1
|
Rufo J, Qiu C, Han D, Baxter N, Daley G, Wilson MZ. An explainable map of human gastruloid morphospace reveals gastrulation failure modes and predicts teratogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614192. [PMID: 39386623 PMCID: PMC11463602 DOI: 10.1101/2024.09.20.614192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Human gastrulation is a critical stage of development where many pregnancies fail due to poorly understood mechanisms. Using the 2D gastruloid, a stem cell model of human gastrulation, we combined high-throughput drug perturbations and mathematical modelling to create an explainable map of gastruloid morphospace. This map outlines patterning outcomes in response to diverse perturbations and identifies variations in canonical patterning and failure modes. We modeled morphogen dynamics to embed simulated gastruloids into experimentally-determined morphospace to explain how developmental parameters drive patterning. Our model predicted and validated the two greatest sources of patterning variance: cell density-based modulations in Wnt signaling and SOX2 stability. Assigning these parameters as axes of morphospace imparted interpretability. To demonstrate its utility, we predicted novel teratogens that we validated in zebrafish. Overall, we show how stem cell models of development can be used to build a comprehensive and interpretable understanding of the set of developmental outcomes.
Collapse
Affiliation(s)
- Joseph Rufo
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Center for BioEngineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Chongxu Qiu
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Dasol Han
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Naomi Baxter
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Gabrielle Daley
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Maxwell Z. Wilson
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Center for BioEngineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
2
|
Azzi C, Rayon T. Timing mechanisms: insights from comparative neural differentiation systems. Curr Opin Genet Dev 2024; 86:102197. [PMID: 38648722 DOI: 10.1016/j.gde.2024.102197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
Temporal control is central to deploy and coordinate genetic programs during development. At present, there is limited understanding of the molecular mechanisms that govern the duration and speed of developmental processes. Timing mechanisms may run in parallel and/or interact with each other to integrate temporal signals throughout the organism. In this piece, we consider findings on the extrinsic control of developmental tempo and discuss the intrinsic roles of cell cycle, metabolic rates, protein turnover, and post-transcriptional mechanisms in the regulation of tempo during neural development.
Collapse
Affiliation(s)
- Chiara Azzi
- Epigenetics & Signalling Programmes, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK. https://twitter.com/@azziChiA
| | - Teresa Rayon
- Epigenetics & Signalling Programmes, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
3
|
Zhao Y, Bai D, Wu Y, Zhang D, Liu M, Tian Y, Lu J, Wang H, Gao S, Lu Z. Maternal Ezh1/2 deficiency in oocyte delays H3K27me2/3 restoration and impairs epiblast development responsible for embryonic sub-lethality in mouse. Development 2022; 149:dev200316. [PMID: 38771308 DOI: 10.1242/dev.200316] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/23/2022] [Indexed: 05/22/2024]
Abstract
How maternal Ezh1 and Ezh2 function in H3K27 methylation in vivo in pre-implantation embryos and during embryonic development is not clear. Here, we have deleted Ezh1 and Ezh2 alone or simultaneously from mouse oocytes. H3K27me3 was absent in oocytes without Ezh2 alone, while both H3K27me2 and H3K27me3 were absent in Ezh1/Ezh2 (Ezh1/2) double knockout (KO) oocytes. The effects of Ezh1/2 maternal KO were inherited in zygotes and early embryos, in which restoration of H3K27me3 and H3K27me2 was delayed by the loss of Ezh2 alone or of both Ezh1 and Ezh2. However, the ablation of both Ezh1 and Ezh2, but not Ezh1 or Ezh2 alone, led to significantly decreased litter size due to growth retardation post-implantation. Maternal Ezh1/2 deficiency caused compromised H3K27me3 and pluripotent epiblast cells in late blastocysts, followed by defective embryonic development. By using RNA-seq, we examined crucial developmental genes in maternal Ezh1/2 KO embryos and identified 80 putatively imprinted genes. Maternal Ezh1/2-H3K27 methylation is inherited in offspring embryos and has a critical effect on fetal and placental development. Thus, this work sheds light on maternal epigenetic modifications during embryonic development.
Collapse
Affiliation(s)
- Yinan Zhao
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Dandan Bai
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - You Wu
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Dan Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Mengying Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yingpu Tian
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| | - Shaorong Gao
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhongxian Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
4
|
Zhao B, Ding X, Wang X, Sun Y, Gao S, Song X, Zhang B, Zhang Y, Wang Y. Supplementation with kaempferol relieves oxidative stress and enhances development of early bovine embryos in vitro. Reprod Domest Anim 2022; 57:1007-1015. [PMID: 35615974 DOI: 10.1111/rda.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
Abstract
Oxidative stress (OS) has been considered the principle cause of developmental failure of early embryos cultured in vitro; therefore, the addition of antioxidants is very important for improving in vitro culture (IVC) systems. Various antioxidants have been tested for IVC systems, but most have exhibited some side effects. Kaempferol (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4h-1-benzopyran-4-one, KAE) is a flavonoid with strong antioxidant activity and no obvious side effects. This study explored the effect of KAE on antioxidant capacity and developmental competence of bovine embryos after fertilization. KAE was added to bovine IVC medium and significantly reduced reactive oxygen species (ROS) in 2-, 4- and 8-cell stage embryos and increased blastocyst formation. In addition, the level of H3K9ac was increased, the apoptotic index was reduced, and total cell numbers and trophectoderm cell numbers in day 7 blastocysts were increased significantly in KAE-treated embryos compared to control. Expression of the apoptotic gene, Bcl-2, was higher in blastocysts after KAE treatment, while expression of the endoplasmic reticulum (ER) stress genes, Bip and HDAC1, and the pro-apoptotic gene, Bax, were significantly lower in the KAE group. Thus, KAE significantly reduced ROS damage and improved development of IVC bovine embryos.
Collapse
Affiliation(s)
- Baobao Zhao
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, PR China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, PR China
| | - Xinyi Ding
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, PR China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, PR China
| | - Xiaoyan Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, PR China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, PR China
| | - Yu Sun
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, PR China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, PR China
| | - Song Gao
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, PR China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, PR China
| | - Xuexiao Song
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, PR China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, PR China
| | - Bihan Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, PR China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, PR China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, PR China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, PR China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, PR China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, PR China
| |
Collapse
|
5
|
Sozen B, Cornwall-Scoones J, Zernicka-Goetz M. The dynamics of morphogenesis in stem cell-based embryology: Novel insights for symmetry breaking. Dev Biol 2021; 474:82-90. [PMID: 33333067 PMCID: PMC8259461 DOI: 10.1016/j.ydbio.2020.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Breaking embryonic symmetry is an essential prerequisite to shape the initially symmetric embryo into a highly organized body plan that serves as the blueprint of the adult organism. This critical process is driven by morphogen signaling gradients that instruct anteroposterior axis specification. Despite its fundamental importance, what triggers symmetry breaking and how the signaling gradients are established in time and space in the mammalian embryo remain largely unknown. Stem cell-based in vitro models of embryogenesis offer an unprecedented opportunity to quantitatively dissect the multiple physical and molecular processes that shape the mammalian embryo. Here we review biochemical mechanisms governing early mammalian patterning in vivo and highlight recent advances to recreate this in vitro using stem cells. We discuss how the novel insights from these model systems extend previously proposed concepts to illuminate the extent to which embryonic cells have the intrinsic capability to generate specific, reproducible patterns during embryogenesis.
