1
|
Luo Y, Yu P, Liu J. The efficiency of stem cell differentiation into functional beta cells for treating insulin-requiring diabetes: Recent advances and current challenges. Endocrine 2024; 86:1-14. [PMID: 38730069 DOI: 10.1007/s12020-024-03855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
In recent years, the potential of stem cells (SCs) to differentiate into various types of cells, including β-cells, has led to a significant boost in development. The efficiency of this differentiation process and the functionality of the cells post-transplantation are crucial factors for the success of stem cell therapy in diabetes. Herein, this article reviews the current advances and challenges faced by stem cell differentiation into functional β-cells for diabetes treatment. In vitro, researchers have sought to enhance the differentiation efficiency of functional β-cells by mimicking the normal pancreatic development process, using gene manipulation, pharmacological and culture conditions stimulation, three-dimensional (3D) and organoid culture, or sorting for functional β-cells based on mature islet cell markers. Furthermore, in vivo studies have also looked at suitable transplantation sites, the enhancement of the transplantation microenvironment, immune modulation, and vascular function reconstruction to improve the survival rate of functional β-cells, thereby enhancing the treatment of diabetes. Despite these advancements, developing stem cells to produce functional β-cells for efficacious diabetes treatment is a continuous research endeavor requiring significant multidisciplinary collaboration, for the stem-cell-derived beta cells to evolve into an effective cellular therapy.
Collapse
Affiliation(s)
- Yunfei Luo
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jianping Liu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Neumann M, Arnould T, Su BL. Encapsulation of stem-cell derived β-cells: A promising approach for the treatment for type 1 diabetes mellitus. J Colloid Interface Sci 2023; 636:90-102. [PMID: 36623370 DOI: 10.1016/j.jcis.2022.12.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/26/2022]
Abstract
Type 1 diabetes mellitus is an auto-immune disease causing the T-cell mediated destruction of insulin-producing β-cells, resulting in chronic hyperglycemia. Current treatments such as insulin replacement therapy or the transplantation of pancreas or pancreatic islets present major disadvantages such as the constant need of drugs, as well as a shortage of donor organs. In this review, we discuss a sustainable solution to overcome these limitations combining the use of β-cells, derived from stem cells, and their encapsulation within a protective matrix. This article provides an exhaustive overview of currently investigated stem cell sources including embryonic, mesenchymal as well as induced pluripotent stem cells in combination with various up to date encapsulation methods allowing the formation of immuno-protective devices. In order to identify current limitations of this interdisciplinary therapeutic approach and to find sustainable solutions, it is essential to consider key aspects from all involved domains. This includes biological parameters such as the stem cell origin but also the different aspects of the encapsulation process, the used materials and their physico-chemical properties such as elasticity, porosity and permeability cut-off as well as the best implantation sites allowing efficient and self-autonomous control of glycemia by the transplanted encapsulated cells.
Collapse
Affiliation(s)
- Myriam Neumann
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium; Laboratory of Biochemistry and Cellular Biology (URBC), University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium; Research Institute for Life Sciences (NARILIS), University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cellular Biology (URBC), University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium; Research Institute for Life Sciences (NARILIS), University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium.
| | - Bao-Lian Su
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium.
