1
|
Öter Ç, Zorer ÖS. Molecularly imprinted polymer synthesis and selective solid phase extraction applications for the detection of ziram, a dithiocarbamate fungicide. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
2
|
Belaid C, Sbartai I. Assessing the effects of Thiram to oxidative stress responses in a freshwater bioindicator cladoceran (Daphnia magna). CHEMOSPHERE 2021; 268:128808. [PMID: 33160653 DOI: 10.1016/j.chemosphere.2020.128808] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
Thiram (TMTD) is able to induce antioxidant defense and oxidative stress in different organisms. Moreover, Thiram can act as a prooxidant resulting in the formation of reactive oxygen species (ROS). To our knowledge, this is the first study assessing the oxidative stress induced by Thiram in the cladoceran Daphnia magna. At present, literature focus on the determination of toxicity in vertebrate organisms or cells, however, very few studies were interested to evaluate Thiram's effects in aquatic organisms such as cladoceran. To assess these effects, antioxidant GSH content, CAT and GST enzyme activities, cellular damages and lipid peroxidation indicators (MDA) were evaluated as oxidative stress biomarkers. Our results showed that acute Thiram exposure resulted in significant biochemical responses, demonstrating that Thiram induced oxidative damage. Indeed, following exposure to Thiram, we noticed an intracellular (GSH) depletion, associated with a marked increase of lipid membrane peroxidation as shown by high (MDA) production. Moreover, a dose-dependent induction of antioxidant key enzymes (CAT) and (GST) was found which led to an oxidative stress and finally death of Daphnia magna.
Collapse
Affiliation(s)
- Chahrazad Belaid
- Laboratory of Cellular Toxicology, Faculty of Sciences, Department of Biology, University of Badji Mokhtar, Annaba, B.P. 12, Annaba, 23000, Algeria.
| | - Ibtissem Sbartai
- Laboratory of Cellular Toxicology, Faculty of Sciences, Department of Biology, University of Badji Mokhtar, Annaba, B.P. 12, Annaba, 23000, Algeria
| |
Collapse
|
3
|
Rai B, Mercurio SD. Environmentally relevant exposures of male mice to carbendazim and thiram cause persistent genotoxicity in male mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10629-10641. [PMID: 31940143 DOI: 10.1007/s11356-019-07088-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Carbendazim and thiram are fungicides used in combination to prevent mold destruction of crops. Studies have demonstrated genotoxicity by these agents, but have not used concentrations below their water solubility limits in drinking water to test for persistence of genotoxicity due to chronic exposure. Ten 8-week old male Swiss-Webster mice were exposed to tap water, or nominal concentrations of 20 μM carbendazim, 20 μM thiram or 20 μM of both fungicides for 90 days (total of 40 mice). Five mice from tap water controls, carbendazim, thiram and combination-treated groups (20 mice total) had genotoxicity detected by comet assay of lymphocytes at the termination of the exposure period. The other 20 mice (4 treatment groups) were all switched to tap water and allowed a 45-day recovery period to check for persistence of DNA damage. The damage was compared with commercial control cells exposed to increasingly harsh treatment by etopside. Comet assay (mean % tail DNA + SE) of control mice (9.8 + 0.9) was similar to commercial control (CC0) cells (8.5 + 0.9). Carbendazim, thiram or the combination treatment caused similar mean % tail DNA with 33.0 + 2.9, 30.1 + 3.3 and 29.1 + 1.8, respectively, comparable with commercial cells slightly damaged by etopside (CC1 with 31.4 + 2.9) with no statistical change in water or food intake, body weight or liver or kidney weights. The key result was that a 45-day recovery period had no observable difference in the DNA damage as assessed by DNA % in comet tail with tap water controls and CCO control cells at 7.0 + 0.7 and 9.7 + 1.2 versus 27.5 + 1.9, 29.3 + 2.2 and 32.0 + 1.8, respectively, for carbendazim, thiram and combination treatments. It is of concern that the use of these agents in developing countries with little training or regulation results in water pollution that may cause significant persistent DNA damage in animal or human populations that may not be subject to repair.