Collapse
Affiliation(s)
- Berna Sozen
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA; Yale University School of Medicine, Department of Genetics, New Haven, CT, 06510, USA.
| | - Jake Cornwall-Scoones
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA; Developmental Dynamics Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Magdalena Zernicka-Goetz
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA; Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Cambridge, CB2 3EG, UK.
| |
Collapse
|
6
|
No cytotoxic effects from application of pentoxifylline to spermatozoa on subsequent pre-implantation embryo development in mice. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2017. [DOI: 10.1016/j.mefs.2016.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Wen Z, Pan Y, Cui Y, Peng X, Chen P, Fan J, Li G, Zhao T, Zhang J, Qin S, Yu S. Colony-stimulating factor 2 enhances the developmental competence of yak (Poephagus grunniens) preimplantation embryos by modulating the expression of heat shock protein 70 kDa 1A. Theriogenology 2017; 93:16-23. [PMID: 28257862 DOI: 10.1016/j.theriogenology.2017.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/25/2016] [Accepted: 01/19/2017] [Indexed: 11/18/2022]
Abstract
Colony-stimulating factor 2 (CSF2) is known to promote the development and survival of rodents and ruminants preimplantation embryos; however, the effect of CSF2 on yak embryos has not been reported. The objective of this study was to investigate the effects of CSF2 on the developmental competence of yak embryos cultured in vitro in modified synthetic oviduct fluid (mSOF) medium and on the expression pattern of heat shock protein 70 kDa 1A (HSPA1A). In each experiment, cumulus-oocyte complexes (COCs) were matured in vitro and fertilized with frozen-thawed semen. Zygotes were treated with varying concentrations of CSF2 (0, 10, 50, 100 ng/mL) until day 8 after fertilization. Embryo development was calculated as the percentage of oocytes that formed embryos at the 2-cell, 4-cell, 8-cell, 16-cell, morula and blastocyst stages. The total cell numbers (TCN) per blastocyst and their allocation to the inner cell mass (ICM) and trophectoderm (TE) lineages were determined using differential CDX2 staining. The expression of HSPA1A was examined by quantitative real-time PCR (qRT-PCR) and immunochemistry to determine the mRNA and protein levels. The results showed that treatment with 50 ng/mL CSF2 significantly (P < 0.05) increased the rate of blastocyst formation (19.01% versus 9.93%) and the TCN per blastocyst (96.94 versus 81.41) compared to the control group. However, no significant differences were observed in the other stages of development. qRT-PCR analysis confirmed that treatment with 50 ng/mL CSF2 significantly (P < 0.05) inhibited the expression of HSPA1A mRNA in blastocysts cultured in vitro relative to the control group, but there were no significant differences between the other treatment groups. Immunocytochemical analysis confirmed that HSPA1A protein accumulation was gradually reduced in yak blastocysts cultured in 0, 10, 100 or 50 ng/mL CSF2, however, no significant differences were observed between the 10 and 100 ng/mL treatments (P > 0.05). In conclusion, these findings demonstrate that CSF2 inhibits the expression of HSPA1A to facilitate yak blastocyst formation and increase cell numbers.
Collapse
Affiliation(s)
- Zexing Wen
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yangyang Pan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiumei Peng
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ping Chen
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jiangfeng Fan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Guyue Li
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tian Zhao
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jian Zhang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shujian Qin
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
8
|
Minocha S, Sung TL, Villeneuve D, Lammers F, Herr W. Compensatory embryonic response to allele-specific inactivation of the murine X-linked gene Hcfc1. Dev Biol 2016; 412:1-17. [DOI: 10.1016/j.ydbio.2016.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 01/29/2023]
|
9
|
Burkuš J, Kačmarová M, Kubandová J, Kokošová N, Fabianová K, Fabian D, Koppel J, Čikoš Š. Stress exposure during the preimplantation period affects blastocyst lineages and offspring development. J Reprod Dev 2015; 61:325-31. [PMID: 25985793 PMCID: PMC4547990 DOI: 10.1262/jrd.2015-012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We found retardation of preimplantation embryo growth after exposure to maternal restraint stress during the preimplantation period in our previous study. In the present study, we evaluated the impact of preimplantation maternal restraint stress on the distribution of inner cell mass (ICM) and trophectoderm (TE) cells in mouse blastocysts, and its possible effect on physiological development of offspring. We exposed spontaneously ovulating female mice to restraint stress for 30 min three times a day during the preimplantation period, and this treatment caused a significant increase in blood serum corticosterone concentration. Microscopic evaluation of embryos showed that restraint stress significantly decreased cell counts per blastocyst. Comparing the effect of restraint stress on the two blastocyst cell lineages, we found that the reduction in TE cells was more substantial than the reduction in ICM cells, which resulted in an increased ICM/TE ratio in blastocysts isolated
from stressed dams compared with controls. Restraint stress reduced the number of implantation sites in uteri, significantly delayed eye opening in delivered mice, and altered their behavior in terms of two parameters (scratching on the base of an open field test apparatus, time spent in central zone) as well. Moreover, prenatally stressed offspring had significantly lower body weights and in 5-week old females delivered from stressed dams, fat deposits were significantly lower. Our results indicate that exposure to stress during very early pregnancy can have a negative impact on embryonic development with consequences reaching into postnatal life.
Collapse
Affiliation(s)
- Ján Burkuš
- Institute of Animal Physiology, Slovak Academy of Sciences, Košice, 04001, Slovak Republic
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Reduced oocyte and embryo quality in response to elevated non-esterified fatty acid concentrations: A possible pathway to subfertility? Anim Reprod Sci 2014; 149:19-29. [DOI: 10.1016/j.anireprosci.2014.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 12/19/2022]
|
11
|
Cytotoxic effects of dillapiole on embryonic development of mouse blastocysts in vitro and in vivo. Int J Mol Sci 2014; 15:10751-65. [PMID: 24933639 PMCID: PMC4100178 DOI: 10.3390/ijms150610751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/25/2014] [Accepted: 06/06/2014] [Indexed: 11/18/2022] Open
Abstract
We examined the cytotoxic effects of dillapiole, a phenylpropanoid with antileishmanial, anti-inflammatory, antifungal, and acaricidal activities, on the blastocyst stage of mouse embryos, subsequent embryonic attachment and outgrowth in vitro, and in vivo implantation via embryo transfer. Blastocysts treated with 2.5–10 μM dillapiole exhibited a significant increase in apoptosis and corresponding decrease in total cell number. Notably, the implantation success rates of blastocysts pretreated with dillapiole were lower than those of their control counterparts. Moreover, in vitro treatment with 2.5–10 μM dillapiole was associated with increased resorption of post-implantation embryos and decreased fetal weight. Our results collectively indicate that dillapiole induces apoptosis and retards early post-implantation development, both in vitro and in vivo. However, the extent to which this organic compound exerts teratogenic effects on early human development is not known at present. Further studies are required to establish effective protection strategies against the cytotoxic effects of dillapiole.
Collapse
|
12
|
Ochratoxin a inhibits mouse embryonic development by activating a mitochondrion-dependent apoptotic signaling pathway. Int J Mol Sci 2013; 14:935-53. [PMID: 23296271 PMCID: PMC3565299 DOI: 10.3390/ijms14010935] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/10/2012] [Accepted: 12/24/2012] [Indexed: 12/23/2022] Open
Abstract
Ochratoxin A (OTA), a mycotoxin found in many foods worldwide, causes nephrotoxicity, hepatotoxicity, and immunotoxicity, both in vitro and in vivo. In the present study, we explored the cytotoxic effects exerted by OTA on the blastocyst stage of mouse embryos, on subsequent embryonic attachment, on outgrowth in vitro, and following in vivo implantation via embryo transfer. Mouse blastocysts were incubated with or without OTA (1, 5, or 10 μM) for 24 h. Cell proliferation and growth were investigated using dual differential staining; apoptosis was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay; and embryo implantation and post-implantation development were assessed by examination of in vitro growth and the outcome of in vivo embryo transfer, respectively. Blastocysts treated with 10 μM OTA displayed a significantly increased level of apoptosis and a reduction in total cell number. Interestingly, we observed no marked difference in implantation success rate between OTA-pretreated and control blastocysts either during in vitro embryonic development (following implantation in a fibronectin-coated culture dish) or after in vivo embryo transfer. However, in vitro treatment with 10 μM OTA was associated with increased resorption of post-implantation embryos by the mouse uterus, and decreased fetal weight upon embryo transfer. Our results collectively indicate that in vitro exposure to OTA triggers apoptosis and retards early post-implantation development after transfer of embryos to host mice. In addition, OTA induces apoptosis-mediated injury of mouse blastocysts, via reactive oxygen species (ROS) generation, and promotes mitochondrion-dependent apoptotic signaling processes that impair subsequent embryonic development.
