1
|
Zhang D, Zhang R, Song X, Yan KC, Liang H. Uniaxial Cyclic Stretching Promotes Chromatin Accessibility of Gene Loci Associated With Mesenchymal Stem Cells Morphogenesis and Osteogenesis. Front Cell Dev Biol 2021; 9:664545. [PMID: 34307349 PMCID: PMC8294092 DOI: 10.3389/fcell.2021.664545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/28/2021] [Indexed: 01/08/2023] Open
Abstract
It has been previously demonstrated that uniaxial cyclic stretching (UCS) induces differentiation of mesenchymal stem cells (MSCs) into osteoblasts in vitro. It is also known that interactions between cells and external forces occur at various aspects including cell–matrix, cytoskeleton, nucleus membrane, and chromatin. However, changes in chromatin landscape during this process are still not clear. The present study was aimed to determine changes of chromatin accessibility under cyclic stretch. The influence of cyclic stretching on the morphology, proliferation, and differentiation of hMSCs was characterized. Changes of open chromatin sites were determined by assay for transposase accessible chromatin with high-throughput sequencing (ATAC-seq). Our results showed that UCS induced cell reorientation and actin stress fibers realignment, and in turn caused nuclear reorientation and deformation. Compared with unstrained group, the expression of osteogenic and chondrogenic marker genes were the highest in group of 1 Hz + 8% strain; this condition also led to lower cell proliferation rate. Furthermore, there were 2022 gene loci with upregulated chromatin accessibility in 1 Hz + 8% groups based on the analysis of chromatin accessibility. These genes are associated with regulation of cell morphogenesis, cell–substrate adhesion, and ossification. Signaling pathways involved in osteogenic differentiation were found in up-regulated GO biological processes. These findings demonstrated that UCS increased the openness of gene loci associated with regulation of cell morphogenesis and osteogenesis as well as the corresponding transcription activities. Moreover, the findings also connect the changes in chromatin accessibility with cell reorientation, nuclear reorientation, and deformation. Our study may provide reference for directed differentiation of stem cells induced by mechanical microenvironments.
Collapse
Affiliation(s)
- Duo Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Ran Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Xiaoyuan Song
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Karen Chang Yan
- Mechanical Engineering and Biomedical Engineering, The College of New Jersey, Ewing Township, NJ, United States
| | - Haiyi Liang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| |
Collapse
|
2
|
Cheng H, Huang Y, Chen W, Che J, Liu T, Na J, Wang R, Fan Y. Cyclic Strain and Electrical Co-stimulation Improve Neural Differentiation of Marrow-Derived Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:624755. [PMID: 34055769 PMCID: PMC8150581 DOI: 10.3389/fcell.2021.624755] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/23/2021] [Indexed: 12/26/2022] Open
Abstract
The current study investigated the combinatorial effect of cyclic strain and electrical stimulation on neural differentiation potential of rat bone marrow-derived mesenchymal stem cells (BMSCs) under epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2) inductions in vitro. We developed a prototype device which can provide cyclic strain and electrical signal synchronously. Using this system, we demonstrated that cyclic strain and electrical co-stimulation promote the differentiation of BMCSs into neural cells with more branches and longer neurites than strain or electrical stimulation alone. Strain and electrical co-stimulation can also induce a higher expression of neural markers in terms of transcription and protein level. Neurotrophic factors and the intracellular cyclic AMP (cAMP) are also upregulated with co-stimulation. Importantly, the co-stimulation further enhances the calcium influx of neural differentiated BMSCs when responding to acetylcholine and potassium chloride (KCl). Finally, the phosphorylation of extracellular-signal-regulated kinase (ERK) 1 and 2 and protein kinase B (AKT) was elevated under co-stimulation treatment. The present work suggests a synergistic effect of the combination of cyclic strain and electrical stimulation on BMSC neuronal differentiation and provides an alternative approach to physically manipulate stem cell differentiation into mature and functional neural cells in vitro.
Collapse
Affiliation(s)
- Hong Cheng
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yan Huang
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wei Chen
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jifei Che
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Taidong Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jing Na
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ruojin Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,School of Engineering Medicine, Beihang University, Beijing, China
| |
Collapse
|
3
|
Lim Lam VK, Hin Wong JY, Chew SY, Chan BP. Rac1-GTPase regulates compression-induced actin protrusions (CAPs) of mesenchymal stem cells in 3D collagen micro-tissues. Biomaterials 2021; 274:120829. [PMID: 33933985 DOI: 10.1016/j.biomaterials.2021.120829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 01/19/2023]
Abstract
Cells can sense mechanical signals through cytoskeleton reorganization. We previously discovered the formation of omni-directional actin protrusions upon compression loading, namely compression-induced actin protrusions (CAPs), in human mesenchymal stem cells (MSCs) in 3D micro-tissues. Here, the regulatory roles of three RhoGTPases (CDC42, Rac1 and RhoA) in the formation of CAPs were investigated. Upon compression loading, extensive formation of CAPs was found, significantly associated with an upregulated mRNA expression of Rac1 only, but not CDC42, nor RhoA. Upon chemical inhibition of these RhoGTPase activity during compression, only Rac1 activity was significantly suppressed, associating with the reduced CAP formation. Silencing the upstream regulators of these RhoGTPase pathways including Rac1 by specific siRNA dramatically disrupted actin cytoskeleton, distorted cell morphology and aborted CAP formation. Silencing cortactin (CTTN), a downstream effector of the Rac1 pathway, induced a compensatory upregulation of Rac1, enabling the MSCs to respond to the compression loading stimulus in terms of CAP formation, although at a reduced number. The importance of Rac1 signalling in CAP formation and the corresponding upregulation of lamellipodial markers also suggest that these CAPs are lamellipodia in nature. This study delineates the mechanism of compression-induced cytoskeleton reorganization, contributing to rationalizing mechanical loading regimes for functional tissue engineering.