| |
Collapse
|
3
|
Ebrahim N, Shakirova K, Dashinimaev E. PDX1 is the cornerstone of pancreatic β-cell functions and identity. Front Mol Biosci 2022; 9:1091757. [PMID: 36589234 PMCID: PMC9798421 DOI: 10.3389/fmolb.2022.1091757] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetes has been a worldwide healthcare problem for many years. Current methods of treating diabetes are still largely directed at symptoms, aiming to control the manifestations of the pathology. This creates an overall need to find alternative measures that can impact on the causes of the disease, reverse diabetes, or make it more manageable. Understanding the role of key players in the pathogenesis of diabetes and the related β-cell functions is of great importance in combating diabetes. PDX1 is a master regulator in pancreas organogenesis, the maturation and identity preservation of β-cells, and of their role in normal insulin function. Mutations in the PDX1 gene are correlated with many pancreatic dysfunctions, including pancreatic agenesis (homozygous mutation) and MODY4 (heterozygous mutation), while in other types of diabetes, PDX1 expression is reduced. Therefore, alternative approaches to treat diabetes largely depend on knowledge of PDX1 regulation, its interaction with other transcription factors, and its role in obtaining β-cells through differentiation and transdifferentiation protocols. In this article, we review the basic functions of PDX1 and its regulation by genetic and epigenetic factors. Lastly, we summarize different variations of the differentiation protocols used to obtain β-cells from alternative cell sources, using PDX1 alone or in combination with various transcription factors and modified culture conditions. This review shows the unique position of PDX1 as a potential target in the genetic and cellular treatment of diabetes.
Collapse
Affiliation(s)
- Nour Ebrahim
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Ksenia Shakirova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Erdem Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia,*Correspondence: Erdem Dashinimaev,
| |
Collapse
|
4
|
Lopez-Mendez TB, Santos-Vizcaino E, Pedraz JL, Orive G, Hernandez RM. Cell microencapsulation technologies for sustained drug delivery: Latest advances in efficacy and biosafety. J Control Release 2021; 335:619-636. [PMID: 34116135 DOI: 10.1016/j.jconrel.2021.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
The development of cell microencapsulation systems began several decades ago. However, today few systems have been tested in clinical trials. For this reason, in the last years, researchers have directed efforts towards trying to solve some of the key aspects that still limit efficacy and biosafety, the two major criteria that must be satisfied to reach the clinical practice. Regarding the efficacy, which is closely related to biocompatibility, substantial improvements have been made, such as the purification or chemical modification of the alginates that normally form the microspheres. Each of the components that make up the microcapsules has been carefully selected to avoid toxicities that can damage the encapsulated cells or generate an immune response leading to pericapsular fibrosis. As for the biosafety, researchers have developed biological circuits capable of actively responding to the needs of the patients to precisely and accurately release the demanded drug dose. Furthermore, the structure of the devices has been subject of study to adequately protect the encapsulated cells and prevent their spread in the body. The objective of this review is to describe the latest advances made by scientist to improve the efficacy and biosafety of cell microencapsulation systems for sustained drug delivery, also highlighting those points that still need to be optimized.
Collapse
Affiliation(s)
- Tania B Lopez-Mendez
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), BTI Biotechnology Institute, Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| |
Collapse
|
5
|
Generation of iPSC-derived insulin-producing cells from patients with type 1 and type 2 diabetes compared with healthy control. Stem Cell Res 2020; 48:101958. [PMID: 32882526 DOI: 10.1016/j.scr.2020.101958] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 01/04/2023] Open
Abstract
For alternative sources of β cells, patient-specific induced pluripotent stem cells (iPSCs) could be promising, as cells derived from the "self" allow autologous transplantation. However, only a few studies have investigated insulin-producing cells (IPCs) using iPSCs of patients with type 1 diabetes (T1D). In this study, we generated IPCs using iPSCs derived from patients with T1D and type 2 diabetes (T2D) and compared them with IPCs from a non-diabetic (ND) individual. To facilitate differentiation of human iPSCs into IPCs, we induced PDX-1 gene expression using Ad-PDX-1/VP16. IPCs derived from T1D- and T2D-specific iPSCs expressed islet-specific markers such as Pdx-1, MafA, Beta2/NeuroD, and insulin, similar to IPCs derived from ND-specific iPSCs. In addition, IPCs derived from T1D- and T2D-specific iPSCs showed comparable glucose-stimulated insulin secretion as IPCs derived from ND-specific iPSCs. These results suggest the potential for autologous transplantation using patient-specific iPSCs in patients with T1D and T2D. This study was clinically significant because the majority of people with diabetes have T2D and insulin secretion declines over time in T2D. To the best of our knowledge, this is the first study to generate and simultaneously compare IPCs from ND-, T1D-, and T2D-specific iPSCs.
