1
|
Ray P, Chakraborty R, Banik O, Banoth E, Kumar P. Surface Engineering of a Bioartificial Membrane for Its Application in Bioengineering Devices. ACS OMEGA 2023; 8:3606-3629. [PMID: 36743049 PMCID: PMC9893455 DOI: 10.1021/acsomega.2c05983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Membrane technology is playing a crucial role in cutting-edge innovations in the biomedical field. One such innovation is the surface engineering of a membrane for enhanced longevity, efficient separation, and better throughput. Hence, surface engineering is widely used while developing membranes for its use in bioartificial organ development, separation processes, extracorporeal devices, etc. Chemical-based surface modifications are usually performed by functional group/biomolecule grafting, surface moiety modification, and altercation of hydrophilic and hydrophobic properties. Further, creation of micro/nanogrooves, pillars, channel networks, and other topologies is achieved to modify physio-mechanical processes. These surface modifications facilitate improved cellular attachment, directional migration, and communication among the neighboring cells and enhanced diffusional transport of nutrients, gases, and waste across the membrane. These modifications, apart from improving functional efficiency, also help in overcoming fouling issues, biofilm formation, and infection incidences. Multiple strategies are adopted, like lysozyme enzymatic action, topographical modifications, nanomaterial coating, and antibiotic/antibacterial agent doping in the membrane to counter the challenges of biofilm formation, fouling challenges, and microbial invasion. Therefore, in the current review, we have comprehensibly discussed different types of membranes, their fabrication and surface modifications, antifouling/antibacterial strategies, and their applications in bioengineering. Thus, this review would benefit bioengineers and membrane scientists who aim to improve membranes for applications in tissue engineering, bioseparation, extra corporeal membrane devices, wound healing, and others.
Collapse
Affiliation(s)
- Pragyan Ray
- BioDesign
and Medical Devices Laboratory, Department of Biotechnology and Medical
Engineering, National Institute of Technology,
Rourkela, Sector-1, Rourkela 769008, Odisha, India
| | - Ruchira Chakraborty
- BioDesign
and Medical Devices Laboratory, Department of Biotechnology and Medical
Engineering, National Institute of Technology,
Rourkela, Sector-1, Rourkela 769008, Odisha, India
| | - Oindrila Banik
- BioDesign
and Medical Devices Laboratory, Department of Biotechnology and Medical
Engineering, National Institute of Technology,
Rourkela, Sector-1, Rourkela 769008, Odisha, India
- Opto-Biomedical
Microsystem Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Sector-1, Rourkela 769008, Odisha, India
| | - Earu Banoth
- Opto-Biomedical
Microsystem Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Sector-1, Rourkela 769008, Odisha, India
| | - Prasoon Kumar
- BioDesign
and Medical Devices Laboratory, Department of Biotechnology and Medical
Engineering, National Institute of Technology,
Rourkela, Sector-1, Rourkela 769008, Odisha, India
| |
Collapse
|
2
|
Jain P, Rauer SB, Möller M, Singh S. Mimicking the Natural Basement Membrane for Advanced Tissue Engineering. Biomacromolecules 2022; 23:3081-3103. [PMID: 35839343 PMCID: PMC9364315 DOI: 10.1021/acs.biomac.2c00402] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Advancements in the field of tissue engineering have
led to the
elucidation of physical and chemical characteristics of physiological
basement membranes (BM) as specialized forms of the extracellular
matrix. Efforts to recapitulate the intricate structure and biological
composition of the BM have encountered various advancements due to
its impact on cell fate, function, and regulation. More attention
has been paid to synthesizing biocompatible and biofunctional fibrillar
scaffolds that closely mimic the natural BM. Specific modifications
in biomimetic BM have paved the way for the development of in vitro models like alveolar-capillary barrier, airway
models, skin, blood-brain barrier, kidney barrier, and metastatic
models, which can be used for personalized drug screening, understanding
physiological and pathological pathways, and tissue implants. In this
Review, we focus on the structure, composition, and functions of in vivo BM and the ongoing efforts to mimic it synthetically.
Light has been shed on the advantages and limitations of various forms
of biomimetic BM scaffolds including porous polymeric membranes, hydrogels,
and electrospun membranes This Review further elaborates and justifies
the significance of BM mimics in tissue engineering, in particular
in the development of in vitro organ model systems.