Collapse
Affiliation(s)
- Vincent Kwok Lim Lam
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Johnny Yu Hin Wong
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Barbara Pui Chan
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China.
| |
Collapse
|
4
|
Satheesan L, Soundian E, Kumanan V, Kathaperumal K. Potential of ovine Wharton jelly derived mesenchymal stem cells to transdifferentiate into neuronal phenotype for application in neuroregenerative therapy. Int J Neurosci 2020; 130:1101-1108. [PMID: 32031459 DOI: 10.1080/00207454.2020.1725510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction: The transdifferentiation potential of mesenchymal stem cells (MSCs) is not limited to mesodermal derivatives but also to other cell types such as neuronal cells under appropriate cell culture conditions.Materials and methods: The present study characterizes the differentiation of Wharton's jelly (WJ) derived MSCs using neuronal conditioned medium (NCM) collected from cultured foetal brain cells.Results: After induction with NCM to neuronal stem cells (NSC), the WJ MSCs showed profound morphological changes showing multiple neurites extending from the cell body containing reminiscent of Nissl substance and single long axon-like processes. In RT PCR and immunocytochemistry, the induced neuronal cells showed a strong positive expression of neuronal markers Nestin, β III tubulin and GFAP indicated that, the cells were reactive to NCM for differentiation. A significant (p < 0.01) increase in the level of secretome BDNF was observed in NCM suggests that the BDNF could play a key role in the transdifferentiation of WJMSCs to NSCs.Conclusion: These results support the potential of ovine MSCs isolated from umbilical cord WJ of abattoir derived foetuses to differentiate into neuronal stem cells and also provide a valuable experimental data for NSC transplant research in veterinary medicine.
Collapse
Affiliation(s)
- Lija Satheesan
- Department of Veterinary Physiology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | - Eswari Soundian
- Department of Veterinary Physiology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | - Vijayarani Kumanan
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | - Kumanan Kathaperumal
- Bioinformatics Centre and ARIS Cell, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| |
Collapse
|
5
|
Uniaxial Cyclic Tensile Stretching at 8% Strain Exclusively Promotes Tenogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells Int 2019; 2019:9723025. [PMID: 30918524 PMCID: PMC6409073 DOI: 10.1155/2019/9723025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/13/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022] Open
Abstract
The present study was conducted to establish the amount of mechanical strain (uniaxial cyclic stretching) required to provide optimal tenogenic differentiation expression in human mesenchymal stromal cells (hMSCs) in vitro, in view of its potential application for tendon maintenance and regeneration. Methods. In the present study, hMSCs were subjected to 1 Hz uniaxial cyclic stretching for 6, 24, 48, and 72 hours; and were compared to unstretched cells. Changes in cell morphology were observed under light and atomic force microscopy. The tenogenic, osteogenic, adipogenic, and chondrogenic differentiation potential of hMSCs were evaluated using biochemical assays, extracellular matrix expressions, and selected mesenchyme gene expression markers; and were compared to primary tenocytes. Results. Cells subjected to loading displayed cytoskeletal coarsening, longer actin stress fiber, and higher cell stiffness as early as 6 hours. At 8% and 12% strains, an increase in collagen I, collagen III, fibronectin, and N-cadherin production was observed. Tenogenic gene expressions were highly expressed (p < 0.05) at 8% (highest) and 12%, both comparable to tenocytes. In contrast, the osteoblastic, chondrogenic, and adipogenic marker genes appeared to be downregulated. Conclusion. Our study suggests that mechanical loading at 8% strain and 1 Hz provides exclusive tenogenic differentiation; and produced comparable protein and gene expression to primary tenocytes.
