1
|
Arnold ME, Harber CE, Beugelsdyk LA, Decker Ramirez EB, Phillips GB, Schank JR. Corticotropin releasing hormone receptor 1 in the medial prefrontal cortex mediates aversion resistant alcohol intake. Psychopharmacology (Berl) 2024; 241:2539-2550. [PMID: 39466414 DOI: 10.1007/s00213-024-06707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
RATIONALE Alcohol consumption despite negative consequences is a core symptom of Alcohol Use Disorder. In animal models, this is studied by pairing aversive stimuli with alcohol access, and continuation of drinking under these conditions is known as aversion resistance. Previously, we found that female mice are more aversion resistant than males. Corticotropin releasing hormone (Crh) and the Crh receptor 1 (Crhr1) regulate stress-induced reinstatement, alcohol dependence, and binge-like drinking. However, the role of the Crh system in aversion resistance has not been assessed. OBJECTIVES We aimed to identify sex differences in the Crh system during quinine-adulterated alcohol intake. METHODS We used two-bottle choice and adulterated the alcohol solution with quinine. Next, we measured Crh and Crhr1 levels in brain tissue using real-time polymerase chain reaction (RT-qPCR) and RNAscope in situ hybridization. We then infused a Crhr1 antagonist into the medial prefrontal cortex (mPFC) prior to quinine-alcohol intake. RESULTS After quinine-alcohol consumption, females exhibited increased mPFC Crhr1 mRNA levels as measured by RT-qPCR. This was confirmed with greater anatomical specificity using RNAscope, with females exhibiting an increased number of Crhr1 + cells in the dorsomedial PFC and the ventromedial PFC. mPFC Crhr1 antagonist treatment reduced quinine-alcohol consumption in females but did not impact consumption in males. Quinine-free alcohol intake was unaffected by Crhr1 antagonist treatment. CONCLUSIONS Our findings suggest that Crhr1 in mPFC plays a role in aversion resistant alcohol intake in females. Future experiments will examine the sources of Crh innervation to the mPFC and their distinct roles in alcohol seeking.
Collapse
Affiliation(s)
- Miranda E Arnold
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA, 30602, USA
| | - Cecelia E Harber
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA, 30602, USA
| | - Lauren A Beugelsdyk
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA, 30602, USA
| | - Ellie B Decker Ramirez
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA, 30602, USA
| | - Grace B Phillips
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA, 30602, USA
| | - Jesse R Schank
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA, 30602, USA.
| |
Collapse
|
2
|
Castle ME, Flanigan ME. The role of brain serotonin signaling in excessive alcohol consumption and withdrawal: A call for more research in females. Neurobiol Stress 2024; 30:100618. [PMID: 38433994 PMCID: PMC10907856 DOI: 10.1016/j.ynstr.2024.100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
Alcohol Use Disorder (AUD) is a leading cause of death and disability worldwide, but current treatments are insufficient in fully addressing the symptoms that often lead to relapses in alcohol consumption. The brain's serotonin system has been implicated in AUD for decades and is a major regulator of stress-related behaviors associated with increased alcohol consumption. This review will discuss the current literature on the association between neurobiological adaptations in serotonin systems and AUD in humans as well as the effectiveness of serotonin receptor manipulations on alcohol-related behaviors like consumption and withdrawal. We will further discuss how these findings in humans relate to findings in animal models, including a comparison of systemic pharmacological manipulations modulating alcohol consumption. We next provide a detailed overview of brain region-specific roles for serotonin and serotonin receptor signaling in alcohol-related behaviors in preclinical animal models, highlighting the complexity of forming a cohesive model of serotonin function in AUD and providing possible avenues for more effective therapeutic intervention. Throughout the review, we discuss what is known about sex differences in the sequelae of AUD and the role of serotonin in these sequelae. We stress a critical need for additional studies in women and female animals so that we may build a clearer path to elucidating sex-specific serotonergic mechanisms and develop better treatments.
Collapse
Affiliation(s)
- Megan E. Castle
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Meghan E. Flanigan
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| |
Collapse
|
3
|
Oka A, Hadano S, Ueda MT, Nakagawa S, Komaki G, Ando T. Rare CRHR2 and GRM8 variants identified as candidate factors associated with eating disorders in Japanese patients by whole exome sequencing. Heliyon 2024; 10:e28643. [PMID: 38644811 PMCID: PMC11031761 DOI: 10.1016/j.heliyon.2024.e28643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Eating disorders (EDs) are a type of psychiatric disorder characterized by pathological eating and related behavior and considered to be highly heritable. The purpose of this study was to explore rare variants expected to display biological functions associated with the etiology of EDs. We performed whole exome sequencing (WES) of affected sib-pairs corresponding to disease subtype through their lifetime and their parents. From those results, rare single nucleotide variants (SNVs) concordant with sib-pairs were extracted and estimated to be most deleterious in the examined families. Two non-synonymous SNVs located on corticotropin-releasing hormone receptor 2 (CRHR2) and glutamate metabotropic receptor 8 (GRM8) were identified as candidate disease susceptibility factors. The SNV of CRHR2 was included within the cholesterol binding motif of the transmembrane helix region, while the SNV of GRM8 was found to contribute to hydrogen bonds for an α-helix structure. CRHR2 plays important roles in the serotoninergic system of dorsal raphe nuclei, which is involved with feeding and stress-coping behavior, whereas GRM8 modulates glutamatergic neurotransmission. Moreover, GRM8 modulates glutamatergic neurotransmission, and is also considered to have effects on dopaminergic and adrenergic neurotransmission. Thus, identification of rare and deleterious variants in this study is expected to increase understanding and treatment of affected individuals. Further investigation regarding the biological function of these variants may provide an opportunity to elucidate the pathogenesis of EDs.