Collapse
|
13
|
Yoon Y, Cowley DO, Gallant J, Jones SN, Van Dyke T, Rivera-Pérez JA. Conditional Aurora A deficiency differentially affects early mouse embryo patterning. Dev Biol 2012; 371:77-85. [PMID: 22939930 DOI: 10.1016/j.ydbio.2012.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 08/14/2012] [Accepted: 08/16/2012] [Indexed: 12/18/2022]
Abstract
Aurora A is a mitotic kinase essential for cell proliferation. In mice, ablation of Aurora A results in mitotic arrest and pre-implantation lethality, preventing studies at later stages of development. Here we report the effects of Aurora A ablation on embryo patterning at early post-implantation stages. Inactivation of Aurora A in the epiblast or visceral endoderm layers of the conceptus leads to apoptosis and inhibition of embryo growth, causing lethality and resorption at approximately E9.5. The effects on embryo patterning, however, depend on the tissue affected by the mutation. Embryos with an epiblast ablation of Aurora A properly establish the anteroposterior axis but fail to progress through gastrulation. In contrast, mutation of Aurora A in the visceral endoderm, leads to posteriorization of the conceptus or failure to elongate the anteroposterior axis. Injection of ES cells into Aurora A epiblast knockout blastocysts reconstitutes embryonic development to E9.5, indicating that the extra-embryonic tissues in these mutant embryos can sustain development to organogenesis stages. Our results reveal new ways to induce apoptosis and to ablate cells in a tissue-specific manner in vivo. Moreover, they show that epiblast-ablated embryos can be used to test the potency of stem cells.
Collapse
Affiliation(s)
- Yeonsoo Yoon
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | |
Collapse
|
14
|
Dihydrolipoic acid induces cytotoxicity in mouse blastocysts through apoptosis processes. Int J Mol Sci 2012; 13:3988-4002. [PMID: 22489194 PMCID: PMC3317754 DOI: 10.3390/ijms13033988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 11/05/2022] Open
Abstract
α-Lipoic acid (LA) is a thiol with antioxidant properties that protects against oxidative stress-induced apoptosis. LA is absorbed from the diet, taken up by cells and tissues, and subsequently reduced to dihydrolipoic acid (DHLA). In view of the recent application of DHLA as a hydrophilic nanomaterial preparation, determination of its biosafety profile is essential. In the current study, we examined the cytotoxic effects of DHLA on mouse embryos at the blastocyst stage, subsequent embryonic attachment and outgrowth in vitro, in vivo implantation by embryo transfer, and early embryonic development in an animal model. Blastocysts treated with 50 μM DHLA exhibited significantly increased apoptosis and a corresponding decrease in total cell number. Notably, the implantation success rates of blastocysts pretreated with DHLA were lower than that of their control counterparts. Moreover, in vitro treatment with 50 μM DHLA was associated with increased resorption of post-implantation embryos and decreased fetal weight. Data obtained using an in vivo mouse model further disclosed that consumption of drinking water containing 100 μM DHLA led to decreased early embryo development, specifically, inhibition of development to the blastocyst stage. However, it appears that concentrations of DHLA lower than 50 μM do not exert a hazardous effect on embryonic development. Our results collectively indicate that in vitro and in vivo exposure to concentrations of DHLA higher than 50 μM DHLA induces apoptosis and retards early pre- and post-implantation development, and support the potential of DHLA to induce embryonic cytotoxicity.
Collapse
|
15
|
Effects of porcine granulocyte-macrophage colony-stimulating factor on porcine in vitro-fertilized embryos. Theriogenology 2011; 77:1186-97. [PMID: 22153263 DOI: 10.1016/j.theriogenology.2011.10.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 08/15/2011] [Accepted: 10/15/2011] [Indexed: 11/23/2022]
Abstract
This study investigated the effects of porcine granulocyte-macrophage colony-stimulating factor (pGM-CSF) on the developmental potential of porcine in vitro-fertilized (IVF) embryos in chemically and semidefined (with BSA) medium. In experiment 1, zygotes were treated with different concentrations of pGM-CSF (0, 2, 10, 100 ng/mL). The results indicated that 10 ng/mL pGM-CSF significantly (P < 0.05) increased blastocyst development and total cell number (15.1% and 53.5, respectively) compared with the control (6.1%, and 38.8, respectively). Comparing blastocyst formation, early and expanded blastocyst formation was significantly higher in the 10 ng/mL-pGM-CSF group than in the control on Days 6 and 7 of the culture period. However, there was no significant difference in cleavage rate. Experiment 2 demonstrated that pGM-CSF influenced the percentage of blastocyst formation and total cell number when pGM-CSF was added during Days 4 to 7 (14.6% and 53.9, respectively) or Days 0 to 7 (15.2% and 54.0, respectively) compared with the control (7.8% and 43.1, respectively) and compared with Days 0 to 3 (8.7% and 42.5, respectively). Similarly, early blastocyst formation rates were significantly higher at Days 4 to 7 than in the control, and expanded blastocyst formation was significantly higher at Days 4 to 7 or Days 0 to 7. No significant difference in cleavage rates appeared among the groups. In experiment 3, in the presence of BSA, pGM-CSF also increased the percentage of embryos that developed to the blastocyst stage and the total cell number (20.3% and 59.8, respectively) compared with the control (14.9% and 51.4, respectively), whereas there was no significant difference in cleavage rate. Experiment 4 found that the total cell number and the number of cells in the inner cell mass (ICM) were significantly increased compared with the control when zygotes were cultured in either porcine zygotic medium (PZM)-3 or PZM-4 supplemented with 10 ng/mL pGM-CSF. The number of trophectoderm (TE) cells was significantly higher in PZM-3 medium supplemented with pGM-CSF than in the control, and the number tended to increase (P = 0.058) in PZM-4 medium supplemented with pGM-CSF. The ratio of inner cell mass to trophectoderm cells was significantly higher in PZM-4 supplemented with 10 ng/mL pGM-CSF, but not in PZM-3. In experiment 5, it was found that the male pronuclear formation rate, monospermic penetration and sperm/oocyte were 95.4%, 37.2%, and 2.4, respectively. Together, these results suggest that pGM-CSF may have a physiological role in promoting the development of porcine preimplantation embryos and regulating cell viability and that addition of pGM-CSF to IVC medium at Days 4 to 7 or 0 to 7 improves the developmental potential of porcine IVF embryos.
Collapse
|
16
|
Resveratrol protects against 2-bromopropane-induced apoptosis and disruption of embryonic development in blastocysts. Int J Mol Sci 2011; 12:4991-5010. [PMID: 21954340 PMCID: PMC3179147 DOI: 10.3390/ijms12084991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/18/2011] [Accepted: 07/28/2011] [Indexed: 01/31/2023] Open
Abstract
2-Bromopropane (2-BP) is used as an alternative to ozone-depleting cleaning solvents. Previously, we reported that 2-BP has cytotoxic effects on mouse blastocysts and is associated with defects in subsequent development. In the present work, we show that 2-BP induces apoptosis in the inner cell mass of mouse blastocysts, and inhibits cell proliferation. Both effects are suppressed by resveratrol, a grape-derived phytoalexin with known antioxidant and anti-inflammatory properties. 2-BP-treated blastocysts displayed lower levels of implantation (compared to controls) when plated on culture dishes in vitro, and a reduced ability to proceed to later stages of embryonic development. Pretreatment with resveratrol prevented 2-BP-induced disruption of embryonic development, both in vitro and in vivo. Further investigation of these processes revealed that 2-BP directly promotes ROS generation, loss of mitochondrial membrane potential (MMP), and activation of caspase-3, whereas resveratrol effectively blocks 2-BP-induced ROS production and the accompanying apoptotic biochemical changes. Our results collectively imply that 2-BP triggers the mitochondrion-dependent apoptotic pathway via ROS generation, and the antioxidant activity of resveratrol prevents 2-BP-induced toxicity.