Collapse
|
6
|
Manufacturing of primed mesenchymal stromal cells for therapy. Nat Biomed Eng 2019; 3:90-104. [PMID: 30944433 DOI: 10.1038/s41551-018-0325-8] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022]
Abstract
Mesenchymal stromal cells (MSCs) for basic research and clinical applications are manufactured and developed as unique cell products by many different manufacturers and laboratories, often under different conditions. The lack of standardization of MSC identity has limited consensus around which MSC properties are relevant for specific outcomes. In this Review, we examine how the choice of media, cell source, culture environment and storage affects the phenotype and clinical utility of MSC-based products, and discuss the techniques better suited to prime MSCs with specific phenotypes of interest and the need for the continued development of standardized assays that provide quality assurance for clinical-grade MSCs. Bioequivalence between cell products and batches must be investigated rather than assumed, so that the diversity of phenotypes between differing MSC products can be accounted for to identify products with the highest therapeutic potential and to preserve their safety in clinical treatments.
Collapse
|
7
|
Polo-Corrales L, Ramirez-Vick J, Feria-Diaz JJ. Recent Advances in Biophysical stimulation of MSC for bone regeneration. ACTA ACUST UNITED AC 2018. [DOI: 10.17485/ijst/2018/v11i15/121405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
8
|
Effects of Transplanted Heparin-Poloxamer Hydrogel Combining Dental Pulp Stem Cells and bFGF on Spinal Cord Injury Repair. Stem Cells Int 2018; 2018:2398521. [PMID: 29765407 PMCID: PMC5892218 DOI: 10.1155/2018/2398521] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/30/2018] [Indexed: 12/16/2022] Open
Abstract
Spinal cord injury (SCI) is one of serious traumatic diseases of the central nervous system and has no effective treatment because of its complicated pathophysiology. Tissue engineering strategy which contains scaffolds, cells, and growth factors can provide a promising treatment for SCI. Hydrogel that has 3D network structure and biomimetic microenvironment can support cellular growth and embed biological macromolecules for sustaining release. Dental pulp stem cells (DPSCs), derived from cranial neural crest, possess mesenchymal stem cell (MSC) characteristics and have an ability to provide neuroprotective and neurotrophic properties for SCI treatment. Basic fibroblast growth factor (bFGF) is able to promote cell survival and proliferation and also has beneficial effect on neural regeneration and functional recovery after SCI. Herein, a thermosensitive heparin-poloxamer (HP) hydrogel containing DPSCs and bFGF was prepared, and the effects of HP-bFGF-DPSCs on neuron restoration after SCI were evaluated by functional recovery tests, western blotting, magnetic resonance imaging (MRI), histology evaluation, and immunohistochemistry. The results suggested that transplanted HP hydrogel containing DPSCs and bFGF had a significant impact on spinal cord repair and regeneration and may provide a promising strategy for neuron repair, functional recovery, and tissue regeneration after SCI.
Collapse
|
9
|
Deriving vascular smooth muscle cells from mesenchymal stromal cells: Evolving differentiation strategies and current understanding of their mechanisms. Biomaterials 2017; 145:9-22. [PMID: 28843066 DOI: 10.1016/j.biomaterials.2017.08.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/07/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022]
Abstract
Vascular smooth muscle cells (VSMCs) play essential roles in regulating blood vessel form and function. Regeneration of functional vascular smooth muscle tissue to repair vascular diseases is an area of intense research in tissue engineering and regenerative medicine. For functional vascular smooth muscle tissue regeneration to become a practical therapy over the next decade, the field will need to have access to VSMC sources that are effective, robust and safe. While pluripotent stem cells hold good future promise to this end, more immediate translation is expected to come from approaches that generate functional VSMCs from adult sources of multipotent adipose-derived and bone marrow-derived mesenchymal stromal cells (ASCs and BMSCs). The research to this end is extensive and is dominated by studies relating to classical biochemical signalling molecules used to induce differentiation of ASCs and BMSCs. However, prolonged use of the biochemical induction factors is costly and can cause potential endotoxin contamination in the culture. Over recent years several non-traditional differentiation approaches have been devised to mimic defined aspects of the native micro-environment in which VSMCs reside to contribute to the differentiation of VSMC-like cells from ASCs and BMSCs. In this review, the promises and limitations of several non-traditional culture approaches (e.g., co-culture, biomechanical, and biomaterial stimuli) targeting VSMC differentiation are discussed. The extensive crosstalk between the underlying signalling cascades are delineated and put into a translational context. It is expected that this review will not only provide significant insight into VSMC differentiation strategies for vascular smooth muscle tissue engineering applications, but will also highlight the fundamental importance of engineering the cellular microenvironment on multiple scales (with consideration of different combinatorial pathways) in order to direct cell differentiation fate and obtain cells of a desired and stable phenotype. These strategies may ultimately be applied to different sources of stem cells in the future for a range of biomaterial and tissue engineering disciplines.