Collapse
Affiliation(s)
- Akira Oka
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Shinji Hadano
- The Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Department of Physiology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Mahoko Takahashi Ueda
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, 113-8510, Japan
| | - So Nakagawa
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Gen Komaki
- Faculty of Medical Science, Fukuoka International University of Health and Welfare, Momochihama, Sawara-ku, Fukuoka, 814-0001, Japan
| | - Tetsuya Ando
- Department of Psychosomatic Medicine, Faculty of Medicine, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686, Japan
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8553, Japan
| |
Collapse
|
4
|
Trujillo V, Camilo TA, Valentim-Lima E, Carbalan QSR, Dos-Santos RC, Felintro V, Reis LC, Lustrino D, Rorato R, Mecawi AS. Neonatal treatment with para-chlorophenylalanine (pCPA) induces adolescent hyperactivity associated with changes in the paraventricular nucleus Crh and Trh expressions. Behav Brain Res 2024; 462:114867. [PMID: 38246394 DOI: 10.1016/j.bbr.2024.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Disruption of the brain serotoninergic (5-HT) system during development induces long-lasting changes in molecular profile, cytoarchitecture, and function of neurons, impacting behavioral regulation throughout life. In male and female rats, we investigate the effect of neonatal tryptophan hydroxylase (TPH) inhibition by using para-chlorophenylalanine (pCPA) on the expression of 5-HTergic system components and neuropeptides related to adolescent social play behavior regulation. We observed sex-dependent 5-HT levels decrease after pCPA-treatment in the dorsal raphe nucleus (DRN) at 17 and 35 days. Neonatal pCPA-treatment increased playing, social and locomotory behaviors assessed in adolescent rats of both sexes. The pCPA-treated rats demonstrated decreased Crh (17 days) and increased Trh (35 days) expression in the hypothalamic paraventricular nucleus (PVN). There was sex dimorphism in Htr2c (17 days) and VGF (35 days) in the prefrontal cortex, with the females expressing higher levels of it than males. Our results indicate that neonatal pCPA-treatment results in a long-lasting and sex-dependent DRN 5-HT synthesis changes, decreased Crh, and increased Trh expression in the PVN, resulting in a hyperactivity-like phenotype during adolescence. The present work demonstrates that the impairment of TPH function leads to neurobehavioral disorders related to hyperactivity and impulsivity, such as attention deficit hyperactivity disorder (ADHD).
Collapse
Affiliation(s)
- Verónica Trujillo
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Department of Physiology, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Tays Araújo Camilo
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Evandro Valentim-Lima
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Quézia S R Carbalan
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Brazil
| | - Raoni C Dos-Santos
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Brazil
| | - Viviane Felintro
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Brazil
| | - Luís C Reis
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Brazil
| | - Danilo Lustrino
- Laboratory of Basic and Behavioral Neuroendocrinology, Department of Physiology, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe (UFS), São Cristóvão, Brazil
| | - Rodrigo Rorato
- Laboratory of Stress Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - André S Mecawi
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
5
|
Yang X, Geng F. Corticotropin-releasing factor signaling and its potential role in the prefrontal cortex-dependent regulation of anxiety. J Neurosci Res 2023; 101:1781-1794. [PMID: 37592912 DOI: 10.1002/jnr.25238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/08/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Abstract
A large body of literature has highlighted the significance of the corticotropin-releasing factor (CRF) system in the regulation of neuropsychiatric diseases. Anxiety disorders are among the most common neuropsychiatric disorders. An increasing number of studies have demonstrated that the CRF family mediates and regulates the development and maintenance of anxiety. Thus, the CRF family is considered to be a potential target for the treatment of anxiety disorders. The prefrontal cortex (PFC) plays a role in the occurrence and development of anxiety, and both CRF and CRF-R1 are widely expressed in the PFC. This paper begins by reviewing CRF-related signaling pathways and their different roles in anxiety and related processes. Then, the role of the CRF system in other neuropsychiatric diseases is reviewed and the potential role of PFC CRF signaling in the regulation of anxiety disorders is discussed. Although other signaling pathways are potentially involved in the process of anxiety, CRF in the PFC primarily modulates anxiety disorders through the activation of corticotropin-releasing factor type1 receptors (CRF-R1) and the excitation of the cAMP/PKA signaling pathway. Moreover, the main signaling pathways of CRF involved in sex differentiation in the PFC appear to be different. In summary, this review suggests that the CRF system in the PFC plays a critical role in the occurrence of anxiety. Thus, CRF signaling is of great significance as a potential target for the treatment of stress-related disorders in the future.