Collapse
Affiliation(s)
- Puja Jain
- DWI-Leibniz-Institute for Interactive Materials e.V, Aachen 52074, Germany
| | | | - Martin Möller
- DWI-Leibniz-Institute for Interactive Materials e.V, Aachen 52074, Germany
| | - Smriti Singh
- Max-Planck-Institute for Medical Research, Heidelberg 69028, Germany
| |
Collapse
|
3
|
Marzi J, Munnig Schmidt EC, Brauchle EM, Wissing TB, Bauer H, Serrero A, Söntjens SHM, Bosman AW, Cox MAJ, Smits AIPM, Schenke-Layland K. Marker-Independent Monitoring of in vitro and in vivo Degradation of Supramolecular Polymers Applied in Cardiovascular in situ Tissue Engineering. Front Cardiovasc Med 2022; 9:885873. [PMID: 35656396 PMCID: PMC9152121 DOI: 10.3389/fcvm.2022.885873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/27/2022] Open
Abstract
The equilibrium between scaffold degradation and neotissue formation, is highly essential for in situ tissue engineering. Herein, biodegradable grafts function as temporal roadmap to guide regeneration. The ability to monitor and understand the dynamics of degradation and tissue deposition in in situ cardiovascular graft materials is therefore of great value to accelerate the implementation of safe and sustainable tissue-engineered vascular grafts (TEVGs) as a substitute for conventional prosthetic grafts. In this study, we investigated the potential of Raman microspectroscopy and Raman imaging to monitor degradation kinetics of supramolecular polymers, which are employed as degradable scaffolds in in situ tissue engineering. Raman imaging was applied on in vitro degraded polymers, investigating two different polymer materials, subjected to oxidative and enzymatically-induced degradation. Furthermore, the method was transferred to analyze in vivo degradation of tissue-engineered carotid grafts after 6 and 12 months in a sheep model. Multivariate data analysis allowed to trace degradation and to compare the data from in vitro and in vivo degradation, indicating similar molecular observations in spectral signatures between implants and oxidative in vitro degradation. In vivo degradation appeared to be dominated by oxidative pathways. Furthermore, information on collagen deposition and composition could simultaneously be obtained from the same image scans. Our results demonstrate the sensitivity of Raman microspectroscopy to determine degradation stages and the assigned molecular changes non-destructively, encouraging future exploration of this techniques for time-resolved quality assessment of in situ tissue engineering processes.
Collapse
Affiliation(s)
- Julia Marzi
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies, ” Eberhard Karls University Tübingen, Tübingen, Germany
- *Correspondence: Julia Marzi
| | - Emma C. Munnig Schmidt
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Eva M. Brauchle
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies, ” Eberhard Karls University Tübingen, Tübingen, Germany
| | - Tamar B. Wissing
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of TechnologyEindhoven, Netherlands
| | | | | | | | | | | | - Anthal I. P. M. Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of TechnologyEindhoven, Netherlands
| | - Katja Schenke-Layland
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies, ” Eberhard Karls University Tübingen, Tübingen, Germany
- Cardiovascular Research Laboratories, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
4
|
Wu CY, Melaku AZ, Ilhami FB, Chiu CW, Cheng CC. Conductive Supramolecular Polymer Nanocomposites with Tunable Properties to Manipulate Cell Growth and Functions. Int J Mol Sci 2022; 23:ijms23084332. [PMID: 35457150 PMCID: PMC9032009 DOI: 10.3390/ijms23084332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Synthetic bioactive nanocomposites show great promise in biomedicine for use in tissue growth, wound healing and the potential for bioengineered skin substitutes. Hydrogen-bonded supramolecular polymers (3A-PCL) can be combined with graphite crystals to form graphite/3A-PCL composites with tunable physical properties. When used as a bioactive substrate for cell culture, graphite/3A-PCL composites have an extremely low cytotoxic activity on normal cells and a high structural stability in a medium with red blood cells. A series of in vitro studies demonstrated that the resulting composite substrates can efficiently interact with cell surfaces to promote the adhesion, migration, and proliferation of adherent cells, as well as rapid wound healing ability at the damaged cellular surface. Importantly, placing these substrates under an indirect current electric field at only 0.1 V leads to a marked acceleration in cell growth, a significant increase in total cell numbers, and a remarkable alteration in cell morphology. These results reveal a newly created system with great potential to provide an efficient route for the development of multifunctional bioactive substrates with unique electro-responsiveness to manipulate cell growth and functions.