Collapse
|
10
|
Local calcium signalling is mediated by mechanosensitive ion channels in mesenchymal stem cells. Biochem Biophys Res Commun 2016; 482:563-568. [PMID: 27856251 DOI: 10.1016/j.bbrc.2016.11.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/12/2016] [Indexed: 12/16/2022]
Abstract
Mechanical forces are implicated in key physiological processes in stem cells, including proliferation, differentiation and lineage switching. To date, there is an evident lack of understanding of how external mechanical cues are coupled with calcium signalling in stem cells. Mechanical reactions are of particular interest in adult mesenchymal stem cells because of their promising potential for use in tissue remodelling and clinical therapy. Here, single channel patch-clamp technique was employed to search for cation channels involved in mechanosensitivity in mesenchymal endometrial-derived stem cells (hMESCs). Functional expression of native mechanosensitive stretch-activated channels (SACs) and calcium-sensitive potassium channels of different conductances in hMESCs was shown. Single current analysis of stretch-induced channel activity revealed functional coupling of SACs and BK channels in plasma membrane. The combination of cell-attached and inside-out experiments have indicated that highly localized Ca2+ entry via SACs triggers BK channel activity. At the same time, SK channels are not coupled with SACs despite of high calcium sensitivity as compared to BK. Our data demonstrate novel mechanism controlling BK channel activity in native cells. We conclude that SACs and BK channels are clusterized in functional mechanosensitive domains in the plasma membrane of hMESCs. Co-clustering of ion channels may significantly contribute to mechano-dependent calcium signalling in stem cells.
Collapse
|
11
|
Rabbani M, Janmaleki M, Tafazzoli-Shadpour M, Teymoori M, Rezvaninejad S. Effects of uniaxial cyclic stretch loading on morphology of adipose derived stem cells. Tissue Eng Regen Med 2016; 13:396-402. [PMID: 30603421 DOI: 10.1007/s13770-016-9037-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/16/2015] [Accepted: 10/05/2015] [Indexed: 12/22/2022] Open
Abstract
Adipose derived stem cells (ADSC) are good candidates for the replacement of bone marrow derived mesenchymal stem cells due to their abundance, multipotency property, and easier accessibility. In order to explore the behavior of these cells in response to mechanical stimulation, in this study we have investigated the effects of uniaxial dynamic mechanical loading on ADSC's morphology. Stem cells derived from the fat tissue of human and after an overnight culture were seeded on a silicone rubber strips. Afterwards, cells were subjected to a uniaxial dynamic loading in three different groups. Cell images were evaluated considering different morphological parameters. Fractal dimension decreased significantly after loading while in control groups there were a significant increase (p<0.05), approving that cyclic strain would lead to more aligned and organized cells. Cell orientation also increased significantly (p<0.05). Moreover cells' orientation angle, 24 hour after loading does not change compared to the observations immediately after loading, which attests to the practicality of the cyclic strain in functional tissue engineering. Cell width decreased and cell length increased which led to a significant increase in cell shape index (p<0.05). Results confirmed that uniaxial dynamic loading affects cell morphological parameters comparing their values before and after loading. In addition, the number of cycles are also an important factor since different number of cycles lead to different amounts of certain morphological parameters. Conclusively, cyclic strain can be a practical method in the field of functional tissue engineering.
Collapse
Affiliation(s)
- Mohsen Rabbani
- 1Department of Biomedical Engineering, University of Isfahan, Azadi sq., Isfahan, Iran.,4Department of Biomedical Engineering, University of Isfahan, Azadi sq., Isfahan, 81746-73441 Iran
| | - Mohsen Janmaleki
- 2Medical Nanotechnology and Tissue Engineering Research Center, Taleghani Hospital, Parvaneh St., Velenjak, Tehran, Iran
| | | | - Morteza Teymoori
- 1Department of Biomedical Engineering, University of Isfahan, Azadi sq., Isfahan, Iran
| | | |
Collapse
|
12
|
Campillo N, Jorba I, Schaedel L, Casals B, Gozal D, Farré R, Almendros I, Navajas D. A Novel Chip for Cyclic Stretch and Intermittent Hypoxia Cell Exposures Mimicking Obstructive Sleep Apnea. Front Physiol 2016; 7:319. [PMID: 27524971 PMCID: PMC4965455 DOI: 10.3389/fphys.2016.00319] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/13/2016] [Indexed: 11/13/2022] Open
Abstract
Intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), plays a critical role in the pathogenesis of OSA-associated morbidities, especially in the cardiovascular and respiratory systems. Oxidative stress and inflammation induced by IH are suggested as main contributors of end-organ dysfunction in OSA patients and animal models. Since the molecular mechanisms underlying these in vivo pathological responses remain poorly understood, implementation of experimental in vitro cell-based systems capable of inducing high-frequency IH would be highly desirable. Here, we describe the design, fabrication, and validation of a versatile chip for subjecting cultured cells to fast changes in gas partial pressure and to cyclic stretch. The chip is fabricated with polydimethylsiloxane (PDMS) and consists of a cylindrical well-covered by a thin membrane. Cells cultured on top of the membrane can be subjected to fast changes in oxygen concentration (equilibrium time ~6 s). Moreover, cells can be subjected to cyclic stretch at cardiac or respiratory frequencies independently or simultaneously. Rat bone marrow-derived mesenchymal stem cells (MSCs) exposed to IH mimicking OSA and cyclic stretch at cardiac frequencies revealed that hypoxia-inducible factor 1α (HIF-1α) expression was increased in response to both stimuli. Thus, the chip provides a versatile tool for the study of cellular responses to cyclical hypoxia and stretch.
