1
|
Sahebnasagh A, Hashemi J, Khoshi A, Saghafi F, Avan R, Faramarzi F, Azimi S, Habtemariam S, Sureda A, Khayatkashani M, Safdari M, Rezai Ghaleno H, Soltani H, Khayat Kashani HR. Aromatic hydrocarbon receptors in mitochondrial biogenesis and function. Mitochondrion 2021; 61:85-101. [PMID: 34600156 DOI: 10.1016/j.mito.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Mitochondria are ubiquitous membrane-bound organelles that not only play a key role in maintaining cellular energy homeostasis and metabolism but also in signaling and apoptosis. Aryl hydrocarbons receptors (AhRs) are ligand-activated transcription factors that recognize a wide variety of xenobiotics, including polyaromatic hydrocarbons and dioxins, and activate diverse detoxification pathways. These receptors are also activated by natural dietary compounds and endogenous metabolites. In addition, AhRs can modulate the expression of a diverse array of genes related to mitochondrial biogenesis and function. The aim of the present review is to analyze scientific data available on the AhR signaling pathway and its interaction with the intracellular signaling pathways involved in mitochondrial functions, especially those related to cell cycle progression and apoptosis. Various evidence have reported the crosstalk between the AhR signaling pathway and the nuclear factor κB (NF-κB), tyrosine kinase receptor signaling and mitogen-activated protein kinases (MAPKs). The AhR signaling pathway seems to promote cell cycle progression in the absence of exogenous ligands, whereas the presence of exogenous ligands induces cell cycle arrest. However, its effects on apoptosis are controversial since activation or overexpression of AhR has been observed to induce or inhibit apoptosis depending on the cell type. Regarding the mitochondria, although activation by endogenous ligands is related to mitochondrial dysfunction, the effects of endogenous ligands are not well understood but point towards antiapoptotic effects and inducers of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Javad Hashemi
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhosein Khoshi
- Department of Clinical Biochemistry, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Razieh Avan
- Assistant Professor of Clinical Pharmacy, Department of Clinical Pharmacy, Medical Toxicology and Drug Abuse Research Center (MTDRC), Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Faramarzi
- Clinical Pharmacy Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Azimi
- Student Research Committee, Department of Clinical Pharmacy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, School of Science, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, United Kingdom
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands and Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Maryam Khayatkashani
- School of Iranian Traditional Medicine, Tehran University of Medical Sciences, 14155-6559 Tehran, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hassan Rezai Ghaleno
- Department of Surgery, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hosseinali Soltani
- Department of General Surgery, Imam Ali Hospital, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Guo R, Tian Y, Zhang N, Huang H, Huang Y, Yang J. Use of dual-marker staining to differentiate between lung squamous cell carcinoma and adenocarcinoma. J Int Med Res 2019; 48:300060519893867. [PMID: 31880186 PMCID: PMC7645362 DOI: 10.1177/0300060519893867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess the value of dual-marker immunostaining for detecting p40 and napsin A, and cytokeratin 5/6 (CK5/6) and thyroid transcription factor 1 (TTF1) in single sections of lung cancer tissue, for differentiating between lung squamous cell carcinoma and adenocarcinoma. METHODS Lung cancer tissue sections from 58 patients were stained by dual-marker immunostaining using a mixtures of anti-p40 and anti-napsin A, and anti-CK5/6 and anti-TTF1 primary antibodies. Sections stained with single markers were used as controls. Nuclear or cytoplasmic staining was considered as indicating positive p40 or napsin A expression, respectively, and cytoplasmic or nuclear staining was considered as indicating positive CK5/6 or TTF1 expression, respectively. RESULTS p40/napsin A and CK5/6/TTF1 dual-marker staining showed high sensitivity, specificity, positive predictive value, and negative predictive value for the diagnosis of squamous cell carcinoma and adenocarcinoma respectively. There were no differences in marker expression between dual-marker and single-marker staining. CONCLUSIONS Dual-marker immunostaining is a relatively easy, time- and cost-conserving staining method for detecting two markers in a single section using one procedure and one chromogen. p40 and napsin A, and CK5/6 and TTF1 dual-marker staining were suitable for the differential diagnosis of lung squamous cell carcinoma and adenocarcinoma.