Collapse
|
6
|
Jafar H, Abuarqoub D, Ababneh N, Hasan M, Al-Sotari S, Aslam N, Kailani M, Ammoush M, Shraideh Z, Awidi A. hPL promotes osteogenic differentiation of stem cells in 3D scaffolds. PLoS One 2019; 14:e0215667. [PMID: 31063489 PMCID: PMC6504042 DOI: 10.1371/journal.pone.0215667] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/05/2019] [Indexed: 01/09/2023] Open
Abstract
Human platelet lysate (hPL) has been considered as the preferred supplement for the xeno-free stem cell culture for many years. However, the biological effect of hPL on the proliferation and differentiation of dental stem cells combined with the use of medical grade synthetic biomaterial is still under investigation. Thus, the optimal scaffold composition, cell type and specific growth conditions, yet need to be formulated. In this study, we aimed to investigate the regenerative potential of dental stem cells seeded on synthetic scaffolds and maintained in osteogenic media supplemented with either hPL or xeno-derived fetal bovine serum (FBS). Two types of dental stem cells were isolated from human impacted third molars and intact teeth; stem cells of apical papilla (SCAP) and periodontal ligament stem cells (PDLSCs). Cells were expanded in cell culture media supplemented with either hPL or FBS. Consequently, proliferative capacity, immunophenotypic characteristics and multilineage differentiation potential of the derived cells were evaluated on monolayer culture (2D) and on synthetic scaffolds fabricated from poly ’lactic-co-glycolic’ acid (PLGA) (3D). The functionality of the induced cells was examined by measuring the concentration of osteogenic markers ALP, OCN and OPN at different time points. Our results indicate that the isolated dental stem cells showed similar mesenchymal characteristics when cultured on hPL or FBS-containing culture media. Scanning electron microscopy (SEM) and H&E staining revealed the proper adherence of the derived cells on the 3D scaffold cultures. Moreover, the increase in the concentration of osteogenic markers proved that hPL was able to produce functional osteoblasts in both culture conditions (2D and 3D), in a way similar to FBS culture. These results reveal that hPL provides a suitable substitute to the animal-derived serum, for the growth and functionality of both SCAP and PDLSCs. Thus the use of hPL, in combination with PLGA scaffolds, can be useful in future clinical trials for dental regeneration.
Collapse
Affiliation(s)
- Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Duaa Abuarqoub
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Nidaa Ababneh
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Maram Hasan
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | | | - Nazneen Aslam
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Mohammed Kailani
- Department of Chemistry, School of Sciences, The University of Jordan, Amman, Jordan
| | - Mohammed Ammoush
- Dental Department, King Hussein Medical Center (KHMC), Royal Medical Service, Amman, Jordan
| | - Ziad Shraideh
- Department of Biological Sciences, School of Sciences, The University of Jordan, Amman, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- School of Medicine, The University of Jordan, Amman, Jordan
- * E-mail:
| |
Collapse
|
7
|
Gharravi AM, Jafar A, Ebrahimi M, Mahmodi A, Pourhashemi E, Haseli N, Talaie N, Hajiasgarli P. Current status of stem cell therapy, scaffolds for the treatment of diabetes mellitus. Diabetes Metab Syndr 2018; 12:1133-1139. [PMID: 30168429 DOI: 10.1016/j.dsx.2018.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/25/2018] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus (DM) remains the 7th leading cause of death in the world. Daily insulin injection is one component of a treatment plan for people with Diabetes mellitus type 1 (T1DM) that restores normal or near-normal blood sugar levels. However, Insulin treatment depends upon a variety of individual factors and leads to poor and drastic glycemic control. The need for an effective cell replacement strategy will be the aim of future clinical trials. Therefore, the aim of this systematic review is to outline the latest advances in scaffolding and stem cell therapy as a non-pharmacologic treatment for T1DM. It also emphasizes on some pancreas differentiation protocols and the clinical trials associated with stem cell therapy regarding T1DM in vitro and in vivo.