Collapse
Affiliation(s)
- Xin Yang
- Department of Physiology, Shantou University Medical College, Shantou, China
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fei Geng
- Department of Physiology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| |
Collapse
|
6
|
Harris EP, Villalobos-Manriquez F, Melo TG, Clarke G, O'Leary OF. Stress during puberty exerts sex-specific effects on depressive-like behavior and monoamine neurotransmitters in adolescence and adulthood. Neurobiol Stress 2022; 21:100494. [DOI: 10.1016/j.ynstr.2022.100494] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/15/2022] Open
|
7
|
Zegers-Delgado J, Aguilera-Soza A, Calderón F, Davidson H, Verbel-Vergara D, Yarur HE, Novoa J, Blanlot C, Bastias CP, Andrés ME, Gysling K. Type 1 Corticotropin-Releasing Factor Receptor Differentially Modulates Neurotransmitter Levels in the Nucleus Accumbens of Juvenile versus Adult Rats. Int J Mol Sci 2022; 23:ijms231810800. [PMID: 36142716 PMCID: PMC9505341 DOI: 10.3390/ijms231810800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Adversity is particularly pernicious in early life, increasing the likelihood of developing psychiatric disorders in adulthood. Juvenile and adult rats exposed to social isolation show differences in anxiety-like behaviors and significant changes in dopamine (DA) neurotransmission in the nucleus accumbens (NAc). Brain response to stress is partly mediated by the corticotropin-releasing factor (CRF) system, composed of CRF and its two main receptors, CRF-R1 and CRF-R2. In the NAc shell of adult rats, CRF induces anxiety-like behavior and changes local DA balance. However, the role of CRF receptors in the control of neurotransmission in the NAc is not fully understood, nor is it known whether there are differences between life stages. Our previous data showed that infusion of a CRF-R1 antagonist into the NAc of juvenile rats increased DA levels in response to a depolarizing stimulus and decreased basal glutamate levels. To extend this analysis, we now evaluated the effect of a CRF-R1 antagonist infusion in the NAc of adult rats. Here, we describe that the opposite occurred in the NAc of adult compared to juvenile rats. Infusion of a CRF-R1 antagonist decreased DA and increased glutamate levels in response to a depolarizing stimulus. Furthermore, basal levels of DA, glutamate, and γ-Aminobutyric acid (GABA) were similar in juvenile animals compared to adults. CRF-R1 protein levels and localization were not different in juvenile compared to adult rats. Interestingly, we observed differences in the signaling pathways of CRF-R1 in the NAc of juveniles compared to adult rats. We propose that the function of CRF-R1 receptors is differentially modulated in the NAc according to life stage.
Collapse
|
8
|
Borrego MB, Grigsby KB, Townsley KG, Chan A, Firsick EJ, Tran A, Savarese A, Ozburn AR. Central nucleus of the amygdala projections onto the nucleus accumbens core regulate binge-like alcohol drinking in a CRF-dependent manner. Neuropharmacology 2022; 203:108874. [PMID: 34748860 PMCID: PMC10578155 DOI: 10.1016/j.neuropharm.2021.108874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/13/2021] [Accepted: 11/02/2021] [Indexed: 12/16/2022]
Abstract
RATIONALE The nucleus accumbens (NAc) is important for regulating a number of behaviors, including alcohol and substance use. We previously found that chemogenetically manipulating neuronal activity in the NAc core regulates binge-like drinking in mice. The central amygdala (CeA) is also an important regulator of alcohol drinking, and projects to the NAc core. We tested whether neuronal projections from the CeA to the NAc core, or neuropeptides released by the CeA in the NAc core, could regulate binge drinking. METHODS For experiment 1, mice were administered AAV2 Cre-GFP into the NAc core and a Cre-inducible DREADD [AAV2 DIO- hM3Dq, -hM4Di, or -mCherry control] into the CeA. We tested the effects of altering CeA to NAc core activity on binge-like ethanol intake (via "Drinking in the Dark", DID). For experiment 2, we bilaterally microinfused corticotropin releasing factor (CRF), neuropeptide Y (NPY), or somatostatin (SST) into the NAc core prior to DID. For experiment 3, we tested whether intra-NAc CRF antagonism prevented reductions in drinking induced by CNO/hM3Dq stimulation of CeA->NAc projections. RESULTS Chemogenetically increasing activity in neurons projecting from the CeA to NAc core decreased binge-like ethanol drinking (p < 0.01). Intra-NAc core CRF mimicked chemogenetic stimulation of this pathway (p < 0.05). Binge-like drinking was unaffected by the doses of NPY and SST tested. Lastly, we found that intra-NAc CRF antagonism prevented reductions in drinking induced by chemogenetic stimulation of CeA->NAc projections. These findings demonstrate that neurons projecting from the CeA to NAc core that release CRF are capable of regulating binge-like drinking in mice.
Collapse
Affiliation(s)
- Marissa B Borrego
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR, 97239, USA
| | - Kolter B Grigsby
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR, 97239, USA
| | - Kayla G Townsley
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR, 97239, USA
| | - Amy Chan
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR, 97239, USA
| | - Evan J Firsick
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR, 97239, USA
| | - Alex Tran
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR, 97239, USA
| | - Antonia Savarese
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR, 97239, USA
| | - Angela R Ozburn
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR, 97239, USA.
| |
Collapse
|
9
|
Phumsatitpong C, Wagenmaker ER, Moenter SM. Neuroendocrine interactions of the stress and reproductive axes. Front Neuroendocrinol 2021; 63:100928. [PMID: 34171353 PMCID: PMC8605987 DOI: 10.1016/j.yfrne.2021.100928] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 01/27/2023]
Abstract
Reproduction is controlled by a sequential regulation of the hypothalamo-pituitary-gonadal (HPG) axis. The HPG axis integrates multiple inputs to maintain proper reproductive functions. It has long been demonstrated that stress alters fertility. Nonetheless, the central mechanisms of how stress interacts with the reproductive system are not fully understood. One of the major pathways that is activated during the stress response is the hypothalamo-pituitary-adrenal (HPA) axis. In this review, we discuss several aspects of the interactions between these two neuroendocrine systems to offer insights to mechanisms of how the HPA and HPG axes interact. We have also included discussions of other systems, for example GABA-producing neurons, where they are informative to the overall picture of stress effects on reproduction.