Collapse
Affiliation(s)
- Noelia Campillo
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Cellular and Respiratory Biomechanics, Institute for Bioengineering of CataloniaBarcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades RespiratoriasMadrid, Spain
| | - Ignasi Jorba
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Cellular and Respiratory Biomechanics, Institute for Bioengineering of CataloniaBarcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades RespiratoriasMadrid, Spain
| | - Laura Schaedel
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Cellular and Respiratory Biomechanics, Institute for Bioengineering of CataloniaBarcelona, Spain
| | - Blai Casals
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Cellular and Respiratory Biomechanics, Institute for Bioengineering of CataloniaBarcelona, Spain
| | - David Gozal
- Biological Sciences Division, Department of Pediatrics, Pritzker School of Medicine, The University of Chicago Chicago, IL, USA
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades RespiratoriasMadrid, Spain; Institut d'Investigacions Biomèdiques August Pi i SunyerBarcelona, Spain
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades RespiratoriasMadrid, Spain; Institut d'Investigacions Biomèdiques August Pi i SunyerBarcelona, Spain
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Cellular and Respiratory Biomechanics, Institute for Bioengineering of CataloniaBarcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades RespiratoriasMadrid, Spain
| |
Collapse
|
13
|
Chen S, Zhang W, Wang JM, Duan HT, Kong JH, Wang YX, Dong M, Bi X, Song J. Differentiation of isolated human umbilical cord mesenchymal stem cells into neural stem cells. Int J Ophthalmol 2016; 9:41-7. [PMID: 26949608 DOI: 10.18240/ijo.2016.01.07] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/20/2015] [Indexed: 12/13/2022] Open
Abstract
AIM To investigate whether umbilical cord human mesenchymal stem cell (UC-MSC) was able to differentiate into neural stem cell and neuron in vitro. METHODS The umbilical cords were obtained from pregnant women with their written consent and the approval of the Clinic Ethnics Committee. UC-MSC were isolated by adherent culture in the medium contains 20% fetal bovine serum (FBS), then they were maintained in the medium contain 10% FBS and induced to neural cells in neural differentiation medium. We investigated whether UC-MSC was able to differentiate into neural stem cell and neuron in vitro by using flow cytometry, reverse transcriptase-polymerase chain reaction (RT-PCR) and immunofluorescence (IF) analyzes. RESULTS A substantial number of UC-MSC was harvested using the tissue explants adherent method at about 2wk. Flow cytometric study revealed that these cells expressed common markers of MSCs, such as CD105 (SH2), CD73 (SH3) and CD90. After induction of differentiation of neural stem cells, the cells began to form clusters; RT-PCR and IF showed that the neuron specific enolase (NSE) and neurogenic differentiation 1-positive cells reached 87.3%±14.7% and 72.6%±11.8%, respectively. Cells showed neuronal cell differentiation after induced, including neuron-like protrusions, plump cell body, obviously and stronger refraction. RT-PCR and IF analysis showed that microtubule-associated protein 2 (MAP2) and nuclear factor-M-positive cells reached 43.1%±10.3% and 69.4%±19.5%, respectively. CONCLUSION Human umbilical cord derived MSCs can be cultured and proliferated in vitro and differentiate into neural stem cells, which may be a valuable source for cell therapy of neurodegenerative eye diseases.
Collapse
Affiliation(s)
- Song Chen
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
| | - Wei Zhang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
| | - Ji-Ming Wang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
| | - Hong-Tao Duan
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
| | - Jia-Hui Kong
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
| | - Yue-Xin Wang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
| | - Meng Dong
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
| | - Xue Bi
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
| | - Jian Song
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
| |
Collapse
|
14
|
Wang Y, Wang D, Guo D. MiR-124 Promote Neurogenic Transdifferentiation of Adipose Derived Mesenchymal Stromal Cells Partly through RhoA/ROCK1, but Not ROCK2 Signaling Pathway. PLoS One 2016; 11:e0146646. [PMID: 26745800 PMCID: PMC4706435 DOI: 10.1371/journal.pone.0146646] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/21/2015] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Some recent studies suggest that multiple miRNAs might regulate neurogenic transdifferentiation of mesenchymal stromal cells (MSCs). In the present study, we hypothesized that the miR-124 can repress the expression of RhoA upon the neurogenesis of adipose derived MSCs (ADMSCs). METHODS MiRNA expression dynamics during neurogenic transdifferentiation of ADMSCs were measured. The expression of neuron-specific enolase (NSE), Tuj-1 (Neuron-specific class III beta-tubulin) and glial fibrillary acidic protein (GFAP), as well as electrophysiological properties, were detected after neurogenic transdifferentiation. The targeting of miR-124 over RhoA was verified by dual luciferase assay, qRT-PCR and western blot. The functions of miR-124 and the RhoA/ROCK signaling pathway were studied using gain and loss of function experiments in vitro. RESULTS MiR-124 is significantly upregulated during neurogenic transdifferentiation of ADMSCs. Knockdown of endogenous miR-124 hampered neurogenic transdifferentiation and the acquired electrophysiological properties. MiR-124 could directly target RHOA mRNA and repress its expression, through which it increased the proportion of transdifferentiated (transdiff.) cells with positive NSE, Tuj-1 and GFAP. RhoA/ROCK1, but not ROCK2 is a downstream signaling pathway of miR-124 in the process of transdifferentiation. CONCLUSION MiR-124 is an important miRNA modulating neurogenic transdifferentiation of ADMSCs at least partly via the miR-124/RhoA/ROCK1 signaling pathway. These findings provided some fundamental information for future use of ADMSCs as an agent for regenerative medicine and cell therapy for neurological diseases.