Collapse
Affiliation(s)
- Anneh Mohammad Gharravi
- Stem Cells and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Alireza Jafar
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mehrdad Ebrahimi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ahmad Mahmodi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Erfan Pourhashemi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Nasrin Haseli
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Niloofar Talaie
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Parinaz Hajiasgarli
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
8
|
Balaji S, Zhou Y, Opara EC, Soker S. Combinations of Activin A or Nicotinamide with the Pancreatic Transcription Factor PDX1 Support Differentiation of Human Amnion Epithelial Cells Toward a Pancreatic Lineage. Cell Reprogram 2017. [PMID: 28632450 DOI: 10.1089/cell.2016.0043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The differentiation of multipotent stem cells toward a pancreatic lineage provides us with an alternative cell-based therapeutic approach to type 1 diabetes and enables us to study pancreas development. The current study aims to study the effect of growth factors such as activin A or nicotinamide, alone and in combinations with the transcription factor, PDX1 (pancreatic and duodenal homeobox-1), on human amnion epithelial cells (hAECs) toward a pancreatic lineage. Ectopic expression of Pdx1 followed by treatment of hAECs with nicotinamide for 4 days resulted in strong induction of pancreatic endoderm and pancreatic progenitor genes, including NKX6.1 and NEUROD1. Pancreatic lineage cells expressing PDX1, SOX17, and RFX6 are derived from Pdx1-transduced hAECs treated with activin A or nicotinamide, but not cells treated with activin A or nicotinamide alone. Our study provides a novel culture protocol for generating pancreas-committed cells from hAECs and reveals an interplay between Pdx1 and activin A/nicotinamide signaling in early pancreatic fate determination.
Collapse
Affiliation(s)
- Shruti Balaji
- 1 Wake Forest Institute for Regenerative Medicine , Winston-Salem, North Carolina.,2 Department of Biological Sciences, Birla Institute of Technology and Science , Goa, India
| | - Yu Zhou
- 1 Wake Forest Institute for Regenerative Medicine , Winston-Salem, North Carolina
| | - Emmanuel C Opara
- 1 Wake Forest Institute for Regenerative Medicine , Winston-Salem, North Carolina.,3 Virginia Tech-Wake Forest University School of Biomedical Engineering & Sciences , Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Shay Soker
- 1 Wake Forest Institute for Regenerative Medicine , Winston-Salem, North Carolina.,3 Virginia Tech-Wake Forest University School of Biomedical Engineering & Sciences , Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
9
|
Abstract
Transplantation of pancreatic islets encapsulated within immuno-protective microcapsules is a strategy that has the potential to overcome graft rejection without the need for toxic immunosuppressive medication. However, despite promising preclinical studies, clinical trials using encapsulated islets have lacked long-term efficacy, and although generally considered clinically safe, have not been encouraging overall. One of the major factors limiting the long-term function of encapsulated islets is the host's immunological reaction to the transplanted graft which is often manifested as pericapsular fibrotic overgrowth (PFO). PFO forms a barrier on the capsule surface that prevents the ingress of oxygen and nutrients leading to islet cell starvation, hypoxia and death. The mechanism of PFO formation is still not elucidated fully and studies using a pig model have tried to understand the host immune response to empty alginate microcapsules. In this review, the varied strategies to overcome or reduce PFO are discussed, including alginate purification, altering microcapsule geometry, modifying alginate chemical composition, co-encapsulation with immunomodulatory cells, administration of pharmacological agents, and alternative transplantation sites. Nanoencapsulation technologies, such as conformal and layer-by-layer coating technologies, as well as nanofiber, thin-film nanoporous devices, and silicone based NanoGland devices are also addressed. Finally, this review outlines recent progress in imaging technologies to track encapsulated cells, as well as promising perspectives concerning the production of insulin-producing cells from stem cells for encapsulation.
