1
|
Kumari P, Yadav S, Sarkar S, Satheeshkumar PK. Cleavage of cell junction proteins as a host invasion strategy in leptospirosis. Appl Microbiol Biotechnol 2024; 108:119. [PMID: 38204132 PMCID: PMC10781872 DOI: 10.1007/s00253-023-12945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 01/12/2024]
Abstract
Infection and invasion are the prerequisites for developing the disease symptoms in a host. While the probable mechanism of host invasion and pathogenesis is known in many pathogens, very little information is available on Leptospira invasion/pathogenesis. For causing systemic infection Leptospira must transmigrate across epithelial barriers, which is the most critical and challenging step. Extracellular and membrane-bound proteases play a crucial role in the invasion process. An extensive search for the proteins experimentally proven to be involved in the invasion process through cell junction cleavage in other pathogens has resulted in identifying 26 proteins. The similarity searches on the Leptospira genome for counterparts of these 26 pathogenesis-related proteins identified at least 12 probable coding sequences. The proteins were either extracellular or membrane-bound with a proteolytic domain to cleave the cell junction proteins. This review will emphasize our current understanding of the pathogenic aspects of host cell junction-pathogenic protein interactions involved in the invasion process. Further, potential candidate proteins with cell junction cleavage properties that may be exploited in the diagnostic/therapeutic aspects of leptospirosis will also be discussed. KEY POINTS: • The review focussed on the cell junction cleavage proteins in bacterial pathogenesis • Cell junction disruptors from Leptospira genome are identified using bioinformatics • The review provides insights into the therapeutic/diagnostic interventions possible.
Collapse
Affiliation(s)
- Preeti Kumari
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Suhani Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Sresha Sarkar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Padikara K Satheeshkumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
2
|
Güzel-Akdemir Ö, Akdemir A. Urease inhibitors for the treatment of H. pylori. Expert Opin Ther Pat 2024. [PMID: 39495126 DOI: 10.1080/13543776.2024.2423004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 09/16/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Helicobacter pylori is a gram-negative bacterium that infects almost half of the World population. Although many infected people are symptom free, the microorganism can still cause a variety of gastrointestinal disorders and even gastric adenocarcinoma. It is considered a priority pathogen for the development of new antibiotics by the World Health Organisation (WHO). Many virulence factors of H. pylori have been described. Here the focus is on the urease enzyme. This enzyme converts urea into carbon dioxide and ammonia. Ammonia neutralizes the stomach acid in the microenvironment surrounding H. pylori and as such protects the organism. This paper will discuss the (patho)physiology and structure of H. pylori Urease (HPU). In addition, urease inhibitors with known activity against the H. pylori urease or inhibitors that show H. pylori growth inhibition will be discussed.
Collapse
Affiliation(s)
- Özlen Güzel-Akdemir
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul University, Beyazit/Istanbul, Turkey
| | - Atilla Akdemir
- Faculty of Pharmacy, Department of Pharmacology, Istinye University, Sariyer/Istanbul, Turkey
| |
Collapse
|
3
|
Zhang S, Liu S, Chen M, Lu J, Ma Y. Characterization of urease active calcite-producing strain YX-3 combined with the whole genome. ENVIRONMENTAL RESEARCH 2024; 262:119855. [PMID: 39208972 DOI: 10.1016/j.envres.2024.119855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Urease found in a wide range of microorganisms plays a vital role in ureolytic induced calcite precipitation (UICP). However, the genomic information on urease-producing strains is limited, and there is a need for further in-depth studies on aspects such as the regulation of urease activity by nickel ligand residues. The present study delved into the elucidation of urease activity in a newly isolated strain YX-3 coupled with nickel-ligand residues by employing the genetic architecture of biomineralization-controlled growth, molecular docking, molecular dynamics simulation (MDS), and site-directed mutagenesis. Genome-wide sequencing showed the presence of urease gene clusters, comprising structural genes ureA, ureB, and ureC, alongside auxiliary genes ureD, ureE, ureF, and ureG. RT-qPCR analysis showed that the addition of NiCl2 resulted in a significant up-regulation of ureC expression. His267, His294, and Gly325 in the domain of UreC were further proved to coordinate with nickel ions and urea simultaneously through homology modeling and molecular docking, and molecular dynamics simulations (MDS) showed the urease-urea docking complexes exhibited degressive binding stability by four metrics including root mean square deviations (RMSD) when those residues were mutated into alanine respectively. Western blotting exhibited that mutations of H267A, H294A, and G325A led to a reduction in the relative expression of urease, wherein urease activity was about 62%, 45%, and 20% times that of the wild type (WT), respectively. The overexpression results further confirmed the importance of these residues for urease activity and CaCO3 precipitation. These results would help to deepen the understanding of urease-producing strains at a molecular level and expand the theoretical basis for modulating urease activity.