Collapse
Affiliation(s)
- Bina Rai
- Department of Biological Sciences, Minnesota State University, Mankato, MN, USA
| | - Steven Don Mercurio
- Department of Biological Sciences, Minnesota State University, Mankato, MN, USA.
| |
Collapse
|
4
|
Mack JM, Moura TM, Lanznaster D, Bobinski F, Massari CM, Sampaio TB, Schmitz AE, Souza LF, Walz R, Tasca CI, Poli A, Doty RL, Dafre AL, Prediger RD. Intranasal administration of sodium dimethyldithiocarbamate induces motor deficits and dopaminergic dysfunction in mice. Neurotoxicology 2018; 66:107-120. [PMID: 29605442 DOI: 10.1016/j.neuro.2018.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 01/26/2023]
Abstract
The primary etiology of Parkinson's disease (PD) remains unclear, but likely reflects a combination of genetic and environmental factors. Exposure to some pesticides, including ziram (zinc dimethyldithiocarbamate), is a relevant risk factor for PD. Like some other environmental neurotoxicants, we hypothesized that ziram can enter the central nervous system from the nasal mucosa via the olfactory nerves. To address this issue, we evaluated the effects of 1, 2 or 4 days of intranasal (i.n., 1 mg/nostril/day) infusions of sodium dimethyldithiocarbamate (NaDMDC), a dimethyldithiocarbamate more soluble than ziram, on locomotor activity in the open field, neurological severity score and rotarod performance. We also addressed the effects of four daily i.n. NaDMDC infusions on olfactory bulb (OB) and striatal measures of cell death, reactive oxygen species (ROS), tyrosine hydroxylase, and the levels of dopamine, noradrenaline, serotonin, and their metabolites. A single i.n. administration of NaDMDC did not significantly alter the behavioral measures. Two consecutive days of i.n. NaDMDC administrations led to a transient neurological deficit that spontaneously resolved within a week. However, the i.n. infusions of NaDMDC for 4 consecutive days induced motor and neurological deficits for up to 7 days after the last NaDMDC administration and increased striatal TH immunocontent and dopamine degradation within a day of the last infusion. Pharmacological treatment with the anti-parkinsonian drugs l-DOPA and apomorphine improved the NaDMDC-induced locomotor deficits. NaDMDC increased serotonin levels and noradrenaline metabolism in the OB 24 h after the last NaDMDC infusion, ROS levels in the OB 2 h after the last infusion, and striatum 2 and 24 h after the last infusion. These results demonstrate, for the first time, that i.n. NaDMDC administration induces neurobehavioral and neurochemical impairments in mice. This accords with evidence that dimethyldithio-carbamate exposure increases the risk of PD and highlights the possibility that olfactory system could be a major route for NaDMDC entry to central nervous system.
Collapse
Affiliation(s)
- Josiel M Mack
- Department of Pharmacology, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Tainara M Moura
- Department of Pharmacology, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Débora Lanznaster
- Department of Biochemistry, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LANEX), Graduate Program in Health Sciences, University of Southern of Santa Catarina (UNISUL), Palhoça, SC, Brazil
| | - Caio M Massari
- Department of Biochemistry, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Tuane B Sampaio
- Department of Pharmacology, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Ariana E Schmitz
- Department of Biochemistry, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Luiz F Souza
- Department of Biochemistry, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Roger Walz
- Department of Clinical Medical, Center of Health Sciences, University Hospital, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Carla I Tasca
- Department of Biochemistry, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Anicleto Poli
- Department of Pharmacology, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Richard L Doty
- Smell & Taste Center, Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Alcir L Dafre
- Department of Biochemistry, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil
| | - Rui D Prediger
- Department of Pharmacology, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Campus Universitário, Florianópolis, SC, Brazil.
