1
|
Shabbir M, Atiq A, Wang J, Atiq M, Saeed N, Yildiz I, Yan X, Xing R, Abbas M. Metal‐coordinated amino acid/peptide/protein‐based supramolecular self‐assembled nanomaterials for anticancer applications. AGGREGATE 2024. [DOI: 10.1002/agt2.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
AbstractBiomolecules with metals can form supramolecular nanomaterials through coordination assembly, opening new avenues for cancer theranostics and bringing unique insights into personalized nanomedicine. These biomaterials have been considered versatile and innovative nanoagents due to their structure‒function control, biological nature, and simple preparation methods. This review article summarized the recent developments in multicomponent nanomaterials formed from metal coordination interactions with amino acids, peptides, and proteins, together with anticancer drugs, for cancer theranostics. We discussed the role of functional groups anchored in building blocks for coordination interactions, and subsequently, the types of interactions were examined from a structure‒function perspective. Amino acids with different metals and anticancer drugs forming supramolecular nanomaterials and their anticancer mechanisms were highlighted. Peptides with different metals and anticancer drugs, proteins with metals and anticancer drugs used for material formations, and anticancer activity have been discussed. Ultimately, the conclusion and future outlook for multicomponent supramolecular nanomaterials offer fundamental insights into fabrication design and precision medicine.
Collapse
Affiliation(s)
- Maryam Shabbir
- Institute of Physics The Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Atia Atiq
- Division of Science and Technology Department of Physics University of Education Lahore Pakistan
| | - Jiahua Wang
- Department of Radiology Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Maria Atiq
- Institute of Physics The Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Nyla Saeed
- Institute of Physics The Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Ibrahim Yildiz
- Department of Chemistry Khalifa University of Science and Technology Abu Dhabi United Arab Emirates
- Functional Biomaterials Group Khalifa University of Science and Technology Abu Dhabi United Arab Emirates
| | - Xuehai Yan
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing China
| | - Ruirui Xing
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing China
| | - Manzar Abbas
- Department of Chemistry Khalifa University of Science and Technology Abu Dhabi United Arab Emirates
- Functional Biomaterials Group Khalifa University of Science and Technology Abu Dhabi United Arab Emirates
| |
Collapse
|
2
|
Vesamäki S, Meteling H, Nasare R, Siiskonen A, Patrakka J, Roas-Escalona N, Linder M, Virkki M, Priimagi A. Strategies to control humidity sensitivity of azobenzene isomerisation kinetics in polymer thin films. COMMUNICATIONS MATERIALS 2024; 5:209. [PMID: 39371916 PMCID: PMC11446815 DOI: 10.1038/s43246-024-00642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024]
Abstract
Azobenzenes are versatile photoswitches that garner interest in applications ranging from photobiology to energy storage. Despite their great potential, transforming azobenzene-based discoveries and proof-of-concept demonstrations from the lab to the market is highly challenging. Herein we give an overview of a journey that started from a discovery of hydroxyazobenzene's humidity sensitive isomerisation kinetics, developed into commercialization efforts of azobenzene-containing thin film sensors for optical monitoring of the relative humidity of air, and arrives to the present work aiming for better design of such sensors by understanding the different factors affecting the humidity sensitivity. Our concept is based on thermal isomerisation kinetics of tautomerizable azobenzenes in polymer matrices which, using pre-defined calibration curves, can be converted to relative humidity at known temperature. We present a small library of tautomerizable azobenzenes exhibiting humidity sensitive isomerisation kinetics in hygroscopic polymer films. We also investigate how water absorption properties of the polymer used, and the isomerisation kinetics are linked and how the azobenzene content in the thin film affects both properties. Based on our findings we propose simple strategies for further development of azobenzene-based optical humidity sensors.