Collapse
Affiliation(s)
- Cheng-You Wu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.-Y.W.); (A.Z.M.); (F.B.I.)
| | - Ashenafi Zeleke Melaku
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.-Y.W.); (A.Z.M.); (F.B.I.)
| | - Fasih Bintang Ilhami
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.-Y.W.); (A.Z.M.); (F.B.I.)
| | - Chih-Wei Chiu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan;
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.-Y.W.); (A.Z.M.); (F.B.I.)
- Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Correspondence:
| |
Collapse
|
5
|
Ngo TTT, Rossbach B, Sébastien I, Neubauer JC, Kurtz A, Hariharan K. Functional differentiation and scalable production of renal proximal tubular epithelial cells from human pluripotent stem cells in a dynamic culture system. Cell Prolif 2022; 55:e13190. [PMID: 35102634 PMCID: PMC8891564 DOI: 10.1111/cpr.13190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/21/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To provide a standardized protocol for large-scale production of proximal tubular epithelial cells (PTEC) generated from human pluripotent stem cells (hPSC). METHODS The hPSC were expanded and differentiated into PTEC on matrix-coated alginate beads in an automated levitating fluidic platform bioLevitator. Differentiation efficacy was evaluated by immunofluorescence staining and flow cytometry, ultrastructure visualized by electron microscopy. Active reabsorption by PTEC was investigated by glucose, albumin, organic anions and cations uptake assays. Finally, the response to cisplatin-treatment was assessed to check the potential use of PTEC to model drug-induced nephrotoxicity. RESULTS hPSC expansion and PTEC differentiation could be performed directly on matrix-coated alginate beads in suspension bioreactors. Renal precursors arose 4 days post hPSC differentiation and PTEC after 8 days with 80% efficiency, with a 10-fold expansion from hPSC in 24 days. PTEC on beads, exhibited microvilli and clear apico-basal localization of markers. Functionality of PTECs was confirmed by uptake of glucose, albumin, organic anions and cations and expression of KIM-1 after Cisplatin treatment. CONCLUSION We demonstrate the efficient expansion of hPSC, controlled differentiation to renal progenitors and further specification to polarized tubular epithelial cells. This is the first report employing biolevitation and matrix-coated beads in a completely defined medium for the scalable and potentially automatable production of functional human PTEC.
Collapse
Affiliation(s)
- Thao Thi Thanh Ngo
- BIH Center for Regenerative TherapiesCharité Universitätsmedizin BerlinBerlinGermany
| | - Bella Rossbach
- BIH Center for Regenerative TherapiesCharité Universitätsmedizin BerlinBerlinGermany
- Fraunhofer Institute for Biomedical Engineering (IBMT)BerlinGermany
| | - Isabelle Sébastien
- Project Centre for Stem Cell Process EngineeringFraunhofer Institute for Biomedical Engineering (IBMT)WürzburgGermany
| | - Julia C. Neubauer
- Project Centre for Stem Cell Process EngineeringFraunhofer Institute for Biomedical Engineering (IBMT)WürzburgGermany
| | - Andreas Kurtz
- BIH Center for Regenerative TherapiesCharité Universitätsmedizin BerlinBerlinGermany
- Fraunhofer Institute for Biomedical Engineering (IBMT)BerlinGermany
| | - Krithika Hariharan
- BIH Center for Regenerative TherapiesCharité Universitätsmedizin BerlinBerlinGermany
- Project Centre for Stem Cell Process EngineeringFraunhofer Institute for Biomedical Engineering (IBMT)WürzburgGermany
| |
Collapse
|
6
|
Cell spinpods are a simple inexpensive suspension culture device to deliver fluid shear stress to renal proximal tubular cells. Sci Rep 2021; 11:21296. [PMID: 34716334 PMCID: PMC8556299 DOI: 10.1038/s41598-021-00304-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Rotating forms of suspension culture allow cells to aggregate into spheroids, prevent the de-differentiating influence of 2D culture, and, perhaps most importantly of all, provide physiologically relevant, in vivo levels of shear stress. Rotating suspension culture technology has not been widely implemented, in large part because the vessels are prohibitively expensive, labor-intensive to use, and are difficult to scale for industrial applications. Our solution addresses each of these challenges in a new vessel called a cell spinpod. These small 3.5 mL capacity vessels are constructed from injection-molded thermoplastic polymer components. They contain self-sealing axial silicone rubber ports, and fluoropolymer, breathable membranes. Here we report the two-fluid modeling of the flow and stresses in cell spinpods. Cell spinpods were used to demonstrate the effect of fluid shear stress on renal cell gene expression and cellular functions, particularly membrane and xenobiotic transporters, mitochondrial function, and myeloma light chain, cisplatin and doxorubicin, toxicity. During exposure to myeloma immunoglobulin light chains, rotation increased release of clinically validated nephrotoxicity cytokine markers in a toxin-specific pattern. Addition of cisplatin or doxorubicin nephrotoxins reversed the enhanced glucose and albumin uptake induced by fluid shear stress in rotating cell spinpod cultures. Cell spinpods are a simple, inexpensive, easily automated culture device that enhances cellular functions for in vitro studies of nephrotoxicity.