Collapse
Affiliation(s)
- Shuqi Zhang
- College of Life Science, Northwest University, 229 Tai bai North Rd, Xi'an, Shaanxi, 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Shichuang Liu
- College of Life Science, Northwest University, 229 Tai bai North Rd, Xi'an, Shaanxi, 710069, China
| | - Mengyao Chen
- College of Life Science, Northwest University, 229 Tai bai North Rd, Xi'an, Shaanxi, 710069, China
| | - Juncheng Lu
- College of Life Science, Northwest University, 229 Tai bai North Rd, Xi'an, Shaanxi, 710069, China
| | - Yanling Ma
- College of Life Science, Northwest University, 229 Tai bai North Rd, Xi'an, Shaanxi, 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
4
|
Dong H, Qiao J, Hou S, Ran H, Sun W, Lin B, Han Y, Yu C, Li Y. Potentialities of Dandelion (Taraxacum Mongolicum Hand.-Mazz.) Flower Extracts on Gastric Protection against Helicobacter Pylori and Characterization of its Bioactive Constituents. Chem Biodivers 2024; 21:e202400140. [PMID: 38568379 DOI: 10.1002/cbdv.202400140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVES Dandelion has been shown to exert anti-inflammatory and anti-bacterial effects. Our study aimed to identify the effect and mechanism of dandelion flower extracts on H. pylori-induced gastritis and screen for novel antimicrobial substances. METHODS Anti-H. pylori activities of water extracts(WEDF) and ethanol extracts (EEDF) of dandelion flowers were performed with disk diffusion method assay, MIC, and MBC. The H. pylori-induced model was constructed to examine the gastroprotective of EEDF using RUT, pathological analysis, and ELISA. RESULTS EEDF exhibited better anti- H. pylori and urease inhibition activities than WEDF. In vivo studies, EEDF can reduce the adhesion of H. pylori to the gastric mucosa, alleviate gastric damage, and concurrently reduce the levels of TNF-α and IL-6 in gastric tissues. The six phenolic compounds showed urease inhibition effect (IC50: 2.99±0.15 to 66.08±6.46 mmol/mL). Among them, chlorogenic acid, caffeic acid, and luteolin also had anti-H. pylori activity (MIC: 64-256 μg/mL). CONCLUSION EEDF exhibited anti-H. pylori, gastroprotective and anti-inflammatory effects. Chicoric acid and luteolin may be the main active compounds of dandelion flowers to exert anti-H. pylori, and worthy of further investigation.
Collapse
Affiliation(s)
- Huirong Dong
- School of Pharmacy, Binzhou Medical University, 264003, Yantai, Shandong Province, China
| | - Jiasen Qiao
- The First School of Clinical Medicine, Binzhou Medical University, 264003, Yantai, Shandong Province, China
| | - Shengyao Hou
- School of Pharmacy, Binzhou Medical University, 264003, Yantai, Shandong Province, China
| | - Haoqi Ran
- Zhifu District Center for Disease Control and Prevention, 264000, Yantai, Shandong Province, China
| | - Weihao Sun
- School of Life Science and Biological Pharmacy, Shenyang Pharmaceutical University, 110016, Shenyang, Liaoning Province, China
| | - Benfan Lin
- Department of Dermatology, The First Affiliated Hospital of Jinzhou Medical University, 121017, Jinzhou, Liaoning Province, China
| | - Yanchun Han
- Department of Pathology, Binzhou Medical University, 264003, Yantai, Shandong Province, China
| | - Chen Yu
- School of Pharmacy, Binzhou Medical University, 264003, Yantai, Shandong Province, China
| | - Yanni Li
- School of Pharmacy, Binzhou Medical University, 264003, Yantai, Shandong Province, China
| |
Collapse
|
5
|
Jiang R, Shen F, Zhang M, Mulati S, Wang J, Tao Y, Zhang W. Evaluating the Anti-Melanoma Effects and Toxicity of Cinnamaldehyde Analogues. Molecules 2023; 28:7309. [PMID: 37959729 PMCID: PMC10647553 DOI: 10.3390/molecules28217309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Cinnamaldehyde (CA) showed potent activity against melanoma in our previous study, and the structure of unsaturated aldehydes is envisaged to play a role. Nevertheless, its limited drug availability restricts its clinical application. Therefore, a series of CA analogues were synthesized to evaluate their anti-melanoma activities across various melanoma cell lines. These compounds were also tested for their toxicity against the different normal cell lines. The compound with the most potential, CAD-14, exhibited potent activity against the A375, A875 and SK-MEL-1 cells, with IC50 values of 0.58, 0.65, and 0.82 µM, respectively. A preliminary molecular mechanism study of CAD-14 indicated that it could inhibit the p38 pathway to induce apoptosis, and suppress tumor growth by inhibiting the expression of ENO1. Furthermore, an acute toxicity study depicted that CAD-14 has better safety and tolerability than CA in vivo. These findings indicate that CAD-14 might be a lead compound for exploring effective anti-melanoma drugs.