Collapse
Affiliation(s)
- Vijayaganapathy Vaithilingam
- Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organization (CSIRO), North Ryde, New South Wales, Australia
| | - Sumeet Bal
- Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organization (CSIRO), North Ryde, New South Wales, Australia
| | - Bernard E Tuch
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Hamid AA, Joharry MK, Mun-Fun H, Hamzah SN, Rejali Z, Yazid MN, Thilakavathy K, Nordin N. Highly potent stem cells from full-term amniotic fluid: A realistic perspective. Reprod Biol 2017; 17:9-18. [PMID: 28262444 DOI: 10.1016/j.repbio.2017.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 01/31/2017] [Accepted: 02/10/2017] [Indexed: 12/19/2022]
Abstract
Amniotic fluid (AF) is now known to harbor highly potent stem cells, making it an excellent source for cell therapy. However, most of the stem cells isolated are from AF of mid-term pregnancies in which the collection procedure involves an invasive technique termed amniocentesis. This has limited the access in getting the fluid as the technique imposes certain level of risks to the mother as well as to the fetus. Alternatively, getting AF from full-term pregnancies or during deliveries would be a better resolution. Unfortunately, very few studies have isolated stem cells from AF at this stage of gestation, the fluid that is merely discarded. The question remains whether full-term AF harbors stem cells of similar potency as of the stem cells of mid-term AF. Here, we aim to review the prospect of having this type of stem cells by first looking at the origin and contents of AF particularly during different gestation period. We will then discuss the possibility that the AF, at full term, contains a population of highly potent stem cells. These stem cells are distinct from, and probably more potent than the AF mesenchymal stem cells (AF-MSCs) isolated from full-term AF. By comparing the studies on stem cells isolated from mid-term versus full-term AF from various species, we intend to address the prospect of having highly potent amniotic fluid stem cells from AF of full-term pregnancies in human and animals.
Collapse
Affiliation(s)
- Adila A Hamid
- Stem Cell Research Laboratory, Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia; Genetics & Regenerative Medicine Research Centre, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia; Department of Physiology, Faculty of Medicine, National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia.
| | - Muhammad Khair Joharry
- Stem Cell Research Laboratory, Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia; Genetics & Regenerative Medicine Research Centre, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia.
| | - Hoo Mun-Fun
- Stem Cell Research Laboratory, Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia; Genetics & Regenerative Medicine Research Centre, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia.
| | - Siti Nurusaadah Hamzah
- Stem Cell Research Laboratory, Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia; Genetics & Regenerative Medicine Research Centre, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia.
| | - Zulida Rejali
- Department of Obstetrics and Gynaecology, Universiti Putra Malaysia, Malaysia.
| | - Mohd Nazri Yazid
- Department of Obstetrics and Gynaecology, Universiti Putra Malaysia, Malaysia.
| | - Karuppiah Thilakavathy
- Stem Cell Research Laboratory, Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia; Genetics & Regenerative Medicine Research Centre, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia.
| | - Norshariza Nordin
- Stem Cell Research Laboratory, Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia; Genetics & Regenerative Medicine Research Centre, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia.