Collapse
Affiliation(s)
- Rui Guo
- Department of Pathology, The Second Affiliated Hospital, Xi'an JiaoTong University, Xi'an, Shaan'xi Province, China
| | - Yi Tian
- Department of Pathology, The Second Affiliated Hospital, Xi'an JiaoTong University, Xi'an, Shaan'xi Province, China
| | - Na Zhang
- Department of Pathology, The Second Affiliated Hospital, Xi'an JiaoTong University, Xi'an, Shaan'xi Province, China
| | - Hong Huang
- Department of Pathology, The Second Affiliated Hospital, Xi'an JiaoTong University, Xi'an, Shaan'xi Province, China
| | - Ying Huang
- Department of Pathology, The Second Affiliated Hospital, Xi'an JiaoTong University, Xi'an, Shaan'xi Province, China
| | - Jun Yang
- Department of Pathology, The Second Affiliated Hospital, Xi'an JiaoTong University, Xi'an, Shaan'xi Province, China
| |
Collapse
|
3
|
Hasegawa K, Saigusa T, Tamai Y. Caenorhabditis elegans opens up new insights into circadian clock mechanisms. Chronobiol Int 2005; 22:1-19. [PMID: 15865318 DOI: 10.1081/cbi-200038149] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The roundworm, Caenorhabditis elegans, is known to carry homologues of clock genes such as per (=period) and tim (=timeless), which constitute the core of the circadian clock in Drosophila and mammals: lin-42 and tim-1. Analyses using WormBase (C. elegans gene database) have identified with relatively high identity analogous of the clock genes recognized in Drosophila and mammals, with the notable exception of cry (=cryptochrome), which is lacking in C. elegans. All of these C. elegans cognates of the clock genes appear to belong to members of the PAS-superfamily and to participate in development or responsiveness to the environment but apparently are not involved in the C. elegans circadian clock. Nevertheless, C. elegans exhibits convincing circadian rhythms in locomotor behavior in the adult stage and in resistance to hyperosmotic stress in starved larvae (L1) after hatching, indicating that it has a circadian clock with a core design entirely different from that of Drosophila and mammals. Here two possibilities are considered. First, the core of the C. elegans circadian clock includes transcriptional/translational feedback loops between genes and their protein products that are entirely different from those of Drosophila and mammals. Second, a more basic principle such as homeostasis governs the circadian cellular physiology, and was established primarily to minimize the accumulation of DNA damage in response to an environment cycling at 24 h intervals.
Collapse
Affiliation(s)
- Kenji Hasegawa
- Division of Brain Science, Graduate School of Medicine, Kitasato University, Sagamihara, Kanagawa 228-8555, Japan.
| | | | | |
Collapse
|
4
|
Zhong H, Hanrahan C, van der Poel H, Simons JW. Hypoxia-inducible factor 1alpha and 1beta proteins share common signaling pathways in human prostate cancer cells. Biochem Biophys Res Commun 2001; 284:352-6. [PMID: 11394885 DOI: 10.1006/bbrc.2001.4981] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric transcription factor consisting alpha and beta subunits. It is critically involved in cancer cell hypoxia adaptation, glycolysis, and angiogenesis. HIF-1beta is associated with HIF-1 functions as a dimerization partner of HIF-1alpha, and is on the other hand associated with carcinogenesis via dioxin signaling. Regulation of HIF-1beta protein expression was investigated in human prostate cancer (PCA) cells. HIF-1beta protein was expressed constitutively under nonhypoxic conditions in all human PCA cells tested, and was up-regulated by hypoxia, CoCl2, EGF, serum, or PMA in moderate levels. Compared to that of HIF-1alpha, the constitutive, serum-, EGF-, and PMA-increased HIF-1beta protein expression were also inhibited by selective PI3K or FRAP/TOR inhibitors but in higher doses. Hypoxia partially reversed the dose dependent inhibition of HIF-1beta. These results suggest that HIF-1alpha and beta share common signaling pathways for nuclear protein accumulation.