Collapse
Affiliation(s)
- Chayarndorn Phumsatitpong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Elizabeth R Wagenmaker
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Suzanne M Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
10
|
Pereira G, Gillies H, Chanda S, Corbett M, Vernon SD, Milani T, Bateman L. Acute Corticotropin-Releasing Factor Receptor Type 2 Agonism Results in Sustained Symptom Improvement in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Syst Neurosci 2021; 15:698240. [PMID: 34539356 PMCID: PMC8441022 DOI: 10.3389/fnsys.2021.698240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex multi-symptom disease with widespread evidence of disrupted systems. The authors hypothesize that it is caused by the upregulation of the corticotropin-releasing factor receptor type 2 (CRFR2) in the raphé nuclei and limbic system, which impairs the ability to maintain homeostasis. The authors propose utilizing agonist-mediated receptor endocytosis to downregulate CRFR2. Materials and Methods This open-label trial tested the safety, tolerability and efficacy of an acute dose of CT38s (a short-lived, CRFR2-selective agonist, with no known off-target activity) in 14 ME/CFS patients. CT38s was subcutaneously-infused at one of four dose-levels (i.e., infusion rates of 0.01, 0.03, 0.06, and 0.20 μg/kg/h), for a maximum of 10.5 h. Effect was measured as the pre-/post-treatment change in the mean 28-day total daily symptom score (TDSS), which aggregated 13 individual patient-reported symptoms. Results ME/CFS patients were significantly more sensitive to the transient hemodynamic effects of CRFR2 stimulation than healthy subjects in a prior trial, supporting the hypothesized CRFR2 upregulation. Adverse events were generally mild, resolved without intervention, and difficult to distinguish from ME/CFS symptoms, supporting a CRFR2 role in the disease. The acute dose of CT38s was associated with an improvement in mean TDSS that was sustained (over at least 28 days post-treatment) and correlated with both total exposure and pre-treatment symptom severity. At an infusion rate of 0.03 μg/kg/h, mean TDSS improved by -7.5 ± 1.9 (or -25.7%, p = 0.009), with all monitored symptoms improving. Conclusion The trial supports the hypothesis that CRFR2 is upregulated in ME/CFS, and that acute CRFR2 agonism may be a viable treatment approach warranting further study. Clinical Trial Registration ClinicalTrials.gov, identifier NCT03613129.
Collapse
Affiliation(s)
| | | | | | | | | | - Tina Milani
- Bateman Horne Center, Salt Lake City, UT, United States
| | | |
Collapse
|
11
|
Maheshkumar K, Dilara K, Ravishankar P, Julius A, Padmavathi R, Poonguzhali S, Venugopal V. Effect of six months pranayama training on stress-induced salivary cortisol response among adolescents-Randomized controlled study. Explore (NY) 2021; 18:463-466. [PMID: 34366293 DOI: 10.1016/j.explore.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND A combination of yoga practices has been documented to reduce stress and stress-induced cortisol levels. The objective of the current study is to examine the effects of six months of a single pranayama practice (Bhramari [Bhr. P]) on reducing salivary cortisol response to the cold pressor test (CPT) among adolescents. METHODS Twenty-six healthy adolescents between the ages of 11 and 19 were randomly assigned to either yoga group (n-13) or control group (n-13). Yoga group participants were trained to do Bhr. P for 45 min, thrice a week for six months. All participants underwent CPT at baseline and at end of six months. Saliva samples were collected at baseline (t0), at 20 min (t1), 40 min (t2), and 60 min after the CPT (t3). RESULTS Contradictory to our hypothesis, participants in the yoga group exhibited a higher salivary cortisol response to the CPT at t1 (p = 0.04) when compared to the control group. However, the t3 salivary cortisol levels showed a statistically significant reduction (p = 0.03) in yoga group when compared to the control group. A significant interaction with time (F (1, 88) = 316.5, p = .001, ηp2:0.91) and between the group × time (F (3, 88) = 2.83, p = 0.04, ηp2:0.8) was found after the intervention. CONCLUSIONS An increase in the cortisol responsiveness observed in the study is an indication of the adaptive capability achieved through regular yoga training, evidenced by an initial rise in cortisol followed by a rapid fall below baseline after 60 min. Further research is required to conclusively determine the changes in cortisol levels over time in response to stress in long-term yoga practitioners.
Collapse
Affiliation(s)
- K Maheshkumar
- Department of Physiology, Government Yoga and Naturopathy Medical college and Hospital, Chennai 600106, India.
| | - K Dilara
- Department of Physiology, Sri Ramachandra Medical College and Research Institute, SRIHER, Chennai, India
| | - P Ravishankar
- Department of Community Medicine, Ramachandra Medical College and Research Institute, SRIHER, Chennai, India
| | - A Julius
- Department of Biochemistry, Sri Balaji Dental College and Hospital, Bharath University, Chennai, India
| | - R Padmavathi
- Department of Physiology, Sri Ramachandra Medical College and Research Institute, SRIHER, Chennai, India
| | - S Poonguzhali
- Department of Community Medicine, Government Yoga and Naturopathy Medical college and Hospital, Chennai, India
| | - V Venugopal
- Department of Yoga, Government Yoga and Naturopathy Medical college and Hospital, Chennai, India
| |
Collapse
|
12
|
Daiwile AP, Jayanthi S, Cadet JL. Sex- and Brain Region-specific Changes in Gene Expression in Male and Female Rats as Consequences of Methamphetamine Self-administration and Abstinence. Neuroscience 2020; 452:265-279. [PMID: 33242543 DOI: 10.1016/j.neuroscience.2020.11.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022]
Abstract
Sex differences in METH use exist among human METH users and in animal models of METH addiction. Herein, we tried to identify potential differences in gene expression between female and male rats after Methamphetamine self-administration (METH SA). Rats were trained to self-administer METH using two 3-hours daily sessions for 20 days. Cue-induced drug seeking was measured on withdrawal days 3 (WD3) and 30 (WD30). Rats were euthanized twenty-four hours after WD30. Prefrontal cortex (PFC) and hippocampus (HIP) were dissected to measure mRNA expression. Both female and male rats increased their METH intake and showed increased METH seeking during withdrawal. Female had higher basal level expression of hypocretin receptor 1 (Hcrtr1) and prodynorphin (Pdyn) mRNAs in the PFC and HIP. Basal corticotropin releasing hormone receptor 1 (Crhr1), Crh receptor 2 (Crhr2), hypocretin receptor 2 (Hcrtr2) and opioid receptor kappa 1 (Oprk1) mRNA levels were higher in the PFC of females. Male rats had higher basal levels of Crh and Crhr1 in HIP. METH SA was associated with increased Crh and Crhr1 in the HIP of both sexes and Crhr2 only in female HIP. Importantly, increased Crh and Crhr1 mRNA levels correlated positively with incubation of METH craving in both sexes, supporting their potential involvement, in part, in the regulation of this behavioral phenomenon. When taken together, our results identified sexual dimorphic baseline differences in rats. We also detected dimorphic responses in animals that had self-administered METH. These observations highlight the importance of understanding the molecular neurobiology of sex differences when therapeutic interventions are planned against METH addiction.