| |
Collapse
|
11
|
Mu X, Ren L, Yan H, Zhang X, Xu T, Wei A, Jiang J. Enhanced differentiation of human amniotic fluid-derived stem cells into insulin-producing cells in vitro. J Diabetes Investig 2017; 8:34-43. [PMID: 27240324 PMCID: PMC5217909 DOI: 10.1111/jdi.12544] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/19/2016] [Accepted: 05/02/2016] [Indexed: 01/14/2023] Open
Abstract
AIMS/INTRODUCTION To investigate the ability of human amniotic fluid stem cells (hAFSCs) to differentiate into insulin-producing cells. MATERIALS AND METHODS hAFSCs were induced to differentiate into pancreatic cells by a multistep protocol. The expressions of pancreas-related genes and proteins, including pancreatic and duodenal homeobox-1, insulin, and glucose transporter 2, were detected by polymerase chain reaction and immunofluorescence. Insulin secreted from differentiated cells was tested by enzyme-linked immunosorbent assay. RESULTS hAFSCs were successfully isolated from amniotic fluid that expressed the pluripotent markers of embryonic stem cells, such as Oct3/4, and mesenchymal stem cells, such as integrin β-1 and ecto-5'-nucleotidase. Here, we first obtained the hAFSCs that expressed pluripotent marker stage-specific embryonic antigen 1. Real-time polymerase chain reaction analysis showed that pancreatic and duodenal homeobox-1, paired box gene 4 and paired box gene 6 were expressed in the early phase of induction, and then stably expressed in the differentiated cells. The pancreas-related genes, such as insulin, glucokinase, glucose transporter 2 and Nkx6.1, were expressed in the differentiated cells. Immunofluorescence showed that these differentiated cells co-expressed insulin, C-peptide, and pancreatic and duodenal homeobox-1. Insulin was released in response to glucose stimulation in a manner similar to that of adult human islets. CONCLUSIONS The present study showed that hAFSCs, under selective culture conditions, could differentiate into islet-like insulin-producing cells, which might be used as a potential source for transplantation in patients with type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Xu‐Peng Mu
- Department of Central LaboratoryChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Li‐Qun Ren
- College of PharmacyJilin UniversityChangchunChina
| | - Hao‐Wei Yan
- College of PharmacyJilin UniversityChangchunChina
| | | | - Tian‐Min Xu
- The Second Affiliated Hospital of Jilin UniversityChangchunChina
| | - An‐Hui Wei
- College of PharmacyJilin UniversityChangchunChina
| | - Jin‐Lan Jiang
- Department of Central LaboratoryChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
12
|
Balaji S, Zhou Y, Ganguly A, Opara EC, Soker S. The combined effect of PDX1, epidermal growth factor and poly-L-ornithine on human amnion epithelial cells' differentiation. BMC DEVELOPMENTAL BIOLOGY 2016; 16:8. [PMID: 27068127 PMCID: PMC4828805 DOI: 10.1186/s12861-016-0108-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/01/2016] [Indexed: 12/22/2022]
Abstract
Background It has been suggested that the ectopic expression of PDX1, a dominant pancreatic transcription factor, plays a critical role in the developmental programming of the pancreas even from cells of unrelated tissues such as keratinocytes and amniotic fluid stem cells. In this study we have chosen to drive pancreatic development in human amnion epithelial cells by inducing endogenous PDX1 expression. Further, we have investigated the role of Epidermal Growth Factor (EGF) and Poly-L-Ornithine (PLO) on this differentiation process. Results Human amnion epithelial cells expressed high levels of endogenous PDX1 upon transduction with an adenoviral vector expressing murine Pdx1. Other markers of various stages of pancreatic differentiation such as NKX6.1, SOX17, RFX6, FOXA2, CFTR, NEUROD1, PAX4 and PPY were also expressed upon Pdx1 transduction. Although initial expression of pancreatic progenitor markers was higher in culture conditions lacking EGF, for a sustained and increased expression EGF was required. Culture on PLO further increased the positive impact of EGF. Conclusion Pancreatic marker expression subsequent to mPdx1 transduction suggests that this approach may facilitate the in vitro differentiation of hAECs into cells of the endocrine pancreas. This result may have important implications in diabetes therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12861-016-0108-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shruti Balaji
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, 27101, USA.,Birla Institute of Technology & Science, Pilani K K Birla Goa campus, Zuari Nagar, 403726, Goa, India
| | - Yu Zhou
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, 27101, USA
| | - Anasuya Ganguly
- Birla Institute of Technology & Science, Pilani K K Birla Goa campus, Zuari Nagar, 403726, Goa, India.
| | - Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, 27101, USA.,Virginia Tech-Wake Forest University School of Biomedical Engineering & Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, 27101, USA.,Virginia Tech-Wake Forest University School of Biomedical Engineering & Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| |
Collapse
|
13
|
Khorsandi L, Nejad-Dehbashi F, Ahangarpour A, Hashemitabar M. Three-dimensional differentiation of bone marrow-derived mesenchymal stem cells into insulin-producing cells. Tissue Cell 2014; 47:66-72. [PMID: 25554603 DOI: 10.1016/j.tice.2014.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/22/2014] [Accepted: 11/23/2014] [Indexed: 12/20/2022]
Abstract
Fibrin glue (FG) is used in a variety of clinical applications and in the laboratory for localized and sustained release of factors potentially important for tissue engineering. The aim of this study was to evaluate FG scaffold effect on differentiation of insulin-producing cells (IPCs) from bone marrow-derived mesenchymal stem cells (BM-MSCs). In this experimental study BM-MSCs were cultured and the cells characterized by analysis of cell surface markers using flow cytometry. BM-MSCs were seeded in FG scaffold (3D culture) and then treated with induction media. After induction, the presence of IPCs was demonstrated using gene expression profiles for pancreatic cell differentiation markers (PDX-1, GLUT-2 and insulin) and insulin detection in cytoplasm. Release of insulin by these cells was confirmed by radioimmunoassay. Expression of the islet-associated genes PDX-1, GLUT-2 and Insulin genes in 3D cultured cells was markedly higher than the 2D cultured cells exposure differentiation media. Compared to 2D culture of BM-MSCs-derived IPCs, the insulin release from 3D BM-MSCs-derived IPCs showed a nearly 3 fold (p<0.05) increase when exposed to a high glucose (25 mM) medium. Percentage of insulin positive cells in 3D experimental group showed an approximately 3.5-fold increase in compared to 2D experimental culture cells. The results of this study demonstrated that FG scaffold can enhance the differentiation of IPCs from rats BM-MSCs.
Collapse
Affiliation(s)
- Layasadat Khorsandi
- Cell & Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Fereshteh Nejad-Dehbashi
- Cell & Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Ahangarpour
- Diabetes Research Center, Health research institute and Department of Physiology, School of Medicine, Jundishapur University of Medical Sciences, Ahvaz 61335-189, Iran
| | - Mahmoud Hashemitabar
- Cell & Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
14
|
Villani V, Milanesi A, Sedrakyan S, Da Sacco S, Angelow S, Conconi MT, Di Liddo R, De Filippo R, Perin L. Amniotic fluid stem cells prevent β-cell injury. Cytotherapy 2013; 16:41-55. [PMID: 24210784 DOI: 10.1016/j.jcyt.2013.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 08/19/2013] [Accepted: 08/25/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND AIMS The contribution of amniotic fluid stem cells (AFSC) to tissue protection and regeneration in models of acute and chronic kidney injuries and lung failure has been shown in recent years. In the present study, we used a chemically induced mouse model of type 1 diabetes to determine whether AFSC could play a role in modulating β-cell injury and restoring β-cell function. METHODS Streptozotocin-induced diabetic mice were given intracardial injection of AFSC; morphological and physiological parameters and gene expression profile for the insulin pathway were evaluated after cell transplantation. RESULTS AFSC injection resulted in protection from β-cell damage and increased β-cell regeneration in a subset of mice as indicated by glucose and insulin levels, increased islet mass and preservation of islet structure. Moreover, β-cell preservation/regeneration correlated with activation of the insulin receptor/Pi3K/Akt signaling pathway and vascular endothelial growth factor-A expression involved in maintaining β-cell mass and function. CONCLUSIONS Our results suggest a therapeutic role for AFSC in preserving and promoting endogenous β-cell functionality and proliferation. The protective role of AFSC is evident when stem cell transplantation is performed before severe hyperglycemia occurs, which suggests the importance of early intervention. The present study demonstrates the possible benefits of the application of a non-genetically engineered stem cell population derived from amniotic fluid for the treatment of type 1 diabetes mellitus and gives new insight on the mechanism by which the beneficial effect is achieved.