Collapse
|
7
|
Vermue IJM, Begum R, Castilho M, Rookmaaker MB, Masereeuw R, Bouten CVC, Verhaar MC, Cheng C. Renal Biology Driven Macro- and Microscale Design Strategies for Creating an Artificial Proximal Tubule Using Fiber-Based Technologies. ACS Biomater Sci Eng 2021; 7:4679-4693. [PMID: 34490771 PMCID: PMC8512683 DOI: 10.1021/acsbiomaterials.1c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Chronic kidney disease
affects one in six people worldwide. Due
to the scarcity of donor kidneys and the complications associated
with hemodialysis (HD), a cell-based bioartificial kidney (BAK) device
is desired. One of the shortcomings of HD is the lack of active transport
of solutes that would normally be performed by membrane transporters
in kidney epithelial cells. Specifically, proximal tubule (PT) epithelial
cells play a major role in the active transport of metabolic waste
products. Therefore, a BAK containing an artificial PT to actively
transport solutes between the blood and the filtrate could provide
major therapeutic advances. Creating such an artificial PT requires
a biocompatible tubular structure which supports the adhesion and
function of PT-specific epithelial cells. Ideally, this scaffold should
structurally replicate the natural PT basement membrane which consists
mainly of collagen fibers. Fiber-based technologies such as electrospinning
are therefore especially promising for PT scaffold manufacturing.
This review discusses the use of electrospinning technologies to generate
an artificial PT scaffold for ex vivo/in
vivo cellularization. We offer a comparison of currently
available electrospinning technologies and outline the desired scaffold
properties required to serve as a PT scaffold. Discussed also are
the potential technologies that may converge in the future, enabling
the effective and biomimetic incorporation of synthetic PTs in to
BAK devices and beyond.
Collapse
Affiliation(s)
- IJsbrand M Vermue
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Runa Begum
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Miguel Castilho
- Department of Orthopaedics, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, 3508 GA Utrecht, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Regenerative Medicine Center Utrecht, 3508 GA Utrecht, The Netherlands.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands.,Experimental Cardiology, Department of Cardiology, Thorax Center, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
8
|
Abstract
The kidneys are vital organs performing several essential functions. Their primary function is the filtration of blood and the removal of metabolic waste products as well as fluid homeostasis. Renal filtration is the main pathway for drug removal, highlighting the importance of this organ to the growing field of nanomedicine. The kidneys (i) have a key role in the transport and clearance of nanoparticles (NPs), (ii) are exposed to potential NPs’ toxicity, and (iii) are the targets of diseases that nanomedicine can study, detect, and treat. In this review, we aim to summarize the latest research on kidney-nanoparticle interaction. We first give a brief overview of the kidney’s anatomy and renal filtration, describe how nanoparticle characteristics influence their renal clearance, and the approaches taken to image and treat the kidney, including drug delivery and tissue engineering. Finally, we discuss the future and some of the challenges faced by nanomedicine.