Collapse
|
17
|
Robertson SA, Chin PY, Glynn DJ, Thompson JG. Peri-Conceptual Cytokines - Setting the Trajectory for Embryo Implantation, Pregnancy and Beyond. Am J Reprod Immunol 2011; 66 Suppl 1:2-10. [DOI: 10.1111/j.1600-0897.2011.01039.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
18
|
Chan WH. Embryonic toxicity of sanguinarine through apoptotic processes in mouse blastocysts. Toxicol Lett 2011; 205:285-92. [PMID: 21722720 DOI: 10.1016/j.toxlet.2011.06.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/14/2011] [Accepted: 06/14/2011] [Indexed: 12/14/2022]
Abstract
In this study, we examined the cytotoxic effects of sanguinarine, a phytoalexin with antimicrobial, anti-oxidant, anti-inflammatory and pro-apoptotic effects, on the blastocyst stage of mouse embryos, subsequent embryonic attachment and outgrowth in vitro and in vivo implantation via embryo transfer. Blastocysts treated with 0.5-2 μM sanguinarine exhibited significantly increased apoptosis and a corresponding decrease in total cell number. Notably, the implantation success rates of blastocysts pretreated with sanguinarine were lower than that of their control counterparts. Moreover, in vitro treatment with 0.5-2 μM sanguinarine was associated with increased resorption of post-implantation embryos and decreased fetal weight. Our results collectively indicate that sanguinarine induces apoptosis and retards early post-implantation development in vitro and in vivo. In addition, sanguinarine induces apoptotic injury effects on mouse blastocysts through intrinsic and extrinsic apoptotic signaling processes to impair sequent embryonic development. However, the extent to which sanguinarine exerts teratogenic effects on early human development is not known at present, and further studies are required to establish effective protection strategies against its cytotoxic effects.
Collapse
Affiliation(s)
- Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li 32023, Taiwan.
| |
Collapse
|
19
|
Mitochondrial DNA variations associated with recurrent pregnancy loss among Indian women. Mitochondrion 2011; 11:450-6. [PMID: 21292039 DOI: 10.1016/j.mito.2011.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 12/06/2010] [Accepted: 01/24/2011] [Indexed: 11/23/2022]
Abstract
Several genetic factors have been found to be associated with recurrent pregnancy loss (RPL). However, not many attempts have been made to associate the mitochondrial DNA (mtDNA) variations with RPL. Therefore, we have analyzed the complete mtDNA of 100 women with RPL and 12 aborted fetal tissues. Our analysis revealed a total of 681 variations, most of which were in NADH Dehydrogenase (ND) genes that encode mitochondrial enzyme Complex I. Presence of T4216C variation (ND1 gene) in 9% of the RPL women and several pathogenic, and novel mutations suggest the role of mtDNA variations in RPL.
Collapse
|
20
|
Hazardous effects of curcumin on mouse embryonic development through a mitochondria-dependent apoptotic signaling pathway. Int J Mol Sci 2010; 11:2839-55. [PMID: 21152277 PMCID: PMC2996731 DOI: 10.3390/ijms11082839] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 07/26/2010] [Accepted: 07/28/2010] [Indexed: 01/08/2023] Open
Abstract
In this study, we examined the cytotoxic effects of curcumin, the yellow pigment of Curcuma longa, on the blastocyst stage of mouse embryos, subsequent embryonic attachment, and outgrowth in vitro and in vivo implantation by embryo transfer. Mouse blastocysts were incubated in medium with or without curcumin (6, 12 or 24 μM) for 24 h. Cell proliferation and growth were investigated using dual differential staining, apoptosis was analyzed with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), and implantation and post-implantation development of embryos were measured by in vitro development analysis and in vivo embryo transfer, respectively. Blastocysts treated with 24 μM curcumin displayed significantly increased apoptosis and decreased total cell number. Interestingly, we observed no marked differences in the implantation success rates between curcumin-pretreated and control blastocysts during in vitro embryonic development through implantation with a fibronectin-coated culture dish. However, in vitro treatment with 24 μM curcumin was associated with decreased implantation rate and increased resorption of postimplantation embryos in mouse uterus, as well as decreased fetal weight in the embryo transfer assay. Our results collectively indicate that in vitro exposure to curcumin triggers apoptosis and retards early postimplantation development after transfer to host mice. In addition, curcumin induces apoptotic injury effects on mouse blastocysts through ROS generation, and further promotes mitochondria-dependent apoptotic signaling processes to impair sequent embryonic development.
Collapse
|
21
|
Li PW, Kuo TH, Chang JH, Yeh JM, Chan WH. Induction of cytotoxicity and apoptosis in mouse blastocysts by silver nanoparticles. Toxicol Lett 2010; 197:82-7. [DOI: 10.1016/j.toxlet.2010.05.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/07/2010] [Accepted: 05/04/2010] [Indexed: 11/29/2022]
|
22
|
Januário DANF, Perin PM, Maluf M, Lichtenfels AJ, Nascimento Saldiva PH. Biological effects and dose-response assessment of diesel exhaust particles on in vitro early embryo development in mice. Toxicol Sci 2010; 117:200-8. [PMID: 20525899 DOI: 10.1093/toxsci/kfq165] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An increased risk of early pregnancy loss in women briefly exposed to high levels of ambient particulate matter during the preconceptional period was recently observed. The effects of this exposure on early embryo development are unknown. This study was designed to assess the dose-response and biological effects of diesel exhaust particles (DEP) on in vitro embryo development using the in vitro fertilization (IVF) mouse model. Zygotes obtained from superovulated mice after IVF were randomly cultured in different DEP concentrations (0, 0.2, 2, and 20 microg/cm(2)) for 5 days and observed for their capacity to attach and develop on a fibronectin matrix until day 8. Main outcome measures included blastocyst rates 96 and 120 h after insemination, hatching discriminatory score, total cell count, proportion of cell allocation to inner cell mass (ICM) and trophectoderm (TE), ICM morphology, attachment rate and outgrowth area, apoptosis and necrosis rates, and Oct-4 and Cdx-2 expression. Multivariate analysis showed a negative dose-dependent effect on early embryo development and hatching process, blastocyst cell allocation, and ICM morphology. Although blastocyst attachment and outgrowth were not affected by DEP, a significant impairment of ICM integrity was observed in day 8 blastocysts. Cell death through apoptosis was significantly higher after DEP exposure. Oct-4 expression and the Oct-4/Cdx-2 ratio were significantly decreased in day 5 blastocysts irrespective of DEP concentration. Results suggest that DEP appear to play an important role in disrupting cell lineage segregation and ICM morphological integrity even at lower concentrations, compromising future growth and viability of the blastocyst.
Collapse
|
23
|
Epicatechin Gallate Decreases the Viability and Subsequent Embryonic Development of Mouse Blastocysts. Taiwan J Obstet Gynecol 2010; 49:174-80. [DOI: 10.1016/s1028-4559(10)60037-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2010] [Indexed: 01/08/2023] Open
|
24
|
Singh G, Sinha N. Involvement of apoptosis in mediating mitomycin C-induced teratogenesis in vitro. Toxicol Mech Methods 2010; 20:190-6. [DOI: 10.3109/15376511003667859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Chan WH. Cytotoxic effects of 2-bromopropane on embryonic development in mouse blastocysts. Int J Mol Sci 2010; 11:731-744. [PMID: 20386664 PMCID: PMC2852864 DOI: 10.3390/ijms11020731] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Accepted: 02/10/2010] [Indexed: 01/20/2023] Open
Abstract
2-Bromopropane (2-BP), an alternative to ozone-depleting solvents, is used as a cleaning solvent. Here, we examined the cytotoxic effects of 2-bromopropane (2-BP) on mouse embryos at the blastocyst stage, subsequent embryonic attachment and outgrowth in vitro, and in vivo implantation via embryo transfer. Mouse blastocysts were incubated in medium with or without 2-BP (2.5, 5 or 10 μM) for 24 h. Cell proliferation and growth were investigated with dual differential staining, apoptosis was analyzed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) analysis, and implantation and post-implantation development of embryos were assessed using in vitro development analysis and in vivo embryo transfer, respectively. Blastocysts treated with 5 or 10 μM 2-BP displayed significantly increased apoptosis, and decreased inner cell mass (ICM) and trophectoderm (TE) cell number. Additionally, the implantation success rates of 2-BP-pretreated blastocysts were lower than those of untreated controls. In vitro treatment with 5 or 10 μM 2-BP was associated with increased resorption of postimplantation embryos, and decreased placental and fetal weights. Our results collectively indicate that in vitro exposure to 2-BP induces apoptosis, suppresses implantation rates after transfer to host mice, and retards early postimplantation development.