Collapse
Affiliation(s)
- H Zhong
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | |
Collapse
|
5
|
Tanguay RL, Andreasen E, Heideman W, Peterson RE. Identification and expression of alternatively spliced aryl hydrocarbon nuclear translocator 2 (ARNT2) cDNAs from zebrafish with distinct functions. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1494:117-28. [PMID: 11072074 DOI: 10.1016/s0167-4781(00)00225-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In order to further establish zebrafish as a vertebrate model for studying the mechanism of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity it is necessary to characterize the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator (AhR/ARNT) signaling pathways in this species. In this study, three zfARNT2 cDNAs were isolated, expressed, and characterized and named zfARNT2b, zfARNT2c, and zfARNT2a. zfARNT2b, zfARNT2c, and zfARNT2a encode proteins with theoretical molecular weights of 81, 79, and 45 kDa, respectively. zfARNT2b and zfARNT2a proteins are identical over the first 403 amino acids but differ in their C-terminal domains as a result of alternative mRNA splicing. zfARNT2c is nearly identical to zfARNT2b, with the exception of an in frame 15 amino acid deletion adjacent to the basic region of zfARNT2c. Using quantitative RT-PCR methods the tissue distribution of each zfARNT2 isoform was determined. In COS-7 cells expressing zfARNT2b and zfAhR2, 10 nM TCDD causes a nine-fold induction of a dioxin responsive reporter gene. In COS-7 cells expressing zfARNT2a or zfARNT2c, TCDD does not induce reporter gene expression. In contrast, all three zfARNT2 proteins induce reporter gene activity under control of hypoxia responsive elements when cotransfected with the zebrafish endothelial specific PAS protein 1. DNA gel shift analysis suggests that the decreased function of zfARNT2a is due to inefficient binding of zfARNT2a/zfAhR2 complexes to dioxin responsive elements. These results also indicate that alternative mRNA splicing results in formation of ARNT proteins with distinct functional properties.
Collapse
Affiliation(s)
- R L Tanguay
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Denver 80262, USA.
| | | | | | | |
Collapse
|
6
|
Gu YZ, Hogenesch JB, Bradfield CA. The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol 2000; 40:519-61. [PMID: 10836146 DOI: 10.1146/annurev.pharmtox.40.1.519] [Citation(s) in RCA: 765] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past decade, PAS domains have been identified in dozens of signal transduction molecules and various forms have been found in animals, plants, and prokaryotes. In this review, we summarize this rapidly expanding research area by providing a detailed description of three signal transduction pathways that utilize PAS protein heterodimers to drive their transcriptional output. It is hoped that these model pathways can provide a framework for use in understanding the biology of the less well-understood members of this emerging superfamily, as well as of those to be characterized in the days to come. We use this review to develop the idea that most eukaryotic PAS proteins can be classified by functional similarities, as well as by predicted phylogenetic relationships. We focus on the alpha-class proteins, which often act as sensors of environmental signals, and the beta-class proteins, which typically act as broad-spectrum partners that target these heterodimers to their genomic targets.
Collapse
Affiliation(s)
- Y Z Gu
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine, Madison 53706, USA.
| | | | | |
Collapse
|
7
|
Küchenhoff A, Seliger G, Klonisch T, Tscheudschilsuren G, Kaltwasser P, Seliger E, Buchmann J, Fischer B. Arylhydrocarbon receptor expression in the human endometrium. Fertil Steril 1999; 71:354-60. [PMID: 9988411 DOI: 10.1016/s0015-0282(98)00437-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To determine the expression and localization of the arylhydrocarbon (dioxin) receptor in human endometrium throughout the normal menstrual cycle. DESIGN Retrospective immunohistochemical and in situ hybridization study. SETTING Academic research unit. PATIENT(S) Premenopausal women (n = 86), aged 25 to 45 years, with histologically normal endometrium undergoing curettage or hysterectomy. INTERVENTION(S) Endometrial samples were collected from days 3 to 26 of the cycle by superficial scrapings of the uterine cavity or by hysterectomy. MAIN OUTCOME MEASURE(S) Expression of arylhydrocarbon receptor mRNA and protein. RESULT(S) Arylhydrocarbon receptor was expressed in 43% of the endometria studied and was correlated with the day of the cycle. The maximum of immunopositive endometria was found around the time of ovulation. Immunostaining decreased with increasing age of the patients. The receptor protein was localized exclusively in the apical part of the cytoplasm in the epithelial cells of the endometrial glands. In women positive for arylhydrocarbon receptor, arylhydrocarbon receptor mRNA was expressed in the cytoplasm of endometrial epithelial cells. CONCLUSION(S) Our results describe the expression of the arylhydrocarbon receptor in human endometrium and indicate a possible involvement of this transcription factor in endometrial function in women during the reproductive phase.