Collapse
Affiliation(s)
- Ye Wang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Desheng Wang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Dawen Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- * E-mail:
| |
Collapse
|
15
|
Mechanical biocompatibility of highly deformable biomedical materials. J Mech Behav Biomed Mater 2015; 48:100-124. [DOI: 10.1016/j.jmbbm.2015.03.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 03/22/2015] [Accepted: 03/24/2015] [Indexed: 12/20/2022]
|
16
|
Role of RhoA/Rho kinase signaling pathway in microgroove induced stem cell myogenic differentiation. Biointerphases 2015; 10:021003. [DOI: 10.1116/1.4916624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Dan P, Velot É, Decot V, Menu P. The role of mechanical stimuli in the vascular differentiation of mesenchymal stem cells. J Cell Sci 2015; 128:2415-22. [DOI: 10.1242/jcs.167783] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are among the most promising and suitable stem cell types for vascular tissue engineering. Substantial effort has been made to differentiate MSCs towards vascular cell phenotypes, including endothelial cells and smooth muscle cells (SMCs). The microenvironment of vascular cells not only contains biochemical factors that influence differentiation, but also exerts hemodynamic forces, such as shear stress and cyclic strain. Recent evidence has shown that these forces can influence the differentiation of MSCs into endothelial cells or SMCs. In this Commentary, we present the main findings in the area with the aim of summarizing the mechanisms by which shear stress and cyclic strain induce MSC differentiation. We will also discuss the interactions between these mechanical cues and other components of the microenvironment, and highlight how these insights could be used to maintain differentiation.
Collapse
Affiliation(s)
- Pan Dan
- UMR 7365 CNRS Université de Lorraine, Ingenierie Moleculaire et Physiopathologie Articulaire, Department of Cell and Tissue Engineering, Vectorization, Imaging, Biopôle de l'Université de Lorraine, Avenue de la forêt de Haye, C.S. 50184, Vandœuvre-lès-Nancy Cedex F-54505, France
- Department of Thoracic and Cardiovascular surgery, Zhongnan hospital of Wuhan University, Wuhan, 430071, China
| | - Émilie Velot
- UMR 7365 CNRS Université de Lorraine, Ingenierie Moleculaire et Physiopathologie Articulaire, Department of Cell and Tissue Engineering, Vectorization, Imaging, Biopôle de l'Université de Lorraine, Avenue de la forêt de Haye, C.S. 50184, Vandœuvre-lès-Nancy Cedex F-54505, France
| | - Véronique Decot
- UMR 7365 CNRS Université de Lorraine, Ingenierie Moleculaire et Physiopathologie Articulaire, Department of Cell and Tissue Engineering, Vectorization, Imaging, Biopôle de l'Université de Lorraine, Avenue de la forêt de Haye, C.S. 50184, Vandœuvre-lès-Nancy Cedex F-54505, France
- CHU de Nancy, Unité de Thérapie Cellulaire et Tissus, allée du Morvan, Vandœuvre-lès-Nancy F-54500, France
| | - Patrick Menu
- UMR 7365 CNRS Université de Lorraine, Ingenierie Moleculaire et Physiopathologie Articulaire, Department of Cell and Tissue Engineering, Vectorization, Imaging, Biopôle de l'Université de Lorraine, Avenue de la forêt de Haye, C.S. 50184, Vandœuvre-lès-Nancy Cedex F-54505, France
| |
Collapse
|
18
|
Bonafè F, Govoni M, Giordano E, Caldarera CM, Guarnieri C, Muscari C. Hyaluronan and cardiac regeneration. J Biomed Sci 2014; 21:100. [PMID: 25358954 PMCID: PMC4226915 DOI: 10.1186/s12929-014-0100-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/16/2014] [Indexed: 11/18/2022] Open
Abstract
Hyaluronan (HA) is abundantly expressed in several human tissues and a variety of roles for HA has been highlighted. Particularly relevant for tissue repair, HA is actively produced during tissue injury, as widely evidenced in wound healing investigations. In the heart HA is involved in physiological functions, such as cardiac development during embryogenesis, and in pathological conditions including atherosclerosis and myocardial infarction. Moreover, owing to its relevant biological properties, HA has been widely used as a biomaterial for heart regeneration after a myocardial infarction. Indeed, HA and its derivatives are biodegradable and biocompatible, promote faster healing of injured tissues, and support cells in relevant processes including survival, proliferation, and differentiation. Injectable HA-based therapies for cardiovascular disease are gaining growing attention because of the benefits obtained in preclinical models of myocardial infarction. HA-based hydrogels, especially as a vehicle for stem cells, have been demonstrated to improve the process of cardiac repair by stimulating angiogenesis, reducing inflammation, and supporting local and grafted cells in their reparative functions. Solid-state HA-based scaffolds have been also investigated to produce constructs hosting mesenchymal stem cells or endothelial progenitor cells to be transplanted onto the infarcted surface of the heart. Finally, applying an ex-vivo mechanical stretching, stem cells grown in HA-based 3D scaffolds can further increase extracellular matrix production and proneness to differentiate into muscle phenotypes, thus suggesting a potential strategy to create a suitable engineered myocardial tissue for cardiac regeneration.