Collapse
Affiliation(s)
- Atul P Daiwile
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD 21224, United States
| | - Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD 21224, United States
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD 21224, United States.
| |
Collapse
|
13
|
Trujillo V, Valentim-Lima E, Mencalha R, Carbalan QSR, Dos-Santos RC, Felintro V, Girardi CEN, Rorato R, Lustrino D, Reis LC, Mecawi AS. Neonatal Serotonin Depletion Induces Hyperactivity and Anxiolytic-like Sex-Dependent Effects in Adult Rats. Mol Neurobiol 2020; 58:1036-1051. [PMID: 33083963 DOI: 10.1007/s12035-020-02181-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
Abstract
The serotoninergic system plays an important role in the ontogeny of the mammalian central nervous system, and changes in serotonin production during development may lead to permanent changes in brain cytoarchitecture and function. The present study investigated the programming effects of neonatal serotonin depletion on behavior and molecular components of the serotoninergic system in adult male and female rats. Subcutaneous para-chlorophenylalanine (pCPA) administration (100 mg kg-1) was performed daily on postnatal days 8-16 to deplete brain serotonin content. During adulthood, elevated plus-maze, open field, social interaction, forced swimming, and food, saline, and sucrose intake tests were performed. Relative expression of serotonin neurotransmission components in several brain areas was determined by qPCR. Additionally, serotonin immunofluorescence and neuropeptide mRNA expression were assessed in dorsal raphe (DRN) and paraventricular (PVN) nuclei, respectively. Rat performance in behavioral tests demonstrated a general increase in locomotor activity and active escape behavior as well as decreased anxiety-like behavior after neonatal brain serotonin depletion. The behavioral programming effects due to neonatal serotonin depletion were more pronounced in females than males. At the gene expression level, the mRNA of Tph1 and Tph2 were lower in DRN while Htr2c was higher in the amygdala of pCPA-treated males, while Htr1a, Htr2c, Oxt, Avp, Crh, and Trh were not different in any treatments or sex in PVN. The results indicate that neonatal serotonin depletion has long-term consequences on locomotion and anxiety-like behavior associated with long-lasting molecular changes in the brain serotoninergic system in adult rats.
Collapse
Affiliation(s)
- Verónica Trujillo
- Laboratory of Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862, Edifício de Ciências Biomédicas, 7° andar, Vila Clementino, São Paulo, CEP 04023-062, Brasil
- Departament of Physiology, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Evandro Valentim-Lima
- Laboratory of Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862, Edifício de Ciências Biomédicas, 7° andar, Vila Clementino, São Paulo, CEP 04023-062, Brasil
| | - Rodrigo Mencalha
- Department of Natural Sciences, Universidade Federal do Acre, Rio Branco, Brazil
| | - Quézia S R Carbalan
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Raoni C Dos-Santos
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Viviane Felintro
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Carlos E N Girardi
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rodrigo Rorato
- Laboratory of Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862, Edifício de Ciências Biomédicas, 7° andar, Vila Clementino, São Paulo, CEP 04023-062, Brasil
| | - Danilo Lustrino
- Department of Physiology, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe, São Cristóvão, Brazil
| | - Luis C Reis
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - André S Mecawi
- Laboratory of Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862, Edifício de Ciências Biomédicas, 7° andar, Vila Clementino, São Paulo, CEP 04023-062, Brasil.
| |
Collapse
|
14
|
Biological intersection of sex, age, and environment in the corticotropin releasing factor (CRF) system and alcohol. Neuropharmacology 2020; 170:108045. [PMID: 32217364 DOI: 10.1016/j.neuropharm.2020.108045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/13/2020] [Accepted: 03/06/2020] [Indexed: 01/21/2023]
Abstract
The neuropeptide corticotropin-releasing factor (CRF) is critical in neural circuit function and behavior, particularly in the context of stress, anxiety, and addiction. Despite a wealth of preclinical evidence for the efficacy of CRF receptor 1 antagonists in reducing behavioral pathology associated with alcohol exposure, several clinical trials have had disappointing outcomes, possibly due to an underappreciation of the role of biological variables. Although he National Institutes of Health (NIH) now mandate the inclusion of sex as a biological variable in all clinical and preclinical research, the current state of knowledge in this area is based almost entirely on evidence from male subjects. Additionally, the influence of biological variables other than sex has received even less attention in the context of neuropeptide signaling. Age (particularly adolescent development) and housing conditions have been shown to affect CRF signaling and voluntary alcohol intake, and the interaction between these biological variables is particularly relevant to the role of the CRF system in the vulnerability or resilience to the development of alcohol use disorder (AUD). Going forward, it will be important to include careful consideration of biological variables in experimental design, reporting, and interpretation. As new research uncovers conditions in which sex, age, and environment play major roles in physiological and/or pathological processes, our understanding of the complex interaction between relevant biological variables and critical signaling pathways like the CRF system in the cellular and behavioral consequences of alcohol exposure will continue to expand ultimately improving the ability of preclinical research to translate to the clinic. This article is part of the special issue on Neuropeptides.