Collapse
Affiliation(s)
- Valentina Villani
- Department of Urology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California
| | - Anna Milanesi
- Division of Endocrinology, VA Greater Los Angeles Healthcare System, University of California Los Angeles, Los Angeles, California
| | - Sargis Sedrakyan
- Department of Urology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California
| | - Stefano Da Sacco
- Department of Urology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California
| | - Susanne Angelow
- Department of Urology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California
| | | | - Rosa Di Liddo
- Department of Pharmaceutical Sciences, University of Padua, Padua, Italy
| | - Roger De Filippo
- Department of Urology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California
| | - Laura Perin
- Department of Urology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California.
| |
Collapse
|
15
|
Transplantation of islet-like cell clusters derived from human dental pulp stem cells restores normoglycemia in diabetic mice. Cytotherapy 2013; 15:1228-36. [PMID: 23845187 DOI: 10.1016/j.jcyt.2013.05.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 04/07/2013] [Accepted: 05/10/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND AIMS The success of islet transplantation for diabetes depends on the availability of an adequate number of allogeneic or autologous islets. Postnatal stem cells are now considered for the generation of physiologically competent, insulin-producing cells. Our group showed earlier that it is possible to generate functional islets from human dental pulp stem cells by using a serum-free cocktail in a three-step protocol. METHODS We compared the yield of generated islet-like cell clusters (ICCs) from stem cells from pulps of human exfoliated deciduous teeth (SHED) and dental pulp stem cells from permanent teeth (DPSCs). ICCs derived from SHED were packed in immuno-isolatory biocompatible macro-capsules and transplanted into streptozotocin (STZ)-induced diabetic mice. Non-diabetic and diabetic controls were transplanted with macro-capsules with or without islets. RESULTS SHED were superior to DPSCs. STZ diabetic mice alone and mice transplanted with empty macro-capsules exhibited hyperglycemia throughout the experiment, whereas mice transplanted with macro-capsules containing ICCs were restored to normoglycemia within 3-4 weeks, which persisted for >60 days. CONCLUSIONS Our results demonstrate for the first time that ICCs derived from SHED reverse STZ diabetes in mice without immunosuppression and offer an autologous and non-controversial source of human tissue that could be used for stem cell therapy in diabetes.
Collapse
|
16
|
Mirmalek-Sani SH, Orlando G, McQuilling JP, Pareta R, Mack DL, Salvatori M, Farney AC, Stratta RJ, Atala A, Opara EC, Soker S. Porcine pancreas extracellular matrix as a platform for endocrine pancreas bioengineering. Biomaterials 2013; 34:5488-95. [PMID: 23583038 DOI: 10.1016/j.biomaterials.2013.03.054] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 03/15/2013] [Indexed: 01/11/2023]
Abstract
Emergent technologies of regenerative medicine have the potential to overcome the limitations of organ transplantation by supplying tissues and organs bioengineered in the laboratory. Pancreas bioengineering requires a scaffold that approximates the biochemical, spatial and vascular relationships of the native extracellular matrix (ECM). We describe the generation of a whole organ, three-dimensional pancreas scaffold using acellular porcine pancreas. Imaging studies confirm that our protocol effectively removes cellular material while preserving ECM proteins and the native vascular tree. The scaffold was seeded with human stem cells and porcine pancreatic islets, demonstrating that the decellularized pancreas can support cellular adhesion and maintenance of cell functions. These findings advance the field of regenerative medicine towards the development of a fully functional, bioengineered pancreas capable of establishing and sustaining euglycemia and may be used for transplantation to cure diabetes mellitus.
Collapse
|