Collapse
Affiliation(s)
- Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li 32023, Taiwan
| |
Collapse
|
26
|
Chen CC, Chan WH. Impact effects of puerarin on mouse embryonic development. Reprod Toxicol 2009; 28:530-5. [DOI: 10.1016/j.reprotox.2009.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/25/2009] [Accepted: 07/21/2009] [Indexed: 11/29/2022]
|
27
|
Chin PY, Macpherson AM, Thompson JG, Lane M, Robertson SA. Stress response genes are suppressed in mouse preimplantation embryos by granulocyte-macrophage colony-stimulating factor (GM-CSF). Hum Reprod 2009; 24:2997-3009. [DOI: 10.1093/humrep/dep307] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
28
|
Shiao NH, Chan WH. Injury effects of ginkgolide B on maturation of mouse oocytes, fertilization, and fetal development in vitro and in vivo. Toxicol Lett 2009; 188:63-9. [DOI: 10.1016/j.toxlet.2009.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 11/16/2022]
|
29
|
In vitro fertilization, embryo development, and cell lineage segregation after pre- and/or postnatal exposure of female mice to ambient fine particulate matter. Fertil Steril 2008; 92:1725-35. [PMID: 18950758 DOI: 10.1016/j.fertnstert.2008.08.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To evaluate effects of pre- and/or postnatal exposure to ambient fine particulate matter on fertilization, embryo development, and cell lineage segregation in preimplantation blastocysts using the IVF mouse model. DESIGN Animal model. SETTING Academic institution. ANIMAL(S) Six-week-old, superovulated mice. INTERVENTION(S) Pre- and postnatal exposure to filtered air (FA-FA), filtered-ambient air (FA-AA), or ambient air (AA-AA) in exposure chambers 24 hours a day for 9 weeks. MAIN OUTCOME MEASURE(S) Gestation length, litter size, sex ratio, ovarian response to superovulation, fertilization rate, embryo development, blastocyst and hatching rates, total cell count, and proportion of cell allocation to inner-cell mass (ICM) and trophectoderm (TE). RESULT(S) Gestation length, litter size and birth weight, live-birth index, and sex ratio were similar among exposure groups. Ovarian response was not affected by the exposure protocol. A multivariate effect for pre- and/or postnatal exposure to ambient fine particulate matter on IVF, embryo development, and blastocyst differential staining was found. Cell counts in ICM and ICM/TE ratios in blastocysts produced in the FA-FA protocol were significantly higher than in blastocysts produced in the FA-AA and AA-AA protocols. No difference in total cell count was observed among groups. CONCLUSION(S) Our study suggests that exposure to ambient fine particulate matter may negatively affect female reproductive health by disrupting the lineage specification at the blastocyst stage without interfering in early development of the mouse embryo.
Collapse
|
30
|
Hornen N, Kues WA, Carnwath JW, Lucas-Hahn A, Petersen B, Hassel P, Niemann H. Production of Viable Pigs from Fetal Somatic Stem Cells. CLONING AND STEM CELLS 2007; 9:364-73. [PMID: 17907947 DOI: 10.1089/clo.2006.0009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fetal somatic stem cells (FSSCs) are a novel type of somatic stem cells that have recently been discovered in primary fibroblast cultures from pigs and other species. The goal of the present study was to produce viable piglets from FSSCs. NT complexes were prepared from both FSSCs and porcine fetal fibroblasts (pFF) to permit comparison of these two donor cell types. FSSCs from isolated attached colonies were compared with pFF in their ability to form blastocysts upon use in NT. Fusion and cleavage rates were similar between the two groups, while blastocyst rates were significantly higher when using pFF as donor cells. FSSCs of three different size categories derived from dissociation of spheroids yielded similar results. The use of FSSCs of 15-20 microm in size yielded similar cleavage and blastocyst rates as fetal fibroblasts. In the final experiment NT complexes produced from FSSCs were transferred to foster mothers. After transfer to prepubertal gilts, three of seven recipients established pregnancies and delivered seven piglets, of which three piglets were viable and showed normal development. Results for the first time demonstrate that FSSCs are able to produce cloned embryos, and that pregnancies can be established and viable piglets can be produced.
Collapse
Affiliation(s)
- Nadine Hornen
- Department of Biotechnology, Institut für Tierzucht, Mariensee Neustadt, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Chan WH. Citrinin induces apoptosis via a mitochondria-dependent pathway and inhibition of survival signals in embryonic stem cells, and causes developmental injury in blastocysts. Biochem J 2007; 404:317-26. [PMID: 17331071 PMCID: PMC1868791 DOI: 10.1042/bj20061875] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mycotoxin CTN (citrinin), a natural contaminant in foodstuffs and animal feeds, has cytotoxic and genotoxic effects on various mammalian cells. CTN is known to cause cell injury, including apoptosis, but the precise regulatory mechanisms of CTN action, particularly in stem cells and embryos, are currently unclear. In the present paper, I report that CTN has cytotoxic effects on mouse embryonic stem cells and blastocysts, and is associated with defects in their subsequent development, both in vitro and in vivo. Experiments in embryonic stem cells (ESC-B5) showed that CTN induces apoptosis via ROS (reactive oxygen species) generation, increased Bax/Bcl-2 ratio, loss of MMP (mitochondrial membrane potential), induction of cytochrome c release, and activation of caspase 3. In this model, CTN triggers cell death via inactivation of the HSP90 [a 90 kDa isoform of the HSP (heat-shock protein) family proteins]/multichaperone complex and subsequent degradation of Ras and Raf-1, further inhibiting anti-apoptotic processes, such as the Ras-->ERK (extracellular-signal-regulated kinase) signal transduction pathway. In addition, CTN causes early developmental injury in mouse ESCs and blastocysts in vitro. Lastly, using an in vivo mouse model, I show that consumption of drinking water containing 10 muM CTN results in blastocyst apoptosis and early embryonic developmental injury. Collectively, these findings show for the first time that CTN induces ROS and mitochondria-dependent apoptotic processes, inhibits Ras-->ERK survival signalling via inactivation of the HSP90/multichaperone complex, and causes developmental injury in vivo.
Collapse
Affiliation(s)
- Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li, Taiwan.
| |
Collapse
|
32
|
Watkins AJ, Platt D, Papenbrock T, Wilkins A, Eckert JJ, Kwong WY, Osmond C, Hanson M, Fleming TP. Mouse embryo culture induces changes in postnatal phenotype including raised systolic blood pressure. Proc Natl Acad Sci U S A 2007; 104:5449-54. [PMID: 17372207 PMCID: PMC1838459 DOI: 10.1073/pnas.0610317104] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Indexed: 11/18/2022] Open
Abstract
A key factor in the use of assisted reproductive technologies (ART) for diverse species is the safety of procedures for long-term health. By using a mouse model, we have investigated the effect of in vitro culture and embryo transfer (ET) of superovulated embryos on postnatal growth and physiological activity compared with that of embryos developing in vivo. Embryo culture from two-cell to blastocyst stages in T6 medium either with or without a protein source reduced blastocyst trophectoderm and inner cell mass cell number compared with that of embryos developing in vivo. Embryo culture and ET had minimal effects on postnatal growth when compared with in vivo development with an equivalent litter size. However, embryo culture, and to a lesser extent ET, led to an enhanced systolic blood pressure at 21 weeks compared with in vivo development independent of litter size, maternal origin, or body weight. Moreover, activity of enzymatic regulators of cardiovascular and metabolic physiology, namely, serum angiotensin-converting enzyme and the gluconeogenesis controller, hepatic phosphoenolpyruvate carboxykinase, were significantly elevated in response to embryo culture and/or ET in female offspring at 27 weeks, independent of maternal factors and postnatal growth. These animal data indicate that postnatal physiological criteria important in cardiovascular and metabolic health may be more sensitive to routine ART procedures than growth.
Collapse
Affiliation(s)
- Adam J Watkins
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chan WH. Ginkgolide B induces apoptosis and developmental injury in mouse embryonic stem cells and blastocysts. Hum Reprod 2006; 21:2985-95. [PMID: 16877372 DOI: 10.1093/humrep/del255] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Ginkgolide B, the major active component of Ginkgo biloba extracts, can both stimulate and inhibit apoptotic signalling. We previously showed that ginkgolide treatment of mouse blastocysts induces apoptosis, decreases cell numbers, retards early post-implantation blastocyst development and increases early-stage blastocyst death. Here, we report more detailed examinations of the cytotoxic effects of ginkgolide B on mouse embryonic stem cells (ESCs) and blastocysts and their subsequent development in vitro and in vivo. METHODS AND RESULTS Using cell culture assay model, we revealed in our results that ginkgolide B treatment of ESCs (ESC-B5) induced apoptosis via reactive oxygen species (ROS) generation, c-Jun N-terminal kinase (JNK) activation, loss of mitochondrial membrane potential (MMP) and the activation of caspase-3. Furthermore, an in vitro assay model showed that ginkgolide B treatment inhibited cell proliferation and growth in mouse blastocysts. Finally, an in vivo model showed that treatment with 10 microM ginkgolide B caused resorption of post-implantation blastocysts and fetal weight loss. CONCLUSIONS Our results reveal for the first time that ginkgolide B retards the proliferation and development of mouse ESCs and blastocysts in vitro and causes developmental injury in vivo.