Collapse
|
15
|
Daiwile AP, Jayanthi S, Ladenheim B, McCoy MT, Brannock C, Schroeder J, Cadet JL. Sex Differences in Escalated Methamphetamine Self-Administration and Altered Gene Expression Associated With Incubation of Methamphetamine Seeking. Int J Neuropsychopharmacol 2019; 22:710-723. [PMID: 31562746 PMCID: PMC6902093 DOI: 10.1093/ijnp/pyz050] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Methamphetamine (METH) use disorder is prevalent worldwide. There are reports of sex differences in quantities of drug used and relapses to drug use among individuals with METH use disorder. However, the molecular neurobiology of these potential sex differences remains unknown. METHODS We trained rats to self-administer METH (0. 1 mg/kg/infusion, i.v.) on an fixed-ratio-1 schedule for 20 days using two 3-hour daily METH sessions separated by 30-minute breaks. At the end of self-administration training, rats underwent tests of cue-induced METH seeking on withdrawal days 3 and 30. Twenty-four hours later, nucleus accumbens was dissected and then used to measure neuropeptide mRNA levels. RESULTS Behavioral results show that male rats increased the number of METH infusions earlier during self-administration training and took more METH than females. Both male and female rats could be further divided into 2 phenotypes labeled high and low takers based on the degree of escalation that they exhibited during the course of the METH self-administration experiment. Both males and females exhibited incubation of METH seeking after 30 days of forced withdrawal. Females had higher basal mRNA levels of dynorphin and hypocretin/orexin receptors than males, whereas males expressed higher vasopressin mRNA levels than females under saline and METH conditions. Unexpectedly, only males showed increased expression of nucleus accumbens dynorphin after METH self-administration. Moreover, there were significant correlations between nucleus accumbens Hcrtr1, Hcrtr2, Crhr2, and Avpr1b mRNA levels and cue-induced METH seeking only in female rats. CONCLUSION Our results identify some behavioral and molecular differences between male and female rats that had self-administered METH. Sexual dimorphism in responses to METH exposure should be considered when developing potential therapeutic agents against METH use disorder.
Collapse
Affiliation(s)
- Atul P Daiwile
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD
| | - Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD
| | - Michael T McCoy
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD
| | - Christie Brannock
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD
| | - Jennifer Schroeder
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD,Correspondence: Jean Lud Cadet, MD, Molecular Neuropsychiatry Research Branch, NIDA IRP, 251 Bayview Boulevard, Baltimore, MD 21224 ()
| |
Collapse
|
16
|
Role of corticotropin-releasing factor on bladder function in rats with psychological stress. Sci Rep 2019; 9:9828. [PMID: 31285518 PMCID: PMC6614552 DOI: 10.1038/s41598-019-46267-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/25/2019] [Indexed: 12/27/2022] Open
Abstract
Stress-related peptide corticotropin-releasing factor (CRF) and CRF-related peptides are distributed in the peripheral viscera such as the bladder. We investigated the contribution of psychological stress (PS) and CRF on bladder function. Male rats received sham stress (SS) or PS using a communication box method for 120 min every day for 7 days. One group of rats received the intraperitoneal CRF-R1 antagonist antalarmin for 7 days during stress exposure. Mean voided volume per micturition was significantly lower in PS rats compared to SS rats, which was antagonized by antalarmin treatment. Increases in plasma and bladder CRF, and mRNA expressions of bladder CRF, CRF-R1, and M2/3 muscarinic receptors, were found in PS rats. CRF did not influence bladder contraction in itself; however, stress increased the response of muscarinic contraction of bladder strips. These changes were antagonized by antalarmin treatment. In conclusion, PS reinforces M3 receptor-mediated contractions via CRF-R1, resulting in bladder storage dysfunction.
Collapse
|
17
|
Roberts AG, Lopez-Duran NL. Developmental influences on stress response systems: Implications for psychopathology vulnerability in adolescence. Compr Psychiatry 2019; 88:9-21. [PMID: 30466015 DOI: 10.1016/j.comppsych.2018.10.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 12/30/2022] Open
Abstract
The adolescent transition is marked by increases in stress exposure and significant maturation of neural and hormonal stress processing systems. Variability in the development of these systems during adolescence may influence the risk for stress-related psychopathology. This paper aims to review the developmental maturation of the HPA axis and related stress regulation systems, and demonstrate how interference in this adaptive developmental process may increase the risk for negative outcomes. We argue that the developmental maturation of the HPA axis aims to improve the regulatory capacity of the axis in order to more adaptively respond to these increases in stress reactivity. Additionally, we review evidence that sex differences in the development of the HPA and related axes may contribute to sex differences in the risk for stress-related psychopathology. Finally, we discuss how contextual factors, such as early trauma and obesity may alter the development of HPA axis during the adolescence transition and how alterations of normative development increase the risk for stress-related disorders.
Collapse
|
18
|
Agoglia AE, Herman MA. The center of the emotional universe: Alcohol, stress, and CRF1 amygdala circuitry. Alcohol 2018; 72:61-73. [PMID: 30220589 PMCID: PMC6165695 DOI: 10.1016/j.alcohol.2018.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/15/2018] [Accepted: 03/27/2018] [Indexed: 12/15/2022]
Abstract
The commonalities between different phases of stress and alcohol use as well as the high comorbidity between alcohol use disorders (AUDs) and anxiety disorders suggest common underlying cellular mechanisms governing the rewarding and aversive aspects of these related conditions. As an integrative center that assigns emotional salience to a wide variety of internal and external stimuli, the amygdala complex plays a major role in how alcohol and stress influence cellular physiology to produce disordered behavior. Previous work has illustrated the broad role of the amygdala in alcohol, stress, and anxiety. However, the challenge of current and future studies is to identify the specific dysregulations that occur within distinct amygdala circuits and subpopulations and the commonalities between these alterations in each disorder, with the long-term goal of identifying potential targets for therapeutic intervention. Specific intra-amygdala circuits and cell type-specific subpopulations are emerging as critical targets for stress- and alcohol-induced plasticity, chief among them the corticotropin releasing factor (CRF) and CRF receptor 1 (CRF1) system. CRF and CRF1 have been implicated in the effects of alcohol in several amygdala nuclei, including the basolateral (BLA) and central amygdala (CeA); however, the precise circuitry involved in these effects and the role of these circuits in stress and anxiety are only beginning to be understood.