Collapse
Affiliation(s)
- Sami Vesamäki
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Henning Meteling
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Roshan Nasare
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Antti Siiskonen
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Jani Patrakka
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | | | - Markus Linder
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Matti Virkki
- VTT Technical Research Centre of Finland Ltd, Oulu, Finland
| | - Arri Priimagi
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| |
Collapse
|
3
|
Kalapurakal RAM, Jha PK, Vashisth H. Theory and simulations of light-induced self-assembly in colloids with quantum chemistry derived empirical potentials. SOFT MATTER 2024; 20:7367-7378. [PMID: 39086325 DOI: 10.1039/d4sm00459k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Light-induced self-assembly (LISA) is a non-invasive method for tuning material properties. Photoresponsive ligands coated on the surfaces of nanoparticles are often used to achieve LISA. We report simulation studies for a photoresponsive ligand, azobenzene dithiol (ADT), which switches from a trans-to-cis configuration on exposure to ultraviolet light, allowing self-assembly in ADT-coated gold nanoparticles (NPs). This is attributed to a higher dipole moment of cis-ADT over trans-ADT which leads to a dipole-dipole attraction facilitating self-assembly. Singh and Jha [Comput. Theor. Chem., 2021, 1206, 113492] used quantum-chemistry calculations to quantify the interaction energy of a pair of ADT ligands in their cis and trans conformations. The interaction energy between ligands was fit to a potential energy function of the Lennard-Jones (LJ) form having distinct exponents for attractive and repulsive contributions. Using this generalized equation for the ligand-ligand interaction energy, we calculated the total effective interaction energy between a pair of cis as well as trans ADT-coated NPs. Specifically, we calculated the effective interaction energies between cis/trans-NPs using discrete as well as continuous approaches. Given the limitations of experiments in probing individual ligand conformations, we also studied the effect of varying the functional ligand length on the interaction energy between NPs and identified the optimal functional ligand length to capture the steric and conformational effects. Finally, using the effective interaction energy, we obtained a generalized potential energy function, which was applied in Langevin dynamics simulations to capture self-assembly in NPs.
Collapse
Affiliation(s)
| | - Prateek K Jha
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee 247667, India.
| | - Harish Vashisth
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH 03824, USA.
- Department of Chemistry, University of New Hampshire, Durham, NH 03824, USA
- Integrated Applied Mathematics Program, University of New Hampshire, Durham, NH 03824, USA
- Molecular and Cellular Biotechnology Program, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
4
|
Samal PP, Maiti A, Patel S, Paul H, Chandra G, Mishra P, Daschakraborty S, Nayak A. Quantifying Hydrogen-Bonding Interactions in the Self-Assembly of Photoresponsive Azobenzene Amphiphiles at the Air-Water Interface. J Phys Chem Lett 2024; 15:9193-9200. [PMID: 39213655 DOI: 10.1021/acs.jpclett.4c01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Amphiphilic azobenzene molecules offer ample scope to design functional supramolecular systems in an aqueous medium that can be controlled by light. Despite their widespread applications in photopharmacology and optoelectronics, the self-assembly pathways and energy landscapes of these systems are not well understood. Here, we report combined molecular dynamics (MD) simulation and surface manometry studies on a specially designed alkylated, meta-substituted azobenzene derivative to quantify the hydrogen-bonding interactions in the self-assembled monolayers of its photoisomers. The z-density profile, radial distribution function, order parameters, and hydrogen bond analyzed using MD simulations corroborated the experimental observations of changes in surface pressure, dipole moment, and thickness of the monolayers. Even a small change in the number of hydrogen bonds in the molecule-molecule and molecule-water interactions causes significant changes in the monolayer properties. These results are fundamentally important for engineering photoresponsive molecules with tailored properties for applications in targeted drug delivery and other industrial applications.
Collapse
Affiliation(s)
| | - Archita Maiti
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, India 801103
| | - Samridhi Patel
- Department of Chemistry, Central University of South Bihar, Gaya, India 824236
| | - Himangshu Paul
- Department of Physics, Indian Institute of Technology Patna, Bihta, India 801103
| | - Girish Chandra
- Department of Chemistry, Central University of South Bihar, Gaya, India 824236
| | - Puneet Mishra
- Department of Physics, Central University of South Bihar, Gaya, India 824236
| | | | - Alpana Nayak
- Department of Physics, Indian Institute of Technology Patna, Bihta, India 801103
| |
Collapse
|
5
|
Zhang Y, Lei F, Qian W, Zhang C, Wang Q, Liu C, Ji H, Liu Z, Wang F. Designing intelligent bioorthogonal nanozymes: Recent advances of stimuli-responsive catalytic systems for biomedical applications. J Control Release 2024; 373:929-951. [PMID: 39097195 DOI: 10.1016/j.jconrel.2024.07.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Bioorthogonal nanozymes have emerged as a potent tool in biomedicine due to their unique ability to perform enzymatic reactions that do not interfere with native biochemical processes. The integration of stimuli-responsive mechanisms into these nanozymes has further expanded their potential, allowing for controlled activation and targeted delivery. As such, intelligent bioorthogonal nanozymes have received more and more attention in developing therapeutic approaches. This review provides a comprehensive overview of the recent advances in the development and application of stimuli-responsive bioorthogonal nanozymes. By summarizing the design outlines for anchoring bioorthogonal nanozymes with stimuli-responsive capability, this review seeks to offer valuable insights and guidance for the rational design of these remarkable materials. This review highlights the significant progress made in this exciting field with different types of stimuli and the various applications. Additionally, it also examines the current challenges and limitations in the design, synthesis, and application of these systems, and proposes potential solutions and research directions. This review aims to stimulate further research toward the development of more efficient and versatile stimuli-responsive bioorthogonal nanozymes for biomedical applications.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Fang Lei
- School of Public Health, Nantong University, Nantong 226019, China
| | - Wanlong Qian
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Chengfeng Zhang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Qi Wang
- School of Public Health, Nantong University, Nantong 226019, China
| | - Chaoqun Liu
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Haiwei Ji
- School of Public Health, Nantong University, Nantong 226019, China
| | - Zhengwei Liu
- Precision Immunology Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York 10029, USA.