Collapse
Affiliation(s)
- A Küchenhoff
- Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, Halle (Saale), Germany.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Richardson VM, Santostefano MJ, Birnbaum LS. Daily cycle of bHLH-PAS proteins, Ah receptor and Arnt, in multiple tissues of female Sprague-Dawley rats. Biochem Biophys Res Commun 1998; 252:225-31. [PMID: 9813174 DOI: 10.1006/bbrc.1998.9634] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aryl hydrocarbon receptor (AhR) shares a common PAS domain with a number of genes that exhibit a pronounced circadian rhythm. Therefore, this study examined the daily cycle of AhR and AhR nuclear translocator (Arnt) protein expression in multiple tissues of female Sprague-Dawley rats. Rats were euthanized at 4, 7, and 11 am and 4, 7, and 11 pm after which whole tissue homogenates were made from multiple tissues. Western blot analysis showed that the daily cycle of relative AhR protein expression exhibits a similar oscillation pattern in the liver, lungs, and thymus. The daily cycle of relative Arnt protein expression exhibits a similar oscillation pattern in the liver and lungs. The apparent daily cycle of AhR and Arnt protein expression in multiple tissues was not observed within the spleen. This preliminary report is the first study to suggest that the PAS proteins, AhR and Arnt, exhibit a daily oscillation pattern within multiple target tissues which may give insight into the tissue-specific toxic and biochemical responses mediated through this dimerization pair, as well as the physiological function of these proteins.
Collapse
Affiliation(s)
- V M Richardson
- U.S. Environmental Protection Agency, National Health & Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, 27711, USA
| | | | | |
Collapse
|
9
|
Hahn ME. The aryl hydrocarbon receptor: a comparative perspective. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1998; 121:23-53. [PMID: 9972449 DOI: 10.1016/s0742-8413(98)10028-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aryl hydrocarbon receptor (Ah receptor or AHR) is a ligand-activated transcription factor involved in the regulation of several genes, including those for xenobiotic-metabolizing enzymes such as cytochrome P450 1A and 1B forms. Ligands for the AHR include a variety of aromatic hydrocarbons, including the chlorinated dioxins and related halogenated aromatic hydrocarbons whose toxicity occurs through activation of the AHR. The AHR and its dimerization partner ARNT are members of the emerging bHLH-PAS family of transcriptional regulatory proteins. In this review, our current understanding of the AHR signal transduction pathway in non-mammalian and other non-traditional species is summarized, with an emphasis on similarities and differences in comparison to the AHR pathway in rodents and humans. Evidence and prospects for the presence of a functional AHR in early vertebrates and invertebrates are also examined. An overview of the bHLH-PAS family is presented in relation to the diversity of bHLH-PAS proteins and the functional and evolutionary relationships of the AHR and ARNT to the other members of this family. Finally, some of the most promising directions for future research on the comparative biochemistry and molecular biology of the AHR and ARNT are discussed.
Collapse
Affiliation(s)
- M E Hahn
- Biology Department, Woods Hole Oceanographic Institution, MA 02543-1049, USA.
| |
Collapse
|
10
|
Kashani M, Steiner G, Haitel A, Schaufler K, Thalhammer T, Amann G, Kramer G, Marberger M, Schöller A. Expression of the aryl hydrocarbon receptor (AhR) and the aryl hydrocarbon receptor nuclear translocator (ARNT) in fetal, benign hyperplastic, and malignant prostate. Prostate 1998; 37:98-108. [PMID: 9759704 DOI: 10.1002/(sici)1097-0045(19981001)37:2<98::aid-pros6>3.0.co;2-h] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Androgen-dependent tissue has been reported to be affected by chemical ligands of the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, which heterodimerizes with the aryl hydrocarbon receptor nuclear translocator protein (ARNT). METHODS Fetal (n = 3), benign hyperplastic (BPH) (n = 10), and carcinomatous (CaP) (n = 19) prostate tissues were analyzed using immunohistochemistry. Western blot analysis was used to confirm the identity of the recognized proteins. RESULTS Immunoblotting of enriched prostatic epithelial cells (EC) and stromal cells revealed constitutive expression of bands at around 110 kDa and 90 kDa, using anti-AhR and anti-ARNT, respectively. Immunohistology of the fetal specimens revealed heterogeneous cytoplasmic and nuclear AhR expression of immature EC and mesenchymal cells. Constitutive expression of AhR (primarily cytoplasmic) and ARNT (nuclear and cytoplasmic) by the majority of adult basal and secretory EC, CaP, and smooth muscle cells was confirmed in situ. The most intense anti-AhR/-ARNT reactivity was found on smooth muscle cells, followed by EC and fibrocytes. Secretory BPH-EC revealed significantly decreased AhR expression when compared to normal tissue segments. By contrast, anti-AhR reactivity was frequently increased in the more dedifferentiated tumor areas. CONCLUSIONS These findings suggest that an undefined physiologic AhR ligand(s) as well as environmental factors may exert effects on EC and smooth muscle cells in the prostate through binding to these receptors.