| |
Collapse
|
5
|
Morita T, Hamada S, Masumura K, Wakata A, Maniwa J, Takasawa H, Yasunaga K, Hashizume T, Honma M. Evaluation of the sensitivity and specificity of in vivo erythrocyte micronucleus and transgenic rodent gene mutation tests to detect rodent carcinogens. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 802:1-29. [DOI: 10.1016/j.mrgentox.2016.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 11/26/2022]
|
6
|
Paiva F, Fialho L, Rafael A, Cabrita AS, Pereira A, Capela e Silva F. Alterações histológicas dos rins e expressão das metalotioneínas e das proteínas de choque térmico em ratos Wistar após exposição ao fungicida tirame. ARQ BRAS MED VET ZOO 2013. [DOI: 10.1590/s0102-09352013000100015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Avaliaram-se as alterações histológicas e a expressão das metalotioneínas (MTs) e das proteínas de choque térmico (Hsp70) nos rins de ratos Wistar após a exposição ao fungicida tirame. Os animais foram distribuídos em três grupos: grupo dieta-padrão; grupo dieta-padrão+óleo de milho; e grupo tirame. Foram encontradas diferenças significativas (P<0,05) na evolução do peso corporal entre os ratos do grupo tirame e os dos grupos controle e óleo de milho, e não foram verificadas lesões histológicas evidentes nos rins dos animais. Foram encontradas diferenças entre os animais do grupo exposto ao tirame e os dos grupos controle e óleo quanto às características histomorfométricas relativas ao corpúsculo renal - exceto para a proporção área da cápsula de Bowman:área do glomérulo - e relativas aos túbulos contorcidos proximal e distal - exceto para altura do epitélio dos túbulos distais. Nos ratos expostos ao tirame, foi observada imunomarcação positiva para as MTs, de moderada a forte, nos túbulos contorcidos da região cortical, diminuindo do córtex em direção à medula, e forte imunomarcação para as Hsp70 nas áreas do córtex e da medula, no glomérulo e nos túbulos contorcidos. Os resultados sugerem que o tirame pode ter toxicidade crônica nos mamíferos por afetar o seu crescimento e que a expressão das MTs e das Hsp70, provável resposta celular adaptativa ao estresse oxidativo causado pelo tirame, pode ser utilizada como biomarcador de exposição a este químico.
Collapse
Affiliation(s)
- F. Paiva
- Universidade do Algarve, Portugal
| | | | | | | | | | | |
Collapse
|
7
|
Fialho L, Rafael A, Cabrita A, Pereira A, Capela e Silva F. Effect of dithiocarbamate thiram on Wistar rat growth plate and articular cartilage. ARQ BRAS MED VET ZOO 2012. [DOI: 10.1590/s0102-09352012000100036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Santovito A, Cervella P, Delpero M. Chromosomal aberrations in cultured human lymphocytes treated with the fungicide, Thiram. Drug Chem Toxicol 2012; 35:347-51. [PMID: 22289019 DOI: 10.3109/01480545.2011.627862] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In vitro effects of different concentrations of Thiram were tested on human lymphocytes to determine, by means of the chromosome aberrations (CAs) assay, whether this fungicide could induce clastogenic damage. Evidences of the effect of Thiram on human lymphocytes were limited to sister chromatid exchange, micronuclei formation, and comet assays. We evaluated 0.01, 0.1, 1.2, and 12.0 μg/mL of Thiram, where 0.01 μg/mL represent the acceptable daily intake dose set by the World Health Organization and the Food and Agriculture Organization for fruit and vegetables, whereas 0.1, 1.2, and 12.0 μg/mL are its multiple values. Results indicated that human lymphocytes treated in vitro with Thiram at concentrations of 1.20 and 12.0 μg/mL significantly increased CAs frequency, compared with the negative control, whereas at lower concentrations (0.01 and 0.1 μg/mL), this effect was not observed. However, Thiram showed a clastogenic effect also at the concentration value of 1.2 μg/mL that represents a lower value with respect to the residue limits found in Italy for grapes, strawberries, potatoes, tobacco, and other fruits and vegetables. Finally, according to some evidence obtained from the study of other fungicides, Thiram produced a significant reduction in the mitotic index with increasing concentration.
Collapse
Affiliation(s)
- Alfredo Santovito
- Dipartimento di Biologia Animale e dell'Uomo, University of Turin, Torino, Italy.