Collapse
Affiliation(s)
- Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li, Taiwan.
| |
Collapse
|
34
|
Han HJ, Heo JS, Lee YJ, Min JJ, Park KS. High glucose-induced inhibition of 2-deoxyglucose uptake is mediated by cAMP, protein kinase C, oxidative stress and mitogen-activated protein kinases in mouse embryonic stem cells. Clin Exp Pharmacol Physiol 2006; 33:211-20. [PMID: 16487264 DOI: 10.1111/j.1440-1681.2006.04348.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abnormally high glucose levels may play an important role in early embryo development and function. In the present study, we investigated the effect of high glucose on 2-deoxyglucose (2-DG) uptake and its related signalling pathway in mouse embryonic stem (ES) cells. 2. 2-Deoxyglucose uptake was maximally inhibited by 25 mmol/L glucose after 24 h treatment. However, 25 mmol/L mannitol and dextran did not affect 2-DG uptake. Indeed, 25 mmol/L glucose decreased GLUT-1 mRNA and protein levels. The glucose (25 mmol/L)-induced inhibition of 2-DG uptake was blocked by pertussis toxin (a G(i)-protein inhibitor; 2 ng/mL), SQ 22,536 (an adenylate cyclase inhibitor; 10(-6) mol/L) and the protein kinase (PK) A inhibitor myristoylated PKI amide-(14-22) (10(-6) mol/L). Indeed, 25 mmol/L glucose increased intracellular cAMP content. 3. Furthermore, 25 mmol/L glucose-induced inhibition of 2-DG uptake was prevented by 10(-4) mol/L neomycin or 10(-6) mol/L U 73,122 (phospholipase C (PLC) inhibitors) and staurosporine or bisindolylmaleimide I (protein kinase (PK) C inhibitors). At 25 mmol/L, glucose increased translocation of PKC from the cytoplasmic fraction to the membrane fraction. The 25 mmol/L glucose-induced inhibition of 2-DG uptake and GLUT-1 protein levels was blocked by SQ 22,536, bisindolylmaleimide I or combined treatment. In addition, 25 mmol/L glucose increased cellular reactive oxygen species and the glucose-induced inhibition of 2-DG uptake were blocked by the anti-oxidants N-acetylcysteine (NAC; 10(-5) mol/L) or taurine (2 yen 10(-3) mol/L). 4. Glucose (25 mmol/L) activated p38 mitogen-activated protein kinase (MAPK) and p44/42 MAPK. Staurosporine (10(-6) mol/L), NAC (10(-5) mol/L) and PD 98059 (10(-7) mol/L) attenuated the phosphorylation of p44/42 MAPK. Both SB 203580 (a p38 MAPK inhibitor; 10(-7) mol/L) and PD 98059 (a p44/42 MAPK inhibitor; 10(-7) mol/L) blocked 25 mmol/L glucose-induced inhibition of 2-DG uptake. 5. In conclusion, high glucose inhibits 2-DG uptake through cAMP, PLC/PKC, oxidative stress or MAPK in mouse ES cells.
Collapse
Affiliation(s)
- Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea.
| | | | | | | | | |
Collapse
|
35
|
Huang FJ, Hsuuw YD, Lan KC, Kang HY, Chang SY, Hsu YC, Huang KE. Adverse effects of retinoic acid on embryo development and the selective expression of retinoic acid receptors in mouse blastocysts. Hum Reprod 2005; 21:202-9. [PMID: 16199432 DOI: 10.1093/humrep/dei286] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND All-trans retinoic acid (RA), the oxidative metabolite of vitamin A, is essential for normal development. In addition, high levels of RA are teratogenic in many species. We have previously shown that excess RA results in immediate effects on the preimplantation embryo and on blastocyst development. This study was conducted to clarify the long-term survival of mouse blastocyst and the effect of RA on gene expression. METHODS AND RESULTS Using an in vitro model, we identified the immediate adverse impact of RA on mouse blastocyst development. This involved an inhibition of cell proliferation and growth retardation. Using an in vivo model, we also identified the resorption of postimplanted blastocysts that had been treated with excess RA. Analysis of RA-mediated gene induction was also included. The retinoic acid receptors RARalpha and RARgamma were constitutively expressed in the blastocyst and the inner cell mass, whereas RARbeta was induced upon RA treatment. CONCLUSIONS This is the first evidence to show the impacts of RA on mouse blastocysts in vitro and any carry-over effects in the uterus. There is a retardation of early postimplantation blastocyst development and then subsequent blastocyst death. Our findings also show that there is some degree of selective induction of retinoic acid receptors when excess RA is administered to the blastocysts.
Collapse
Affiliation(s)
- Fu-Jen Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
During use of many assisted reproductive technologies, the embryo spends time in vitro. The immediate and long-term epigenetic impacts of this exposure to an in-vitro environment are discussed in the context of the health of the offspring. Three exemplary types of possible epigenetic impact are discussed: embryonic cell numbers, mitochondria, and genomic imprints. There is evidence that all of these can be affected in the short term and that these short-term impacts can have heritable consequences across developmental cell generations into maturity. There is also evidence of association between the observed impact and pathology, but as yet no unequivocal evidence of causality for humans and mice. The problematic in-vitro embryo is considered paradigmatic for a central question facing biology: how does the environment interact epigenetically with the genome to produce variable phenotypic outcomes?
Collapse
|
37
|
Huang FJ, Hsu YC, Kang HY, Chang SY, Hsuuw YD, Huang KE. Effects of retinoic acid on the inner cell mass in mouse blastocysts. Fertil Steril 2005; 83:238-42. [PMID: 15652921 DOI: 10.1016/j.fertnstert.2004.07.955] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 07/29/2004] [Accepted: 07/29/2004] [Indexed: 11/22/2022]
Abstract
This is the first evidence that excess retinoic acid has a direct cellular response from proliferation to cell death (apoptosis) and affects in vitro development in mouse inner cell mass.
Collapse
Affiliation(s)
- Fu-Jen Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
38
|
Fouladi-Nashta AA, Alberio R, Kafi M, Nicholas B, Campbell KH, Webb R. Differential staining combined with TUNEL labelling to detect apoptosis in preimplantation bovine embryos. Reprod Biomed Online 2005; 10:497-502. [PMID: 15901458 DOI: 10.1016/s1472-6483(10)60827-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Development of accurate laboratory methods to assess embryo quality will improve the efficiency of embryo production from in-vitro culture systems. Currently, the techniques of TdT (terminal deoxynucleotidyl transferase)-mediated dUDP nick-end (TUNEL) labelling for the detection of apoptosis, and differential staining for determining the ratio of inner cell mass (ICM) to trophectoderm (TE) cells, are used separately to assess embryo quality in a range of different species. This paper reports a unique, simple and fast method for the assessment of embryo quality using differential staining of TE and ICM, but combined with TUNEL labelling (DST staining). This technique was used to investigate the effect of serum supplementation on total cell number, ICM:TE ratio and apoptosis index after in-vitro production of bovine embryos. Serum supplementation increased total cell number (P < 0.01), but reduced the ratio of ICM:TE cells. No differences were observed in the number of apoptotic nuclei between treatments, or in the localization of the apoptotic nuclei. However, more apoptotic nuclei were observed in ICM than TE cells in both culture groups. In conclusion, using DST, it has been possible to carry out both a qualitative and quantitative analysis of embryos produced using the two different methods. DST provides a means of assessing the effect of culture conditions on cell number of both embryo compartments (ICM and TE), as well as providing information on the localization of apoptotic nuclei within the blastocyst.