Collapse
Affiliation(s)
- Abigail E Agoglia
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Melissa A Herman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
19
|
CRF modulation of central monoaminergic function: Implications for sex differences in alcohol drinking and anxiety. Alcohol 2018; 72:33-47. [PMID: 30217435 DOI: 10.1016/j.alcohol.2018.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/03/2018] [Accepted: 01/19/2018] [Indexed: 01/06/2023]
Abstract
Decades of research have described the importance of corticotropin-releasing factor (CRF) signaling in alcohol addiction, as well as in commonly co-expressed neuropsychiatric diseases, including anxiety and mood disorders. However, CRF signaling can also acutely regulate binge alcohol consumption, anxiety, and affect in non-dependent animals, possibly via modulation of central monoaminergic signaling. We hypothesize that basal CRF tone is particularly high in animals and humans with an inherent propensity for high anxiety and alcohol consumption, and thus these individuals are at increased risk for the development of alcohol use disorder and comorbid neuropsychiatric diseases. The current review focuses on extrahypothalamic CRF circuits, particularly those stemming from the bed nucleus of the stria terminalis (BNST), found to play a role in basal phenotypes, and examines whether the intrinsic hyperactivity of these circuits is sufficient to escalate the expression of these behaviors and steepen the trajectory of development of disease states. We focus our efforts on describing CRF modulation of biogenic amine neuron populations that have widespread projections to the forebrain to modulate behaviors, including alcohol and drug intake, stress reactivity, and anxiety. Further, we review the known sex differences and estradiol modulation of these neuron populations and CRF signaling at their synapses to address the question of whether females are more susceptible to the development of comorbid addiction and stress-related neuropsychiatric diseases because of hyperactive extrahypothalamic CRF circuits compared to males.
Collapse
|
20
|
Keesom SM, Morningstar MD, Sandlain R, Wise BM, Hurley LM. Social isolation reduces serotonergic fiber density in the inferior colliculus of female, but not male, mice. Brain Res 2018; 1694:94-103. [DOI: 10.1016/j.brainres.2018.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/15/2018] [Accepted: 05/11/2018] [Indexed: 12/26/2022]
|
21
|
Negative consequences of early-life adversity on substance use as mediated by corticotropin-releasing factor modulation of serotonin activity. Neurobiol Stress 2018; 9:29-39. [PMID: 30151419 PMCID: PMC6108067 DOI: 10.1016/j.ynstr.2018.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/11/2018] [Accepted: 08/05/2018] [Indexed: 01/01/2023] Open
Abstract
Early-life adversity is associated with increased risk for substance abuse in later life, with women more likely to report past and current stress as a mediating factor in their substance use and relapse as compared to men. Preclinical models of neonatal and peri-adolescent (early through late adolescence) stress all support a direct relationship between experiences of early-life adversity and adult substance-related behaviors, and provide valuable information regarding the underlying neurobiology. This review will provide an overview of these animal models and how these paradigms alter drug and alcohol consumption and/or seeking in male and female adults. An introduction to the corticotropin-releasing factor (CRF) and serotonin systems, their development and their interactions at the level of the dorsal raphe will be provided, illustrating how this particular stress system is sexually dimorphic, and is well positioned to be affected by stressors early in development and throughout maturation. A model for CRF-serotonin interactions in the dorsal raphe and how these influence dopaminergic activity within the nucleus accumbens and subsequent reward-associated behaviors will be provided, and alterations to the activity of this system following early-life adversity will be identified. Overall, converging findings suggest that early-life adversity has long-term effects on the functioning of the CRF-serotonin system, highlighting a potentially important and targetable mediator linking stress to addiction. Future work should focus on identifying the exact mechanisms that promote long-term changes to the expression and activity of CRF receptors in the dorsal raphe. Moreover, it is important to clarify whether similar neurobiological mechanisms exist for males and females, given the sexual dimorphism both in CRF receptors and serotonin indices in the dorsal raphe and in the behavioral outcomes of early-life adversity. Early life stress increases risk for substance abuse in adulthood. Stress and drugs increase CRF which alters serotonin release in the brain. CRF2 receptor expression in the dorsal raphe is altered by early life stress. Resultant changes to serotonin output facilitates dopamine in the accumbens. CRF2-sertotonin-dopamine interactions may link early life stress with substance abuse.
