platform, Robert-Rössle-Straße 10, 13125, Berlin, Germany
- Berlin Institute of Health (BIH), Proteomics Platform, 10178 Berlin, Germany
| | - Alina Dagane
- Max Delbrück Centre for Molecular Medicine (MDC), Proteomics Platform, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Gunnar Dittmar
- Max Delbrück Centre for Molecular Medicine (MDC), Proteomics Platform, Robert-Rössle-Straße 10, 13125, Berlin, Germany
- Proteome and Genome Research Laboratory, Luxembourg institute of Health, 1a Rue Thomas Edison, 1224, Strassen, Luxembourg
| | - Ulrich Dirnagl
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence, Department of Experimental Neurology, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), QUEST-Centre for Transforming Biomedical Research, 10178 Berlin, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Institute of Biochemistry, Berlin, Germany
| | - Britta J Eickholt
- Charité-Universitätsmedizin Berlin, Institute of Biochemistry, Berlin, Germany
| | - Christoph Harms
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence, Department of Experimental Neurology, Berlin, Germany.
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Berlin Institute of Health (BIH), QUEST-Centre for Transforming Biomedical Research, 10178 Berlin, Germany.
| |
Collapse
|
7
|
Zheng JY, Wang HF, Wan Y, Tan MS, Tan CC, Tan L, Zhang W, Zheng ZJ, Kong LL, Wang ZX, Tan L, Yu JT. Associations of rs3740677 within GAB2 Gene with LOAD in Chinese Han Population. Mol Neurobiol 2016; 54:4015-4020. [PMID: 27311772 DOI: 10.1007/s12035-016-9953-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
Abstract
GRB2-associated binding protein 2 (GAB2) has been identified as a crucial factor in Alzheimer's disease (AD), and ten common variants within GAB2 have been detected to be associated with AD onset risk in genome-wide association studies (GWAS). Here, we first screened a common locus (rs3740677) in 3' UTR of GAB2 sequence which is targeted by the miRNA-185 and initiatively explored the probable associations of rs3740677 with risk for late-onset AD (LOAD) in a large scale case-control study from Chinese Han populations (992 LOAD patients and 1358 healthy subjects). Eventually, the genotype (P = 0.024) and allele (P = 0.008) distribution of rs3740677 showed significant difference between LOAD and control group, and we observed a significant association of T allele in rs3740677 with LOAD risk in multivariate analysis and it decreased the risk for LOAD (dominant: OR = 0.831, 95 % CI = 0.702-0.983, P = 0.031; additive: OR = 0.855, 95 % CI = 0.745-0.983, P = 0.027) adjusted for age, gender, and APOE ε4 status. Our study further confirmed the association of GAB2 and AD. However, the absolute and correct association of rs3740677 with AD still required more investigations in diverse regions and ethnics.
Collapse
Affiliation(s)
- Jing-Yu Zheng
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, Shandong Province, 266071, China
| | - Hui-Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, Shandong Province, 266071, China
| | - Yu Wan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, Shandong Province, 266071, China
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, Shandong Province, 266071, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, Shandong Province, 266071, China
| | - Lin Tan
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China
| | - Wei Zhang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, Shandong Province, 266071, China
| | - Zhan-Jie Zheng
- Department of Geriatric, Qingdao Mental Health Center, Qingdao, China
| | - Ling-Li Kong
- Department of Geriatric, Qingdao Mental Health Center, Qingdao, China
| | - Zi-Xuan Wang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, Shandong Province, 266071, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, Shandong Province, 266071, China. .,College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China.
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, Shandong Province, 266071, China. .,Memory and Aging Center, Department of Neurology, University of California, 675 Nelson Rising Lane, Suite 190, Box 1207, San Francisco, CA, 94158, USA.
| |
Collapse
|