Collapse
|
39
|
Fleming TP, Kwong WY, Porter R, Ursell E, Fesenko I, Wilkins A, Miller DJ, Watkins AJ, Eckert JJ. The Embryo and Its Future1. Biol Reprod 2004; 71:1046-54. [PMID: 15215194 DOI: 10.1095/biolreprod.104.030957] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The preimplantation mammalian embryo from different species appears sensitive to the environment in which it develops, either in vitro or in vivo, for example, in response to culture conditions or maternal diet. This sensitivity may lead to long-term alterations in the characteristics of fetal and/or postnatal growth and phenotype, which have implications for clinical health and biotechnological applications. We review the breadth of environmental influences that may affect early embryos and their responses to such conditions along epigenetic, metabolic, cellular, and physiological directions. In addition, we evaluate how embryo environmental responses may influence developmental potential and phenotype during later gestation. We conclude that a complex of different mechanisms may operate to associate early embryo environment with future health.
Collapse
Affiliation(s)
- Tom P Fleming
- School of Biological Sciences, University of Southampton, Southampton SO16 7PX, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Iwasaki S, Kimura H. Further studies on thermal treatment of two-cell stage embryos to produce complete embryonic stem-cell-derived mice by cell-aggregation methods. Dev Growth Differ 2004; 45:427-34. [PMID: 14706068 DOI: 10.1111/j.1440-169x.2003.00709.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Employing aggregation techniques with two embryonic sources, one from two-cell stage embryos treated by thermal stimulation and the other from mouse embryonic stem (ES) cells that had been obtained from a feeder layer, simple and most effective methods of producing a complete generation of mice from ES cells were explored. Although thermal treatment affected embryos at various developmental stages, the embryos at the two-cell stage of development were selected because of the remarkably reduced number of cells present in the inner cell mass (ICM) at blastocyst stage after thermal conditioning. Under these conditions, a combination of thermally treated host embryos and an aggregated ES cell-clump was found to produce a high rate of live newborns by natural delivery. That the newborns were completely derived from ES cells was checked by two criteria: microsatellite analysis and coat color analysis. Importantly, all of these mice were healthy and fertile. The aggregation techniques reported here might well be applied to other animal species whose ES cells form stable colonies on a feeder layer.
Collapse
Affiliation(s)
- Shizue Iwasaki
- Department of Collaborative Research, National Research Institute for Child Health and Development, 3-35-31 Taishido, Setagaya-ku, Tokyo 154-8567, Japan.
| | | |
Collapse
|
41
|
Fleming TP, Wilkins A, Mears A, Miller DJ, Thomas F, Ghassemifar MR, Fesenko I, Sheth B, Kwong WY, Eckert JJ. Society for Reproductive Biology Founders' Lecture 2003.The making of an embryo: short-term goals and long-term implications. Reprod Fertil Dev 2004. [DOI: 10.1071/rd03070] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
During early development, the eutherian mammalian embryo forms a blastocyst comprising an outer trophectoderm epithelium and enclosed inner cell mass (ICM). The short-term goal of blastocyst morphogenesis, including epithelial differentiation and segregation of the ICM, is mainly regulated autonomously and comprises a combination of temporally controlled gene expression, cell polarisation, differentiative cell divisions and cell–cell interactions. This aspect of blastocyst biogenesis is reviewed, focusing, in particular, on the maturation and role of cell adhesion systems. Early embryos are also sensitive to their environment, which can affect their developmental potential in diverse ways and may lead to long-term consequences relating to fetal or postnatal growth and physiology. Some current concepts of embryo–environment interactions, which may impact on future health, are also reviewed.
Collapse
|
42
|
Abstract
The formation of a developmentally competent mammalian blastocyst requires the transition from a unicellular state, the fertilized zygote, to a differentiated multicellular structure. In common with other developing organisms, generation of the required cell population involves the processes of cell division, differentiation and cell death, all of which can be regulated by peptide growth factors. Cell death in the preimplantation embryo occurs by apoptosis and, by analogy with other systems, may serve to eliminate unwanted cells during the critical developmental transitions that take place during this period. Cells may be eliminated because they are abnormal or possess defects, including damaged DNA or chromosomal abnormalities. At the early cleavage stages, apoptosis may be associated with activation of the embryonic genome and may contribute to the blastomere fragmentation commonly observed in human IVF embryos. The major wave of apoptosis occurs in a number of species in the inner cell mass of the blastocyst, as identified using nuclear labelling including terminal transferase-mediated dUTP nick end labelling (TUNEL) and fluorescence and confocal microscopy. Apoptosis may protect the integrity and cellular composition of the inner cell mass, by eliminating damaged cells or possibly those with an inappropriate phenotype. Preimplantation embryos express genes involved in the regulation and execution of apoptosis and their cells can undergo this default pathway in the absence of exogenous survival signals. Evidence is now accumulating from several species that apoptosis in the embryo is regulated by soluble peptide growth factors acting as survival factors in an autocrine or paracrine manner. To date, these include transforming growth factor alpha and members of the insulin-like growth factor family. Apoptosis may also be affected by environmental factors, including culture conditions and the composition of media. The regulation of apoptosis in the preimplantation embryo is likely to be of critical importance for both embryo viability and for later development, since the cells of the inner cell mass give rise to the fetus and carry the germ line.
Collapse
Affiliation(s)
- Daniel R. Brison
- Department of Reproductive Medicine, St Mary's Hospital, Manchester M13 OJH, UK
| |
Collapse
|
43
|
Affiliation(s)
- C M Warner
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
44
|
Moley KH. Hyperglycemia and apoptosis: mechanisms for congenital malformations and pregnancy loss in diabetic women. Trends Endocrinol Metab 2001; 12:78-82. [PMID: 11167126 DOI: 10.1016/s1043-2760(00)00341-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Congenital malformations are the leading cause of perinatal death among infants of diabetic women. Abnormal fuel metabolism and hyperglycemia have been shown to disturb embryogenesis during the earliest pre- and postimplantation stages in mice. This review presents a new model to explain, in part, adverse pregnancy outcomes associated with diabetes. In this model, by altering gene expression in developing tissues, raised glucose concentrations led to premature programmed cell death in key progenitor cells of the mouse blastocyst or in emerging organ structures in the mouse postimplantation embryo, resulting in abnormal morphogenesis or miscarriage. Although recent studies are still somewhat speculative and have currently only been explored in the mouse, this paradigm is supported by examples in other cell systems, which include human-derived cell lines, thereby suggesting that these findings are also applicable to human pregnancy.
Collapse
Affiliation(s)
- K H Moley
- Dept of Obstetrics and Gynecology, Washington University, St Louis, MO 63110, USA.
| |
Collapse
|
45
|
Abstract
The survival of the preimplantation mammalian embryo depends not only on providing the proper conditions for normal development but also on acquiring the mechanisms by which embryos cope with adversity. The ability of the early conceptus to resist stress as development proceeds may be regulated by diverse factors such as the attainment of a cell death program and protective mechanisms involving stress-induced genes and/or cell cycle modulators. This paper reviews the recent research on the genetic regulation of early embryo cell death and senescence focussing on the bovine species where possible. The different modes of cell death will be explained, clarifying the confusing cell death terminology, by advocating the recommendations set forth by the Cell Death Nomenclature Committee to extend to the embryology research field. Specific pro-death and anti-death genes will be discussed with reference to their expression patterns during early mammalian embryogenesis.
Collapse
Affiliation(s)
- D H Betts
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada, N1G 2WI.
| | | |
Collapse
|
46
|
Kwong WY, Wild AE, Roberts P, Willis AC, Fleming TP. Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development 2000; 127:4195-202. [PMID: 10976051 DOI: 10.1242/dev.127.19.4195] [Citation(s) in RCA: 485] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epidemiological studies have indicated that susceptibility of human adults to hypertension and cardiovascular disease may result from intrauterine growth restriction and low birth weight induced by maternal undernutrition. Although the ‘foetal origins of adult disease’ hypothesis has significant relevance to preventative healthcare, the origin and biological mechanisms of foetal programming are largely unknown. Here, we investigate the origin, embryonic phenotype and potential maternal mechanisms of programming within an established rat model. Maternal low protein diet (LPD) fed during only the preimplantation period of development (0-4.25 days after mating), before return to control diet for the remainder of gestation, induced programming of altered birthweight, postnatal growth rate, hypertension and organ/body-weight ratios in either male or female offspring at up to 12 weeks of age. Preimplantation embryos collected from dams after 0–4.25 days of maternal LPD displayed significantly reduced cell numbers, first within the inner cell mass (ICM; early blastocyst), and later within both ICM and trophectoderm lineages (mid/late blastocyst), apparently induced by a slower rate of cellular proliferation rather than by increased apoptosis. The LPD regimen significantly reduced insulin and essential amino acid levels, and increased glucose levels within maternal serum by day 4 of development. Our data indicate that long-term programming of postnatal growth and physiology can be induced irreversibly during the preimplantation period of development by maternal protein undernutrition. Further, we propose that the mildly hyperglycaemic and amino acid-depleted maternal environment generated by undernutrition may act as an early mechanism of programming and initiate conditions of ‘metabolic stress’, restricting early embryonic proliferation and the generation of appropriately sized stem-cell lineages.