Collapse
Key Words
- 5-HIAA, 5–Hydroxyindoleacetic Acid
- BNST, Bed Nucleus of the Stria Terminalis
- CRF, Corticotropin-Releasing Factor
- CRF-BP, Corticotropin-Releasing Factor Binding Protein
- CeA, Central Nucleus of the Amygdala
- Corticotropin-releasing factor
- Dorsal raphe nucleus
- Drug reward
- Early-life stress
- LC, Locus Coeruleus
- MDMA, 3,4-Methylenedioxymethamphetamine
- NAc, Nucleus Accumbens
- NMDA, N-methyl-d-aspartate
- PND, Postnatal Day
- Serotonin
- Sex differences
- TPH2, Tryptophan Hydroxylase 2
- VTA, Ventral Tegmental Area
- dRN, Dorsal Raphe Nucleus
Collapse
|
22
|
Bangasser DA, Wiersielis KR. Sex differences in stress responses: a critical role for corticotropin-releasing factor. Hormones (Athens) 2018; 17:5-13. [PMID: 29858858 DOI: 10.1007/s42000-018-0002-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022]
Abstract
Rates of post-traumatic stress disorder, panic disorder, and major depression are higher in women than in men. Another shared feature of these disorders is that dysregulation of the stress neuropeptide, corticotropin-releasing factor (CRF), is thought to contribute to their pathophysiology. Therefore, sex differences in responses to CRF could contribute to this sex bias in disease prevalence. Here, we review emerging data from non-human animal models that reveal extensive sex differences in CRF functions ranging from its presynaptic regulation to its postsynaptic efficacy. Specifically, detailed are sex differences in the regulation of CRF-containing neurons and the amount of CRF that they produce. We also describe sex differences in CRF receptor expression, distribution, trafficking, and signaling. Finally, we highlight sex differences in the processes that mitigate the effects of CRF. In most cases, the identified sex differences can lead to increased stress sensitivity in females. Thus, the relevance of these differences for the increased risk of depression and anxiety disorders in women compared to men is also discussed.
Collapse
Affiliation(s)
- Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, 1701 North 13th Street, 873 Weiss Hall, Philadelphia, PA, 19122, USA.
| | - Kimberly R Wiersielis
- Department of Psychology and Neuroscience Program, Temple University, 1701 North 13th Street, 873 Weiss Hall, Philadelphia, PA, 19122, USA
| |
Collapse
|
23
|
Burke AR, McCormick CM, Pellis SM, Lukkes JL. Impact of adolescent social experiences on behavior and neural circuits implicated in mental illnesses. Neurosci Biobehav Rev 2017; 76:280-300. [DOI: 10.1016/j.neubiorev.2017.01.018] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 11/11/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022]
|
24
|
McCormick CM, Green MR, Simone JJ. Translational relevance of rodent models of hypothalamic-pituitary-adrenal function and stressors in adolescence. Neurobiol Stress 2017; 6:31-43. [PMID: 28229107 PMCID: PMC5314422 DOI: 10.1016/j.ynstr.2016.08.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/18/2016] [Accepted: 08/20/2016] [Indexed: 12/27/2022] Open
Abstract
Elevations in glucocorticoids that result from environmental stressors can have programming effects on brain structure and function when the exposure occurs during sensitive periods that involve heightened neural development. In recent years, adolescence has gained increasing attention as another sensitive period of development, a period in which pubertal transitions may increase the vulnerability to stressors. There are similarities in physical and behavioural development between humans and rats, and rats have been used effectively as an animal model of adolescence and the unique plasticity of this period of ontogeny. This review focuses on benefits and challenges of rats as a model for translational research on hypothalamic-pituitary-adrenal (HPA) function and stressors in adolescence, highlighting important parallels and contrasts between adolescent rats and humans, and we review the main stress procedures that are used in investigating HPA stress responses and their consequences in adolescence in rats. We conclude that a greater focus on timing of puberty as a factor in research in adolescent rats may increase the translational relevance of the findings.
Collapse
Affiliation(s)
- Cheryl M. McCormick
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Matthew R. Green
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Jonathan J. Simone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| |
Collapse
|
25
|
Burke AR, DeBold JF, Miczek KA. CRF type 1 receptor antagonism in ventral tegmental area of adolescent rats during social defeat: prevention of escalated cocaine self-administration in adulthood and behavioral adaptations during adolescence. Psychopharmacology (Berl) 2016; 233:2727-36. [PMID: 27251131 PMCID: PMC4919183 DOI: 10.1007/s00213-016-4336-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/03/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Activation of corticotropin-releasing factor type 1 receptors (CRF-R1) in the ventral tegmental area (VTA) represents a critical mechanism for social defeat to escalate cocaine self-administration in adult rats. OBJECTIVE We determined the acute effect of a CRF-R1 antagonist (CP376395) microinfusion into the VTA prior to each episode of social defeat in adolescent rats and determined whether this drug treatment could prevent later escalation of cocaine taking in early adulthood. METHODS Rats were implanted with bilateral cannulae aimed at the VTA 5 days before the first social defeat. Bilateral microinfusion of CP376395 (500 ng/side) or vehicle occurred 20 min before each episode of social defeat on postnatal days (P) 35, 38, 41, and 44. Behavior was quantified on P35 and P44. On P57, rats were implanted with intra-jugular catheters, and subsequent cocaine self-administration was analyzed. RESULTS CP376395-treated adolescent rats walked less and were attacked more slowly but were socially investigated more than vehicle-treated adolescents. Vehicle-treated rats showed increased social and decreased non-social exploration from P35 to P44, while CP376395-treated rats did not. Socially defeated, vehicle-treated adolescents took more cocaine during a 24-h unlimited access binge during adulthood. The latency to supine posture on P44 was inversely correlated with later cocaine self-administration during fixed and progressive ratio schedules of reinforcement and during the binge. CONCLUSIONS CP376395 treatment in adolescence blocked escalation of cocaine taking in adulthood. Episodes of social defeat stress engender neuroadaptation in CRF-R1s in the VTA that alter coping with social stress and that persist into adulthood.
Collapse
Affiliation(s)
- Andrew R Burke
- Department of Psychology, Tufts University, 530 Boston Avenue (Bacon Hall), Medford, MA, 02155, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Joseph F DeBold
- Department of Psychology, Tufts University, 530 Boston Avenue (Bacon Hall), Medford, MA, 02155, USA
| | - Klaus A Miczek
- Department of Psychology, Tufts University, 530 Boston Avenue (Bacon Hall), Medford, MA, 02155, USA.
- Department of Neuroscience, Tufts University, Boston, MA, 02111, USA.
- Department of Pharmacology, Tufts University, Boston, MA, 02111, USA.
- Department of Psychiatry, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|