Collapse
Affiliation(s)
- Rongsong Jiang
- School of Pharmacy, Xinjiang Medical University, Urumchi 830017, China; (R.J.); (M.Z.); (S.M.); (J.W.)
| | - Fukui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China;
| | - Miaomiao Zhang
- School of Pharmacy, Xinjiang Medical University, Urumchi 830017, China; (R.J.); (M.Z.); (S.M.); (J.W.)
| | - Shulipan Mulati
- School of Pharmacy, Xinjiang Medical University, Urumchi 830017, China; (R.J.); (M.Z.); (S.M.); (J.W.)
| | - Jinfeng Wang
- School of Pharmacy, Xinjiang Medical University, Urumchi 830017, China; (R.J.); (M.Z.); (S.M.); (J.W.)
| | - Yicun Tao
- School of Pharmacy, Xinjiang Medical University, Urumchi 830017, China; (R.J.); (M.Z.); (S.M.); (J.W.)
| | - Weiyi Zhang
- School of Pharmacy, Xinjiang Medical University, Urumchi 830017, China; (R.J.); (M.Z.); (S.M.); (J.W.)
| |
Collapse
|
6
|
Tabor W, Katsogiannou A, Karta D, Andrianopoulou E, Berlicki Ł, Vassiliou S, Grabowiecka A. Exploration of Thiourea-Based Scaffolds for the Construction of Bacterial Ureases Inhibitors. ACS OMEGA 2023; 8:28783-28796. [PMID: 37576686 PMCID: PMC10413841 DOI: 10.1021/acsomega.3c03702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
A series of 32 thiourea-based urease inhibitors were synthesized and evaluated against native bacterial enzyme and whole cells of Sporosarcina pasteurii and Proteus mirabilis strains. The proposed inhibitors represented structurally diverse thiosemicarbazones and thiocarbohydrazones, benzyl-substituted thiazolyl thioureas, 1H-pyrazole-1-carbothioamides, and dihydropirimidine-2(1H)-thiones. Kinetic characteristics with purified S. pasteurii enzyme determined low micromolar inhibitors within each structural group. (E)-2-(1-Phenylethylidene)hydrazine-1-carbothioamide 19 (Ki = 0.39 ± 0.01 μM), (E)-2-(4-methylbenzylidene)hydrazine-1-carbothioamide 16 (Ki = 0.99 ± 0.04 μM), and N'-((1E,2E)-1,3-diphenylallylidene)hydrazinecarbothiohydrazide 29 (Ki = 2.23 ± 0.19 μM) were used in modeling studies that revealed sulfur ion coordination of the active site nickel ion and hydrogen bonds between the amide group and the side chain of Asp363 and Ala366 carbonyl moiety. Whole-cell studies proved the activity of compounds in Gram-positive and Gram-negative microorganisms. Ureolysis control observed in P. mirabilis PCM 543 (e.g., IC50 = 304 ± 14 μM for 1-benzyl-3-(4-(4-hydroxyphenyl)thiazol-2-yl)thiourea 52) is a valuable achievement, as urease is recognized as a major virulence factor of this urinary tract pathogen.