Collapse
Affiliation(s)
- Francesca Bonafè
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, Bologna, 40126, Italy. .,National Institute for Cardiovascular Research (INRC), Bologna, Italy.
| | - Marco Govoni
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), University of Bologna, Ozzano Emilia, Italy.
| | - Emanuele Giordano
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), University of Bologna, Ozzano Emilia, Italy. .,Laboratory of Cellular and Molecular Engineering "Silvio Cavalcanti", DEI, University of Bologna, Cesena, Italy. .,National Institute for Cardiovascular Research (INRC), Bologna, Italy.
| | - Claudio Marcello Caldarera
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, Bologna, 40126, Italy. .,National Institute for Cardiovascular Research (INRC), Bologna, Italy.
| | - Carlo Guarnieri
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, Bologna, 40126, Italy. .,BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), University of Bologna, Ozzano Emilia, Italy. .,National Institute for Cardiovascular Research (INRC), Bologna, Italy.
| | - Claudio Muscari
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, Bologna, 40126, Italy. .,BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), University of Bologna, Ozzano Emilia, Italy. .,National Institute for Cardiovascular Research (INRC), Bologna, Italy.
| |
Collapse
|
19
|
Tijore A, Hariharan S, Yu H, Lam CRI, Wen F, Tay CY, Ahmed S, Tan LP. Investigating the spatial distribution of integrin β₁ in patterned human mesenchymal stem cells using super-resolution imaging. ACS APPLIED MATERIALS & INTERFACES 2014; 6:15686-15696. [PMID: 25153694 DOI: 10.1021/am504407n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Lineage commitment of human mesenchymal stem cells (hMSCs) could be directed through micro/nanopatterning of the extracellular matrix (ECM) between cells and substrate. Integrin receptors, integrator of the ECM and cell cytoskeleton, function as molecular bridges linking cells to different biophysical cues translated from patterned ECM. Here we report the distinct recruitment of active integrin β1 (ITG-β1) in hMSCs when they were committed toward the cardiomyogenic lineage on a micropatterned surface. In addition, a systematic study of the distribution of ITG-β1 was performed on focal adhesions (FAs) using a direct stochastic optical reconstruction microscopy (dSTORM) technique, a super-resolution imaging technique to establish the relationship between types of integrin expression and its distribution pattern that are associated with cardiomyogenic differentiation of hMSCs. We ascertained that elongated FAs of ITG-β1 expressed in patterned hMSCs were more prominent than FAs expressed in unpatterned hMSCs. However, there was no significant difference observed between the widths of FAs from both experimental groups. It was found in patterned hMSCs that the direction of FA elongation coincides with cell orientation. This phenomenon was however not observed in unpatterned hMSCs. These results showed that the biophysical induction methods like FAs patterning could selectively induce hMSCs lineage commitment via integrin-material interaction.