| | - Faming Wang
- School of Public Health, Nantong University, Nantong 226019, China.
| |
Collapse
|
6
|
Tobin CM, Gordon R, Tochikura SK, Chmelka BF, Morse DE, Read de Alaniz J. Reversible and size-controlled assembly of reflectin proteins using a charged azobenzene photoswitch. Chem Sci 2024; 15:13279-13289. [PMID: 39183923 PMCID: PMC11339800 DOI: 10.1039/d4sc03299c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024] Open
Abstract
Disordered proteins often undergo a stimuli-responsive, disorder-to-order transition which facilitates dynamic processes that modulate the physiological activities and material properties of cells, such as strength, chemical composition, and reflectance. It remains challenging to gain rapid and spatiotemporal control over such disorder-to-order transitions, which limits the incorporation of these proteins into novel materials. The reflectin protein is a cationic, disordered protein whose assembly is responsible for dynamic color camouflage in cephalopods. Stimuli-responsive control of reflectin's assembly would enable the design of biophotonic materials with tunable color. Herein, a novel, multivalent azobenzene photoswitch is shown to be an effective and non-invasive strategy for co-assembling with reflectin molecules and reversibly controlling assembly size. Photoisomerization between the trans and cis (E and Z) photoisomers promotes or reduces Coulombic interactions, respectively, with reflectin proteins to repeatedly cycle the sizes of the photoswitch-reflectin assemblies between 70 nm and 40 nm. The protein assemblies formed with the trans and cis isomers show differences in interaction stoichiometry and secondary structure, which indicate that photoisomerization modulates the photoswitch-protein interactions to change assembly size. Our results highlight the utility of photoswitchable interactions to control reflectin assembly and provide a tunable synthetic platform that can be adapted to the structure, assembly, and function of other disordered proteins.
Collapse
Affiliation(s)
- Cassidy M Tobin
- Department of Chemical Engineering, University of California Santa Barbara California 93106 USA
| | - Reid Gordon
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara California 93106 USA
| | - Seren K Tochikura
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara California 93106 USA
| | - Bradley F Chmelka
- Department of Chemical Engineering, University of California Santa Barbara California 93106 USA
| | - Daniel E Morse
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara California 93106 USA
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California Santa Barbara California 93106 USA
| |
Collapse
|
7
|
Hassan Akhtar M, Azhar Hayat Nawaz M, Abbas M, Liu N, Han W, Lv Y, Yu C. Advances in pH Sensing: From Traditional Approaches to Next-Generation Sensors in Biological Contexts. CHEM REC 2024; 24:e202300369. [PMID: 38953343 DOI: 10.1002/tcr.202300369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/18/2024] [Indexed: 07/04/2024]
Abstract
pH has been considered one of the paramount factors in bodily functions because most cellular tasks exclusively rely on precise pH values. In this context, the current techniques for pH sensing provide us with the futuristic insight to further design therapeutic and diagnostic tools. Thus, pH-sensing (electrochemically and optically) is rapidly evolving toward exciting new applications and expanding researchers' interests in many chemical contexts, especially in biomedical applications. The adaptation of cutting-edge technology is subsequently producing the modest form of these biosensors as wearable devices, which are providing us the opportunity to target the real-time collection of vital parameters, including pH for improved healthcare systems. The motif of this review is to provide insight into trending tech-based systems employed in real-time or in-vivo pH-responsive monitoring. Herein, we briefly go through the pH regulation in the human body to help the beginners and scientific community with quick background knowledge, recent advances in the field, and pH detection in real-time biological applications. In the end, we summarize our review by providing an outlook; challenges that need to be addressed, and prospective integration of various pH in vivo platforms with modern electronics that can open new avenues of cutting-edge techniques for disease diagnostics and prevention.