Collapse
Affiliation(s)
- M Kashani
- Department of Urology, University of Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zaher H, Fernandez-Salguero PM, Letterio J, Sheikh MS, Fornace AJ, Roberts AB, Gonzalez FJ. The involvement of aryl hydrocarbon receptor in the activation of transforming growth factor-beta and apoptosis. Mol Pharmacol 1998; 54:313-21. [PMID: 9687573 DOI: 10.1124/mol.54.2.313] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is believed to mediate many of the toxic, carcinogenic, and teratogenic effects of environmental contaminants such as dioxins, polycyclic aromatic hydrocarbons, and polyhalogenated biphenyls. Ligands for the AHR have been shown to influence cell proliferation, differentiation, and apoptosis, but the mechanism by which the AHR affects the cell cycle is not known. Increased levels of mature transforming growth factor-beta (TGFbeta) has been correlated with reduced cell proliferation and increased rates of apoptosis and fibrosis. Based on the increase in portal fibrosis and small liver size observed in AHR-null (Ahr-/-) mice, the relationship between TGFbeta expression and apoptosis in this mouse line was analyzed. Livers from Ahr-/- mice had marked increase in active TGFbeta1 and TGFbeta3 proteins and elevated numbers of hepatocytes undergoing apoptosis compared with wild-type mice. Furthermore, increases in TGFbeta and apoptotic cells were found in the portal areas of the liver, where fibrosis is found in the Ahr-/- mice. In vitro, primary hepatocyte cultures from Ahr-/- mice exhibited a high number of cells in later stages of apoptosis and an elevated secretion of active TGFbeta into the media compared with cultures from wild-type mice, which have previously been shown to secrete only latent forms of the molecule. Conditioned media from Ahr-/- hepatocytes stimulated apoptosis in cultured hepatocytes from wild-type mice. Taken together, these findings suggest that the phenotypic abnormalities in Ahr-/- mice could be mediated in part by abnormal levels of active TGFbeta and altered cell cycle control.
Collapse
Affiliation(s)
- H Zaher
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Abbott BD, Probst MR, Perdew GH, Buckalew AR. AH receptor, ARNT, glucocorticoid receptor, EGF receptor, EGF, TGF alpha, TGF beta 1, TGF beta 2, and TGF beta 3 expression in human embryonic palate, and effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). TERATOLOGY 1998; 58:30-43. [PMID: 9787404 DOI: 10.1002/(sici)1096-9926(199808)58:2<30::aid-tera4>3.0.co;2-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein and mRNA for epidermal growth factor (EGF), transforming growth factor-alpha (TGF alpha), EGF receptor, transforming growth factor-beta 1 (TGF beta 1), TGF beta 2, TGF beta 3, glucocorticoid receptor (GR), the aryl hydrocarbon receptor (AhR), and the Ah receptor nuclear translocator (ARNT) were localized in gestational days (GD) 49-59 human embryonic secondary palates. The response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was determined for expression of these genes following palatal organ culture. Craniofacial tissues were shipped in medium from the Human Embryology Laboratory, University of Washington, Seattle, WA. Half of each specimen was cultured in control medium and half in medium containing TCDD at either 1 x 10(-8) or 1 x 10(-10) M. After fixation and paraffin-embedding, sections were examined either immunohistochemically or by in situ hybridization. Expression patterns were determined for each gene for the major stages of palatogenesis and in response to TCDD and compared to previously determined patterns of expression in the same developmental stages of palatogenesis for the mouse (GD49-59 in human palatogenesis corresponds to GD12-16 in the mouse). Human and mouse palates were dissimilar in particular spatiotemporal patterns of expression of these genes. Relative to patterns in mouse palatal development, human tissues demonstrated expression of EGF at early palatal stages, expression of EGF receptor and TGF alpha throughout fusion events, and uniform expression of TGF beta 3 in all epithelial regions without specifically higher levels in the medial cells. The responses to TCDD also differed in patterns of gene expression as well as in concentration required to induce hyperplasia of the medial epithelium. In summary, human palates expressed all of these regulatory genes, responses to TCDD were detected, and comparison between mouse and human palates revealed interspecies variation that may be a factor in each species' response to TCDD, as well as other teratogenic exposures.