| | | | | |
Collapse
|
9
|
Kirkland D, Reeve L, Gatehouse D, Vanparys P. A core in vitro genotoxicity battery comprising the Ames test plus the in vitro micronucleus test is sufficient to detect rodent carcinogens and in vivo genotoxins. Mutat Res 2011; 721:27-73. [PMID: 21238603 DOI: 10.1016/j.mrgentox.2010.12.015] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/12/2010] [Accepted: 12/15/2010] [Indexed: 01/27/2023]
Abstract
In vitro genotoxicity testing needs to include tests in both bacterial and mammalian cells, and be able to detect gene mutations, chromosomal damage and aneuploidy. This may be achieved by a combination of the Ames test (detects gene mutations) and the in vitro micronucleus test (MNvit), since the latter detects both chromosomal aberrations and aneuploidy. In this paper we therefore present an analysis of an existing database of rodent carcinogens and a new database of in vivo genotoxins in terms of the in vitro genotoxicity tests needed to detect their in vivo activity. Published in vitro data from at least one test system (most were from the Ames test) were available for 557 carcinogens and 405 in vivo genotoxins. Because there are fewer publications on the MNvit than for other mammalian cell tests, and because the concordance between the MNvit and the in vitro chromosomal aberration (CAvit) test is so high for clastogenic activity, positive results in the CAvit test were taken as indicative of a positive result in the MNvit where there were no, or only inadequate data for the latter. Also, because Hprt and Tk loci both detect gene-mutation activity, a positive Hprt test was taken as indicative of a mouse-lymphoma Tk assay (MLA)-positive, where there were no data for the latter. Almost all of the 962 rodent carcinogens and in vivo genotoxins were detected by an in vitro battery comprising Ames+MNvit. An additional 11 carcinogens and six in vivo genotoxins would apparently be detected by the MLA, but many of these had not been tested in the MNvit or CAvit tests. Only four chemicals emerge as potentially being more readily detected in MLA than in Ames+MNvit--benzyl acetate, toluene, morphine and thiabendazole--and none of these are convincing cases to argue for the inclusion of the MLA in addition to Ames+MNvit. Thus, there is no convincing evidence that any genotoxic rodent carcinogens or in vivo genotoxins would remain undetected in an in vitro test battery consisting of Ames+MNvit.
Collapse
Affiliation(s)
- David Kirkland
- Kirkland Consulting, PO Box 79, Tadcaster LS24 0AS, United Kingdom.
| | | | | | | |
Collapse
|
10
|
Choi SM, Yoo SD, Lee BM. Toxicological characteristics of endocrine-disrupting chemicals: developmental toxicity, carcinogenicity, and mutagenicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2004; 7:1-24. [PMID: 14681080 DOI: 10.1080/10937400490253229] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
It is generally accepted that endocrine-disrupting chemicals (EDCs) play a role in a variety of adverse health effects in an intact organism or its progeny as a consequence of changes in the endocrine system. Primary toxic effects of EDCs were reported to be related to infertility, reduction in sperm count, and teratogenicity, but other important toxic effects of EDCs such as carcinogenicity and mutagenicity have also been demonstrated. The aim of the present study was to systematically analyze the toxicological characteristics of EDCs in pesticides, industrial chemicals, and metals. A comprehensive literature survey on the 48 EDCs classified by the Centers for Disease Control and Prevention (CDC) was conducted using a number of databases which included Medline, Toxline, and Toxnet. The survey results revealed that toxicological characteristics of EDCs were shown to produce developmental toxicity (81%), carcinogenicity (79%, when positive in at least one animal species; 48%, when classified based on IARC evaluation), mutagenicity (79%), immunotoxicity (52%), and neurotoxicity (50%). Regarding the hormone-modulating effects of the 48 EDCs, estrogenic effects were the most predominant in pesticides, while effects on thyroid hormone were found for heavy metals. EDCs showing estrogen-modulating effects were closely related to carcinogenicity or mutagenicity with a high degree of sensitivity. Systematic information on the toxicological characteristics of the EDCs will be useful for future research directions on EDCs, the development of new screening methods, legal regulation, and for investigations of their mechanism of action.
Collapse
Affiliation(s)
- Seul Min Choi
- Division of Toxicology/Pharmacokinetics, College of Pharmacy, Sungkyunkwan University, Suwon, Kyonggi-do, South Korea
| | | | | |
Collapse
|
11
|
Kodama S, Yamamoto A, Ohto M, Matsunaga A. Major degradation pathway of thiuram in tap water processed by oxidation with sodium hypochlorite. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 1999; 47:2914-2919. [PMID: 10552586 DOI: 10.1021/jf9813440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Thiuram (3 microM), a fungicide, was incubated in deionized water by adding 0-100 mg/L free chlorine at 30 degrees C for 30 min, and the solution was analyzed by HPLC and IC. The byproducts were identified by LC/MS, EI-MS, infrared, and (13)C NMR spectra and a reduction technique using 2-mercaptoethanol. On the basis of these results, it was found that the oxidation of thiuram with sodium hypochlorite initially produced an intermediate dimethylthiocarbamoyl dimethylcarbamoyl disulfide, which was finally degraded to bis(dimethylcarbamoyl) disulfide, its trisulfide, and dimethylamine. Subsequently, it was suggested that monitoring of bis(dimethylcarbamoyl) disulfide, its trisulfide, and dimethylamine should be included for the management and control of thiuram in tap water processed by oxidation with sodium hypochlorite.