Collapse
Affiliation(s)
- W Y Kwong
- Division of Cell Sciences, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | | | | | |
Collapse
|
47
|
Nagao T, Saitoh Y, Yoshimura S. Possible mechanism of congenital malformations induced by exposure of mouse preimplantation embryos to mitomycin C. TERATOLOGY 2000; 61:248-61. [PMID: 10716743 DOI: 10.1002/(sici)1096-9926(200004)61:4<248::aid-tera3>3.0.co;2-c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ICR mice were treated intraperitoneally with mitomycin C at 5 mg/kg on day 3 of gestation. On day 18 of gestation, fetuses of treated dams were inspected for external, skeletal and visceral malformations. At 6 or 12 hr after mitomycin C treatment, the blastocysts were obtained from the uteri of treated dams and the degenerated cells within inner cell mass (ICM) and trophectoderm (TE) tissues were examined microscopically. On day 5, 8, 11, or 18 of gestation, the uteri of treated dams were obtained and those including embryos/fetuses and placentae were examined histologically. Finally, on each of gestational days 5-14, the blood of the treated dams was collected and the hematological parameters determined. Pre- and postimplantation losses in the dams treated with mitomycin C were significantly increased; increased frequency of abdominal wall defects and lumbar ribs in term fetuses, decreased fetal weight, and increased placental weight were noted as well. No significant increase in visceral malformations was found in term fetuses treated with mitomycin C. Frequency of degenerated cells within ICM and TE of blastocysts from dams treated with mitomycin C was significantly increased as compared with the controls. In dams treated with mitomycin C, decidua developed insufficiently and the trophoblast giant cell layer was not separated from the uterine lumen by maternal components; hemorrhage from the denuded trophoblast giant cell layer into the uterine lumen was noted. The number of erythrocytes, as well as hemoglobin concentration, hematocrit, and the percentage of reticulocytes in blood of dams treated with mitomycin C were significantly lower from days 6-12 of gestation, as compared with controls. The results of the present study showed that an increase in number of degenerated cells within blastocysts results in preimplantation loss and both maternal and embryonic hypoxia during major organogenesis results in postimplantation loss and congenital fetal malformations.
Collapse
Affiliation(s)
- T Nagao
- Department of Developmental Toxicology, Hatano Research Institute, Food and Drug Safety Center, Kanagawa 257-8523, Japan.
| | | | | |
Collapse
|
48
|
Moley KH, Chi MM, Knudson CM, Korsmeyer SJ, Mueckler MM. Hyperglycemia induces apoptosis in pre-implantation embryos through cell death effector pathways. Nat Med 1998; 4:1421-4. [PMID: 9846581 DOI: 10.1038/4013] [Citation(s) in RCA: 238] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although perinatal mortality rates have improved for pregnant diabetic women because of insulin therapy and tight metabolic control, infants of diabetics still experience significantly higher rates of congenital malformations and spontaneous miscarriages compared with those of non-diabetic women. Our results here indicate that hyperglycemic conditions, either in vivo or in vitro, modulate the expression of an apoptosis regulatory gene as early as the pre-implantation blastocyst stage in the mouse. Apoptosis in the mammalian pre-implantation blastocyst is a normal process, thought to protect the early embryo by eliminating abnormal cells. Here we demonstrate that expression of Bax, a Bcl-2-like protein, is increased at the blastocyst stage in the presence of high concentrations of glucose, and that these changes correlate morphologically with increased DNA fragmentation. Expression of Bax and caspase are necessary for this in vitro glucose-induced apoptotic event, and ceramide is involved in mediating this embryotoxic effect of glucose. We also show that these apoptotic cellular changes can be prevented in vivo by treating hyperglycemic mice with insulin before and immediately after conception. These findings emphasize the importance of tight glycemic control in diabetic women at the earliest stages after conception.
Collapse
Affiliation(s)
- K H Moley
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
49
|
Moley KH, Chi MM, Mueckler MM. Maternal hyperglycemia alters glucose transport and utilization in mouse preimplantation embryos. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:E38-47. [PMID: 9688872 DOI: 10.1152/ajpendo.1998.275.1.e38] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glucose utilization was studied in preimplantation embryos from normal and diabetic mice. With use of ultramicrofluorometric enzyme assays, intraembryonic free glucose in single embryos recovered from control and streptozotocin-induced hyperglycemic mice was measured at 24, 48, 72, and 96 h after mating. Free glucose concentrations dropped significantly in diabetics at 48 and 96 h, corresponding to the two-cell and blastocyst stages (48 h: diabetic 0.23 +/- 0.09 vs. control 2.30 +/- 0.43 mmol/kg wet wt; P < 0.001; 96 h: diabetic 0.31 +/- 0.29 vs. control 5.12 +/- 0.17 mmol/kg wet wt; P < 0.001). Hexokinase activity was not significantly different in the same groups. Transport was then compared using nonradioactive 2-deoxyglucose uptake and microfluorometric enzyme assays. The 2-deoxyglucose uptake was significantly lower at both 48 and 96 h in embryos from diabetic vs. control mice (48 h diabetic, 0.037 +/- 0. 003; control, 0.091 +/- 0.021 mmol . kg wet wt-1 . 10 min-1, P < 0. 05; 96 h diabetic, 0.249 +/- 0.008; control, 0.389 +/- 0.007 mmol . kg wet wt-1 . 10 min-1, P < 0.02). When competitive quantitative reverse transcription-polymerase chain reaction was used, there was 44 and 68% reduction in the GLUT-1 mRNA at 48 h (P < 0.001) and 96 h (P < 0.05), respectively, in diabetic vs. control mice. GLUT-2 and GLUT-3 mRNA values were decreased 63 and 77%, respectively (P < 0.01, P < 0.01) at 96 h. Quantitative immunofluorescence microscopy demonstrated 49 +/- 6 and 66 +/- 4% less GLUT-1 protein at 48 and 96 h and 90 +/- 5 and 84 +/- 6% less GLUT-2 and -3 protein, respectively, at 96 h in diabetic embryos. These findings suggest that, in response to a maternal diabetic state, preimplantation mouse embryos experience a decrease in glucose utilization directly related to a decrease in glucose transport at both the mRNA and protein levels.
Collapse
Affiliation(s)
- K H Moley
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
50
|
Brison DR, Schultz RM. Increased incidence of apoptosis in transforming growth factor alpha-deficient mouse blastocysts. Biol Reprod 1998; 59:136-44. [PMID: 9675004 DOI: 10.1095/biolreprod59.1.136] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We previously demonstrated that exogenous transforming growth factor alpha (TGFalpha) reduces the incidence of apoptosis in mouse blastocysts that develop in vitro but does not result in an increase in cell number or the incidence of development to the blastocyst stage. Thus, TGFalpha may function as a cell survival factor in the preimplantation mouse embryo. To extend these studies, we have now examined the development of TGFalpha-deficient preimplantation embryos in vitro and in vivo in TGFalpha-deficient mothers. We found that in both instances the incidence of apoptosis is dramatically increased in the TGFalpha-deficient blastocysts and that this increase is essentially restricted to the cells of the inner cell mass when the embryos develop in vivo but extends to the trophectoderm cells for embryos that develop in vitro. The absence of endogenous TGFalpha has little effect on the incidence of development to the blastocyst stage and cell number, cell lineage allocation, blastocoel volume, and the timing and incidence of hatching in these blastocysts, when compared to wild-type embryos. These results buttress our previous suggestion that TGFalpha functions as a cell survival factor in the preimplantation mouse embryo.
Collapse
Affiliation(s)
- D R Brison
- Department of Biology, University of Pennsylvania, Philadelphia 19104-6018, USA
| | | |
Collapse
|