Collapse
Affiliation(s)
- B D Abbott
- Division of Reproductive Toxicology, National Health Effects and Environmental Research Laboratory, Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | | | | | | |
Collapse
|
13
|
Willey JJ, Stripp BR, Baggs RB, Gasiewicz TA. Aryl hydrocarbon receptor activation in genital tubercle, palate, and other embryonic tissues in 2,3,7, 8-tetrachlorodibenzo-p-dioxin-responsive lacZ mice. Toxicol Appl Pharmacol 1998; 151:33-44. [PMID: 9705885 DOI: 10.1006/taap.1998.8444] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates the toxicity of 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) and related halogenated aromatic hydrocarbons. Although the normal function and endogenous ligand for this receptor are not known, it is thought to have a role in growth regulation processes. The AhR has been found in both adult and certain developing tissues, and AhR agonists like the environmental contaminant TCDD cause a number of developmental anomalies. We sought to determine whether the AhR is directly activated to a transcriptionally functional form in tissues known to be adversely affected by AhR agonist exposure. To this end, a transgenic mouse model was developed that could be used to indicate the temporal and spatial context of transcriptionally active AhR following agonist exposure in vivo. A synthetic promoter containing two dioxin-responsive elements (DREs) and a minimal TATA box was strongly induced by TCDD in transfected cells when linked to the lacZ or luciferase reporter gene. Transgenic mice harboring the lacZ construct had TCDD-inducible beta-galactosidase activity in tissues following adult and in utero exposure. Embryonic lacZ expression was induced in hard and soft palates, genital tubercle, certain facial regions, shoulder, as well as other tissues by in utero exposure to 30 microg TCDD/kg at Gestational Day 13. The most intense reporter response was observed in the genital tubercle. Histopathology of the palate and tubercle demonstrated the reporter gene activity to be both cell- and region-specific. This is the first publication to correlate reported TCDD-elicited toxicity (e.g., cleft palate in mice) with TCDD-dependent AhR activation. These data indicate the ability of TCDD to initiate a signal transduction process leading to a transcriptionally active AhR in these tissues, thereby identifying potential targets of dioxin-induced toxicity during development. Weak activation of the reporter gene was consistently observed only in the genital tubercle in the absence of exogenous inducer. This indicates minimal or no endogenous AhR activators at the developmental stage examined. This mouse model will prove useful for both the examination of the endogenous role of the AhR in proliferation or differentiation and of the developmental targets of dioxin-like compounds.
Collapse
Affiliation(s)
- J J Willey
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
14
|
Roman BL, Pollenz RS, Peterson RE. Responsiveness of the adult male rat reproductive tract to 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure: Ah receptor and ARNT expression, CYP1A1 induction, and Ah receptor down-regulation. Toxicol Appl Pharmacol 1998; 150:228-39. [PMID: 9653054 DOI: 10.1006/taap.1998.8388] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) either in adulthood or during late fetal and early postnatal development causes a variety of adverse effects on the male rat reproductive system. It was therefore of interest to identify male rat reproductive organs and cell types within these organs that might be direct targets of TCDD exposure. Because TCDD toxicity could possibly be the result of alterations in gene transcription mediated by the TCDD/aryl hydrocarbon receptor (AhR)/AhR nuclear translocator (ARNT) complex, the presence of the AhR and ARNT in the various organs of the adult male reproductive tract was examined using Western blotting. Both proteins were detectable in all organs examined (testis, epididymis, vas deferens, ventral prostate, dorsolateral [combined dorsal and lateral] prostate, and seminal vesicle). Although technical difficulties precluded the immunohistochemical evaluation of AhR distribution in these organs, ARNT was localized in all organs in a variety of cell types, including germ cells, epithelial cells, fibroblasts, smooth muscle cells, and endothelial cells. Subcellular localization varied across organs and across cell types within these organs. In order to determine whether TCDD exposure could alter gene expression in these organs, animals were dosed with TCDD (25 micrograms/kg po) or vehicle and euthanized at 24 h, and cytochrome P4501A1 (CYP1A1) expression was evaluated. By Western blotting, only the ventral and dorsolateral prostates exhibited significant induction of CYP1A1. Immunohistochemistry confirmed this induction and localized CYP1A1 expression to epithelial cells of the ventral and lateral lobes of the prostate. Immunohistochemistry also revealed CYP1A1 induction in select epithelial cells in the epididymis and seminal vesicle, as well as endothelial cells in the vas deferens and seminal vesicle. No induction was observed in the testis. Finally, AhR and ARNT expression in TCDD-exposed and control animals was evaluated by Western blotting. Results revealed no effect of TCDD exposure on ARNT protein expression, while AhR expression was decreased to 5-51% of control in all organs examined. In summary, both AhR and ARNT were expressed in all organs of the adult male rat reproductive tract examined, and epithelial and/or endothelial cells within each of these organs (with the exception of the testis) were responsive to TCDD exposure in terms of CYP1A1 induction. In addition, all tissues exhibited marked reductions in AhR protein content after TCDD exposure that did not correlate with the magnitude of the CYP1A1 response.