Collapse
Affiliation(s)
- Ajay Tijore
- Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Design and construction of an equibiaxial cell stretching system that is improved for biochemical analysis. PLoS One 2014; 9:e90665. [PMID: 24626190 PMCID: PMC3953117 DOI: 10.1371/journal.pone.0090665] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 02/04/2014] [Indexed: 11/19/2022] Open
Abstract
We describe the design and validation of an equibiaxial stretching device in which cells are confined to regions of homogeneous strain. Using this device, we seek to overcome a significant limitation of existing equibiaxial stretching devices, in which strains are not homogeneous over the entire region of cell culture. We cast PDMS in a mold to produce a membrane with a cylindrical wall incorporated in the center, which was used to confine cell monolayers to the central membrane region subjected to homogeneous equibiaxial strain. We demonstrated that the presence of the wall to hold the culture medium did not affect strain homogeneity over the majority of the culture surface and also showed that cells adhered well onto the PDMS membranes. We used our device in cyclic strain experiments and demonstrated strain-dependent changes in extracellular signal-regulated kinase (ERK) and tyrosine phosphorylation upon cell stretching. Furthermore, we examined cell responses to very small magnitudes of strain ranging from 1% to 6% and were able to observe a graduated increase in ERK phosphorylation in response to these strains. Collectively, we were able to study cellular biochemical response with a high degree of accuracy and sensitivity to fine changes in substrate strain. Because we have designed our device along the lines of existing equibiaxial stretching technologies, we believe that our innovations can be incorporated into existing systems. This device would provide a useful addition to the set of tools applied for in vitro studies of cell mechanobiology.
Collapse
|
21
|
Shah N, Morsi Y, Manasseh R. From mechanical stimulation to biological pathways in the regulation of stem cell fate. Cell Biochem Funct 2014; 32:309-25. [PMID: 24574137 DOI: 10.1002/cbf.3027] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/28/2013] [Accepted: 01/07/2014] [Indexed: 12/15/2022]
Abstract
Mechanical stimuli are important in directing the fate of stem cells; the effects of mechanical stimuli reported in recent research are reviewed here. Stem cells normally undergo two fundamental processes: proliferation, in which their numbers multiply, and differentiation, in which they transform into the specialized cells needed by the adult organism. Mechanical stimuli are well known to affect both processes of proliferation and differentiation, although the complete pathways relating specific mechanical stimuli to stem cell fate remain to be elucidated. We identified two broad classes of research findings and organized them according to the type of mechanical stress (compressive, tensile or shear) of the stimulus. Firstly, mechanical stress of any type activates stretch-activated channels (SACs) on the cell membrane. Activation of SACs leads to cytoskeletal remodelling and to the expression of genes that regulate the basic growth, survival or apoptosis of the cells and thus regulates proliferation. Secondly, mechanical stress on cells that are physically attached to an extracellular matrix (ECM) initiates remodelling of cell membrane structures called integrins. This second process is highly dependent on the type of mechanical stress applied and result into various biological responses. A further process, the Wnt pathway, is also implicated: crosstalk between the integrin and Wnt pathways regulates the switch from proliferation to differentiation and finally regulates the type of differentiation. Therefore, the stem cell differentiation process involves different signalling molecules and their pathways and most likely depends upon the applied mechanical stimulation.
Collapse
Affiliation(s)
- Nirali Shah
- Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, VIC, Melbourne, Australia
| | | | | |
Collapse
|
22
|
Binan L, Ajji A, De Crescenzo G, Jolicoeur M. Approaches for Neural Tissue Regeneration. Stem Cell Rev Rep 2013; 10:44-59. [DOI: 10.1007/s12015-013-9474-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Liu C, Baek S, Kim J, Vasko E, Pyne R, Chan C. Effect of Static Pre-stretch Induced Surface Anisotropy on Orientation of Mesenchymal Stem Cells. Cell Mol Bioeng 2013; 7:106-121. [PMID: 24678348 DOI: 10.1007/s12195-013-0300-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mechanical cues in the cellular environment play important roles in guiding various cell behaviors, such as cell alignment, migration, and differentiation. Previous studies investigated mechanical stretch guided cell alignment pre-dominantly with cyclic stretching whereby an external force is applied to stretch the substrate dynamically (i.e., cyclically) while the cells are attached onto the substrate. In contrast, we created a static pre-stretched anisotropic surface in which the cells were seeded subsequent to stretching the substrate. We hypothesized that the cell senses the physical environment through a more active mechanism, namely, even without external forces the cell can actively apply traction and sense an increased stiffness in the stretched direction and align in that direction. To test our hypothesis, we quantified the extent of pre-stretch induced anisotropy by employing the theory of small deformation superimposed on large and predicted the effective stiffness in the stretch direction as well as its perpendicular direction. We showed mesenchymal stem cells (MSC) aligned in the pre-stretched direction, and the cell alignment and morphology were dependent on the pre-stretch magnitude. In addition, the pre-stretched surface demonstrated an ability to promote early myoblast differentiation of the MSC. This study is the first report on MSC alignment on a statically pre-stretched surface. The cell orientation induced by the pre-stretch induced anisotropy could provide insight into tissue engineering applications involving cells that aligned in vivo in the absence of dynamic mechanical stimuli.
Collapse
Affiliation(s)
- C Liu
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - S Baek
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - J Kim
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - E Vasko
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - R Pyne
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - C Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
24
|
Elongated cell morphology and uniaxial mechanical stretch contribute to physical attributes of niche environment for MSC tenogenic differentiation. Cell Biol Int 2013; 37:755-60. [DOI: 10.1002/cbin.10094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/27/2013] [Indexed: 11/07/2022]
|