Collapse
Affiliation(s)
- Mahmood Hassan Akhtar
- College of Animal Science, Jilin University, Changchun, 130062, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Muhammad Azhar Hayat Nawaz
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM) COMSATS, University Islamabad, 54000, Lahore, Campus, Pakistan
| | - Manzar Abbas
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
- Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
| | - Ning Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Wenzhao Han
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Yan Lv
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
8
|
Ma Z, Wu J, Tan Y, Tan C. Azobenzene-Based Conjugated Polymers: Synthesis, Properties, and Biological Applications. Macromol Rapid Commun 2024; 45:e2400048. [PMID: 38521990 DOI: 10.1002/marc.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Conjugated polymers (CPs) have been developed quickly as an emerging functional material with applications in optical and electronic devices, owing to their highly electron-delocalized backbones and versatile side groups for facile processibility, high mechanical strength, and environmental stability. CPs exhibit multistimuli responsive behavior and fluorescence quenching properties by incorporating azobenzene functionality into their molecular structures. Over the past few decades, significant progress has been made in developing functional azobenzene-based conjugated polymers (azo-CPs), utilizing diverse molecular design strategies and synthetic pathways. This article comprehensively reviews the rapidly evolving research field of azo-CPs, focusing on the structural characteristics and synthesis methods of general azo-CPs, as well as the applications of charged azo-CPs, specifically azobenzene-based conjugated polyelectrolytes (azo-CPEs). Based on their molecular structures, azo-CPs can be broadly categorized into three primary types: linear CPs with azobenzene incorporated into the side chain, linear CPs with azobenzene integrated into the main chain, and branched CPs containing azobenzene moieties. These systems are promising for biomedical applications in biosensing, bioimaging, targeted protein degradation, and cellular apoptosis.
Collapse
Affiliation(s)
- Zhuang Ma
- The State Key Laboratory of Chemical Oncogenomics, International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Jiatao Wu
- College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ying Tan
- The State Key Laboratory of Chemical Oncogenomics, International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Chunyan Tan
- The State Key Laboratory of Chemical Oncogenomics, International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
9
|
Deng Y, Long G, Zhang Y, Zhao W, Zhou G, Feringa BL, Chen J. Photo-responsive functional materials based on light-driven molecular motors. LIGHT, SCIENCE & APPLICATIONS 2024; 13:63. [PMID: 38429259 PMCID: PMC10907585 DOI: 10.1038/s41377-024-01391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 03/03/2024]
Abstract
In the past two decades, the research and development of light-triggered molecular machines have mainly focused on developing molecular devices at the nanoscale. A key scientific issue in the field is how to amplify the controlled motion of molecules at the nanoscale along multiple length scales, such as the mesoscopic or the macroscopic scale, or in a more practical perspective, how to convert molecular motion into changes of properties of a macroscopic material. Light-driven molecular motors are able to perform repetitive unidirectional rotation upon irradiation, which offers unique opportunities for responsive macroscopic systems. With several reviews that focus on the design, synthesis and operation of the motors at the nanoscale, photo-responsive macroscopic materials based on light-driven molecular motors have not been comprehensively summarized. In the present review, we first discuss the strategy of confining absolute molecular rotation into relative rotation by grafting motors on surfaces. Secondly, examples of self-assemble motors in supramolecular polymers with high internal order are illustrated. Moreover, we will focus on building of motors in a covalently linked system such as polymeric gels and polymeric liquid crystals to generate complex responsive functions. Finally, a perspective toward future developments and opportunities is given. This review helps us getting a more and more clear picture and understanding on how complex movement can be programmed in light-responsive systems and how man-made adaptive materials can be invented, which can serve as an important guideline for further design of complex and advanced responsive materials.
Collapse
Affiliation(s)
- Yanping Deng
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Guiying Long
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Yang Zhang
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Wei Zhao
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Guofu Zhou
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Ben L Feringa
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China.
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands.
| | - Jiawen Chen
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Lv Y, Ye H, You L. Multiple control of azoquinoline based molecular photoswitches. Chem Sci 2024; 15:3290-3299. [PMID: 38425524 PMCID: PMC10901508 DOI: 10.1039/d3sc05879d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
Multi-addressable molecular switches with high sophistication are creating intensive interest, but are challenging to control. Herein, we incorporated ring-chain dynamic covalent sites into azoquinoline scaffolds for the construction of multi-responsive and multi-state switching systems. The manipulation of ring-chain equilibrium by acid/base and dynamic covalent reactions with primary/secondary amines allowed the regulation of E/Z photoisomerization. Moreover, the carboxyl and quinoline motifs provided recognition handles for the chelation of metal ions and turning off photoswitching, with otherwise inaccessible Z-isomer complexes obtained via the change of stimulation sequence. Particularly, the distinct metal binding behaviors of primary amine and secondary amine products offered a facile way for modulating E/Z switching and dynamic covalent reactivity. As a result, multiple control of azoarene photoswitches was accomplished, including light, pH, metal ions, and amine nucleophiles, with interplay between diverse stimuli further enabling addressable multi-state switching within reaction networks. The underlying structural and mechanistic insights were elucidated, paving the way for the creation of complex switching systems, molecular assemblies, and intelligent materials.
Collapse
Affiliation(s)
- Youming Lv
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 China
| |
Collapse
|