Collapse
Affiliation(s)
- B L Roman
- Environmental Toxicology Center, University of Wisconsin, Madison 53706, USA
| | | | | |
Collapse
|
15
|
Lavin AL, Hahn DJ, Gasiewicz TA. Expression of functional aromatic hydrocarbon receptor and aromatic hydrocarbon nuclear translocator proteins in murine bone marrow stromal cells. Arch Biochem Biophys 1998; 352:9-18. [PMID: 9521805 DOI: 10.1006/abbi.1998.0587] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) acting through the aromatic hydrocarbon receptor (AhR) and its dimerization partner, the AhR nuclear translocator protein (arnt), elicits numerous toxicological effects including immunosuppression and thymic atrophy. Previous work has shown that TCDD alters bone marrow prothymocyte populations. These effects could be mediated at the lymphocyte level directly and/or through effects on bone marrow stromal cells, a population important in the support of lymphopoiesis. The purpose of this study was to characterize AhR and arnt expression in three murine bone marrow stromal cell lines (S17, M2-10B4, and BMS2) and in primary stromal cell cultures. Immunoblot analysis detected AhR protein in M2-10B4 and BMS2 cells. AhR protein was also detected in the primary cultures. Arnt protein could be detected in all cell cultures. Electrophoretic mobility shift assays detected TCDD-dependent dioxin-responsive element (DRE) binding in all three cell lines. DNA binding was sequence-specific and dependent on AhR, as demonstrated by the addition of unlabeled DRE DNA or of anti-AhR antibody. Results obtained with the primary cultures paralleled those seen with the stromal cell lines. The ED50 for induction of TCDD-dependent DRE binding in M2-10B4 cells was 0.21 nM. TCDD treatment did not induce stromal P4501A1 mRNA expression but did increase P4501B1 mRNA levels in all three cell lines and in the primary cultures. These results indicate that murine bone marrow stromal cells express AhR and arnt proteins. Furthermore, these proteins are functional in terms of their DRE-binding ability and potential to regulate mRNA levels in a gene-specific fashion.
Collapse
Affiliation(s)
- A L Lavin
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | |
Collapse
|
16
|
Walker MK, Pollenz RS, Smith SM. Expression of the aryl hydrocarbon receptor (AhR) and AhR nuclear translocator during chick cardiogenesis is consistent with 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced heart defects. Toxicol Appl Pharmacol 1997; 143:407-19. [PMID: 9144457 DOI: 10.1006/taap.1996.8068] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We examined cardiotoxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the chick embryo and the cardiac expression of transcription factors, the aryl hydrocarbon receptor (AhR) which binds TCDD, and its dimer partner, the AhR nuclear translocator (Arnt). Chicken eggs were injected with control (triolein) or 1.0 pmol TCDD/g egg prior to incubation and collected on Day 10 when cardiomorphogenesis is complete. Relative to controls, TCDD increased heart wet weight (27.2 +/- 0.5 versus 36.6 +/- 1.3 mg, p < 0.001) and dry weight (2.7 +/- 0.1 versus 3.1 +/- 0.1 mg, p < 0.01), and tended to increase heart myosin content (3.5 +/- 0.6 versus 6.3 +/- 2.5 microg, p < 0.07), suggesting an increase in cardiac muscle mass and edema. Histologic and morphometric analyses revealed that 10/13 TCDD-exposed hearts exhibited enlarged right and left ventricles, thickened ventricular septum, and a thinner left ventricular wall with increased trabeculation, and 4/13 exhibited ventricular septal defects compared to controls (0/23). To evaluate AhR and Arnt expression, untreated chick embryos were collected on Days 2.2, 3, 4, 5, and 8 of incubation, preserved in Bouin's fixative, sectioned, and stained with AhR and Arnt antibodies. The AhR was expressed ubiquitously in cardiac myocytes, while Arnt expression was restricted to myocytes overlying developing septa: atrioventricular canal, outflow tract, and atrial and ventricular septa. Both proteins were absent from endocardium and endocardial-derived mesenchyme. In addition, cardiac expression of an AhR/Arnt target, cytochrome P4501A1, was restricted to myocardium coexpressing AhR and Arnt. Thus, the spatial and temporal expression of AhR and Arnt suggests that the developing myocardium and cardiac septa are potential targets of TCDD-induced teratogenicity, and such targets are also consistent with cardiac hypertrophy and septal defects observed following TCDD exposure.