Collapse
Affiliation(s)
- S Kodama
- Toyama Institute of Health, 17-1 Nakataikoyama, Kosugi-machi, Toyama 939-0363, Japan
| | | | | | | |
Collapse
|
12
|
Villani P, Andreoli C, Crebelli R, Pacchierotti F, Zijno A, Carere A. Analysis of micronuclei and DNA single-strand breaks in mouse splenocytes and peripheral lymphocytes after oral administration of tetramethylthiuram disulfide (thiram). Food Chem Toxicol 1998; 36:155-64. [PMID: 9609388 DOI: 10.1016/s0278-6915(97)00147-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The fungicide thiram (tetramethylthiuram disulfide, TMTD) was administered by repeated oral intubations to groups of male B6C3F1 mice at 100, 300 and 900 mg/kg body weight for 4 consecutive days, or at 300 mg/kg for 8 and 12 days. 24 hr after the last treatment animals were killed, and splenocyte cultures were set up for the analysis of micronuclei by the cytokinesis-block method. DNA single strand breaks (ssb) and alkali labile sites were also analysed by the single cell gel electrophoresis (Comet) assay in splenocytes and lymphocytes of animals receiving the 8- and 12-day treatments. Parallel experiments with human peripheral lymphocytes were carried out to assess the ability of thiram to induce micronuclei and DNA ssb and alkaline labile sites under in vitro conditions. No significant increase of micronucleated splenocytes was observed in treated animals, despite some evidence of treatment-related cellular toxicity. A borderline excess of DNA damage was suggested by the Comet assay on circulating lymphocytes, whereas negative results were obtained with splenocytes. In vitro, positive results with both genetic end points were obtained in assays with human lymphocytes in the dose ranges 0.5-24 microg/ml and 0.1-8 microg/ml for micronucleus and Comet assays, respectively. These results suggest that thiram, despite its established genotoxicity in vitro, is devoid of appreciable clastogenic and/or aneugenic activity in vivo after oral administration to mice at the maximum tolerated dose.
Collapse
|
13
|
Abstract
Dithiocarbamate fungicides are widely used in agriculture for protection of vegetable crops and seeds. The mutagenicity spectra of ziram, thiram, zineb S-65 and ETU were determined by employing a battery of test systems included the bacterium Salmonella typhimurium (strains TA98, TA100, TA102, TA104, TA1535, TA1538), the yeast Saccharomyces cerevisiae (strain D61.M) and the shallot Allium ascalonicum somatic cells. Plate incorporation assay with S. typhimurium demonstrated direct mutagenicity of ziram in TA100 and thiram in TA100 and TA98 whereas zineb S-65 and ETU were ineffective. Tests for mitotic chromosome malsegregation in S. cerevisiae D61.M gave positive results with thiram, zineb S-69 and ETU. In shallot somatic root-tip cells ziram, thiram and ETU induced different genetic damages e.g. mitotic disturbance, polyploidy and micronuclei.
Collapse
Affiliation(s)
- J Franekić
- Faculty of Food Technology and Biotechnology, Zagreb, Croatia
| | | | | | | |
Collapse
|
14
|
Scarabelli L, Giannoni P, Malfatto C, Bolognesi C, Cesarone CF. Relationship between poly(ADP-ribose) polymerase activity and DNA damage induced by zinc dithiocarbamates in mouse and rat liver. Mutat Res 1993; 302:1-6. [PMID: 7683100 DOI: 10.1016/0165-7992(93)90082-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The genotoxic effects due to in vivo treatment with zinc dithiocarbamates were evaluated in rat and mouse liver. The two pesticides Zineb and Ziram, belonging to this chemical class, induced an increase in single-strand DNA breaks, as measured by the alkaline elution technique. The nuclear enzyme poly(ADP-ribose) polymerase (pADPRP), a chromatin-bound catalytic protein, utilizing NAD+ as a substrate, was tested by a radiometric procedure. A close relationship between the increased extent of DNA damage and the enhanced level of endogenous pADPRP activity was obtained in rat liver, whereas both parameters remained unchanged in mouse liver.
Collapse
Affiliation(s)
- L Scarabelli
- Institute of General Physiology, University of Genoa, Italy
| | | | | | | | | |
Collapse
|