Collapse
Affiliation(s)
- Wojciech Tabor
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Aikaterini Katsogiannou
- Laboratory
of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Danai Karta
- Laboratory
of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Evgenia Andrianopoulou
- Laboratory
of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Łukasz Berlicki
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Stamatia Vassiliou
- Laboratory
of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Agnieszka Grabowiecka
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| |
Collapse
|
7
|
Maślanka M, Tabor W, Krzyżek P, Grabowiecka A, Berlicki Ł, Mucha A. Inhibitory activity of catecholic phosphonic and phosphinic acids against Helicobacter pylori ureolysis. Eur J Med Chem 2023; 257:115528. [PMID: 37290184 DOI: 10.1016/j.ejmech.2023.115528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Catechols have been reported to be potent covalent inhibitors of ureases, and they exhibit activity by modifying cysteine residues at the entrance to enzymatic active sites. Following these principles, we designed and synthesized novel catecholic derivatives that contained carboxylate and phosphonic/phosphinic functionalities and assumed expanded specific interactions. When studying the chemical stability of the molecules, we found that their intrinsic acidity catalyzes spontaneous esterification/hydrolysis reactions in methanol or water solutions, respectively. Regarding biological activity, the most promising compound, 2-(3,4-dihydroxyphenyl)-3-phosphonopropionic acid (15), exhibited significant anti-urease potential (Ki = 2.36 μM, Sporosarcinia pasteurii urease), which was reflected in the antiureolytic effect in live Helicobacter pylori cells at a submicromolar concentration (IC50 = 0.75 μM). As illustrated by molecular modeling, this compound was bound in the active site of urease through a set of concerted electrostatic and hydrogen bond interactions. The antiureolytic activity of catecholic phosphonic acids could be specific because these compounds were chemically inert and not cytotoxic to eukaryotic cells.
Collapse
Affiliation(s)
- Marta Maślanka
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Wojciech Tabor
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wrocław Medical University, Wybrzeże L. Pasteura 1, 50-367, Wrocław, Poland
| | - Agnieszka Grabowiecka
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Artur Mucha
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| |
Collapse
|
8
|
Singh R, Kumar P, Devi M, Sindhu J, Kumar A, Lal S, Singh D, Kumar H, Kumar S. Urease Inhibition and Structure‐Activity Relationship Study of Thiazolidinone‐, Triazole‐, and Benzothiazole‐Based Heterocyclic Derivatives: A Focus Review. ChemistrySelect 2023. [DOI: 10.1002/slct.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Rahul Singh
- Department of Chemistry Kurukshetra University Kurukshetra 136119 India
| | - Parvin Kumar
- Department of Chemistry Kurukshetra University Kurukshetra 136119 India
| | - Meena Devi
- Department of Chemistry Kurukshetra University Kurukshetra 136119 India
| | - Jayant Sindhu
- Department of Chemistry COBS&H, CCS Haryana gricultural University Hisar 125004 India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences GJUS&T Hisar 125001 India
| | - Sohan Lal
- Department of Chemistry Kurukshetra University Kurukshetra 136119 India
| | - Devender Singh
- Department of Chemistry Maharshi Dayanand University Rohtak 124001 India
| | - Harish Kumar
- Department of Chemistry, School of Basic Sciences Central university Haryana Mahendergarh India
| | - Sumit Kumar
- Department of Chemistry DCR University of Science & Technology, Murthal Haryana 131039 India
| |
Collapse
|
9
|
Staphylococcus lugdunensis Uses the Agr Regulatory System to Resist Killing by Host Innate Immune Effectors. Infect Immun 2022; 90:e0009922. [PMID: 36069592 PMCID: PMC9584346 DOI: 10.1128/iai.00099-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) are frequently commensal bacteria that rarely cause disease in mammals. Staphylococcus lugdunensis is an exceptional CoNS that causes disease in humans similar to virulent Staphylococcus aureus, but the factors that enhance the virulence of this bacterium remain ill defined. Here, we used random transposon insertion mutagenesis to identify the agr quorum sensing system as a regulator of hemolysins in S. lugdunensis. Using RNA sequencing (RNA-seq), we revealed that agr regulates dozens of genes, including hemolytic S. lugdunensis synergistic hemolysins (SLUSH) peptides and the protease lugdulysin. A murine bacteremia model was used to show that mice infected systemically with wild-type S. lugdunensis do not show overt signs of disease despite there being high numbers of bacteria in the livers and kidneys of mice. Moreover, proliferation of the agr mutant in these organs was no different from that of the wild-type strain, leaving the role of the SLUSH peptides and the metalloprotease lugdulysin in pathogenesis still unclear. Nonetheless, the tropism of S. lugdunensis for humans led us to investigate the role of virulence factors in other ways. We show that agr-regulated effectors, but not SLUSH or lugdulysin alone, are important for S. lugdunensis survival in whole human blood. Moreover, we demonstrate that Agr contributes to survival of S. lugdunensis during encounters with murine and primary human macrophages. These findings demonstrate that, in S. lugdunensis, Agr regulates expression of virulence factors and is required for resistance to host innate antimicrobial defenses. This study therefore provides insight into strategies that this Staphylococcus species uses to cause disease.
Collapse
|