Collapse
Affiliation(s)
- M K Walker
- Department of Nutritional Sciences, University of Wisconsin, Madison 53706, USA
| | | | | |
Collapse
|
17
|
Abbott B, Birnbaum L, Diliberto J. Rapid distribution of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to embryonic tissues in C57BL/6N mice and correlation with palatal uptake in vitro. Toxicol Appl Pharmacol 1996. [DOI: 10.1016/s0041-008x(96)80031-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Abbott BD, Probst MR. Developmental expression of two members of a new class of transcription factors: II. Expression of aryl hydrocarbon receptor nuclear translocator in the C57BL/6N mouse embryo. Dev Dyn 1995; 204:144-55. [PMID: 8589438 DOI: 10.1002/aja.1002040205] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) and the AhR nuclear translocator protein (ARNT) are basic-helix-loop-helix (bHLH) proteins involved in transcriptional regulation. The AhR is a ligand-activated partner of the ARNT protein. Both proteins are required to transcriptionally regulate gene expression. ARNT must be complexed to AhR to permit binding to the regulatory DNA sequence. The AhR-ligand complex is known to mediate a range of biological responses, such as developmental toxicity, induction of cleft palate, and hydronephrosis. AhR and ARNT are expressed in human embryonic palatal cells and AhR was recently shown to have a specific developmental pattern of expression in the mouse embryo. In the present study, expression of ARNT is characterized in C57Bl/6N mouse embryos from gestation day (GD) 10-16 using immunohistochemistry and in situ hybridization. Af affinity purified antibody against human ARNT (1.1 micrograms/ml) was detected with an avidin-biotin-peroxidase complex. ARNT mRNA was localized with a 35S-RNA probe from pBM5/NEO-M1-1. Specific spatial and temporal patterns of ARNT expression emerged and mRNA and protein expression correlated. The GD 10-11 embryos showed highest levels of ARNT in neuroepithelial cells of the neural tube, visceral arches, otic and optic placodes, and preganglionic complexes. The heart also had significant expression of ARNT with strong nuclear localization. After GD11, expression in heart and brain declined. In GD 12-13 embryos expression was highest in the liver where expression increased from GD 12-16. At GD 15-16 the highest levels of ARNT occurred in adrenal gland and liver, although ARNT was also detected in submandibular gland, ectoderm, tongue, bone, and muscle. In all of these tissues ARNT was cytoplasmic as well as nuclear, except in some of the cortical adrenal cells in which ARNT was strongly cytoplasmic with little or no nuclear localization. These specific patterns of ARNT expression, which differ in certain tissues from the expression of AhR, suggest that ARNT may have additional roles in normal embryonic development.
Collapse
Affiliation(s)
- B D Abbott
- Developmental Toxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | | |
Collapse
|
19
|
Abbott BD, Birnbaum LS, Perdew GH. Developmental expression of two members of a new class of transcription factors: I. Expression of aryl hydrocarbon receptor in the C57BL/6N mouse embryo. Dev Dyn 1995; 204:133-43. [PMID: 8589437 DOI: 10.1002/aja.1002040204] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor with a basic region/helix-loop-helix (bHLH) motif. AhR has been sequenced and the functional domains defined and there is information on the formation of complexes with other peptides and interactions with DNA, although these areas continue to be investigated. AhR mediates many biological effects such as developmental toxicity, including induction of cleft palate and hydronephrosis. This regulatory protein is expressed in embryonic liver and has been immunohistochemically localized in cells of human and mouse secondary palate. The expression of AhR in embryonic tissues and its ability to disrupt development suggests a significant role for this protein in development. The present study examines the pattern of AhR expression in the C57BL/6N mouse embryo from gestation days (GD) 10-16, using in situ hybridization and immunohistochemical analysis. AhR mRNA was localized with 35S-RNA antisense riboprobe (cAh1 probe, 1.8 Kb amino terminal DNA). AhR protein was localized with purified monoclonal antibody (RPT-9) raised against the N-terminal peptide sequence. AhR mRNA and protein were expressed in GD 10-13 neuroepithelium, and as development progressed the levels in brain decreased. GD 10-12 embryos also showed AhR in branchial arches, heart, somites, and liver. AhR protein and mRNA in heart were highest at GD 10-11 and decreased with age. In liver, AhR mRNA and protein levels increased and nuclear localization became more pronounced with gestational age. In GD 14-16 embryos levels in liver and adrenal were highest, but AhR was present in ectoderm, bone, and muscle. AhR expression was specific for both cell type, organ/tissue, and developmental stage, suggesting that this novel ligand-activated transcriptional regulator may be important in normal embryonic development.
Collapse
Affiliation(s)
- B D Abbott
- Developmental Toxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | | |
Collapse
|