Collapse
|
9
|
Eftekhari A, Maleki Dizaj S, Ahmadian E, Przekora A, Hosseiniyan Khatibi SM, Ardalan M, Zununi Vahed S, Valiyeva M, Mehraliyeva S, Khalilov R, Hasanzadeh M. Application of Advanced Nanomaterials for Kidney Failure Treatment and Regeneration. MATERIALS 2021; 14:ma14112939. [PMID: 34072461 PMCID: PMC8198057 DOI: 10.3390/ma14112939] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/15/2021] [Accepted: 05/27/2021] [Indexed: 11/18/2022]
Abstract
The implementation of nanomedicine not only provides enhanced drug solubility and reduced off-target adverse effects, but also offers novel theranostic approaches in clinical practice. The increasing number of studies on the application of nanomaterials in kidney therapies has provided hope in a more efficient strategy for the treatment of renal diseases. The combination of biotechnology, material science and nanotechnology has rapidly gained momentum in the realm of therapeutic medicine. The establishment of the bedrock of this emerging field has been initiated and an exponential progress is observed which might significantly improve the quality of human life. In this context, several approaches based on nanomaterials have been applied in the treatment and regeneration of renal tissue. The presented review article in detail describes novel strategies for renal failure treatment with the use of various nanomaterials (including carbon nanotubes, nanofibrous membranes), mesenchymal stem cells-derived nanovesicles, and nanomaterial-based adsorbents and membranes that are used in wearable blood purification systems and synthetic kidneys.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh 7815155158, Iran;
- Russian Institute for Advanced Study, Moscow State Pedagogical University, 1/1, Malaya Pirogovskaya St., 119991 Moscow, Russia;
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5166614756, Iran;
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5166614756, Iran; (S.M.H.K.); (S.Z.V.)
- Correspondence: (E.A.); (A.P.); (M.A.); (M.H.); Tel.: +48-81-448-7026 (A.P.)
| | - Agata Przekora
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
- Correspondence: (E.A.); (A.P.); (M.A.); (M.H.); Tel.: +48-81-448-7026 (A.P.)
| | | | - Mohammadreza Ardalan
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5166614756, Iran; (S.M.H.K.); (S.Z.V.)
- Correspondence: (E.A.); (A.P.); (M.A.); (M.H.); Tel.: +48-81-448-7026 (A.P.)
| | - Sepideh Zununi Vahed
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5166614756, Iran; (S.M.H.K.); (S.Z.V.)
| | - Mahbuba Valiyeva
- Department of Pharmaceutical Technology and Management, Azerbaijan Medical University, AZ 1022 Baku, Azerbaijan; (M.V.); (S.M.)
| | - Sevil Mehraliyeva
- Department of Pharmaceutical Technology and Management, Azerbaijan Medical University, AZ 1022 Baku, Azerbaijan; (M.V.); (S.M.)
| | - Rovshan Khalilov
- Russian Institute for Advanced Study, Moscow State Pedagogical University, 1/1, Malaya Pirogovskaya St., 119991 Moscow, Russia;
- Department of Biophysics and Biochemistry, Baku State University, AZ 1148 Baku, Azerbaijan
- Institute of Radiation Problems, Azerbaijan National Academy of Sciences, AZ 1001 Baku, Azerbaijan
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 5166614756, Iran
- Correspondence: (E.A.); (A.P.); (M.A.); (M.H.); Tel.: +48-81-448-7026 (A.P.)
| |
Collapse
|
10
|
Role of Shear Stress on Renal Proximal Tubular Cells for Nephrotoxicity Assays. J Toxicol 2021; 2021:6643324. [PMID: 33976696 PMCID: PMC8084667 DOI: 10.1155/2021/6643324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/24/2021] [Indexed: 12/21/2022] Open
Abstract
Drug-induced nephrotoxicity causes huge morbidity and mortality at massive financial cost. The greatest burden of drug-induced acute kidney injury falls on the proximal tubular cells. To maintain their structure and function, renal proximal tubular cells need the shear stress from tubular fluid flow. Diverse techniques to reintroduce shear stress have been studied in a variety of proximal tubular like cell culture models. These studies often have limited replicates because of the huge cost of equipment and do not report all relevant parameters to allow reproduction and comparison of studies between labs. This review codifies the techniques used to reintroduce shear stress, the cell lines utilized, and the biological outcomes reported. Further, we propose a set of interventions to enhance future cell biology understanding of nephrotoxicity using cell culture models.
Collapse
|
11
|
van Gaal RC, Vrehen AF, van Sprang JF, Fransen PPKH, van Turnhout MC, Dankers PYW. Biomaterial screening of protein coatings and peptide additives: towards a simple synthetic mimic of a complex natural coating for a bio-artificial kidney. Biomater Sci 2021; 9:2209-2220. [PMID: 33506836 DOI: 10.1039/d0bm01930e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bio-artificial kidneys require conveniently synthesized membranes providing signals that regulate renal epithelial cell function. Therefore, we aimed to find synthetic analogues for natural extracellular matrix (ECM) protein coatings traditionally used for epithelial cell culturing. Two biomaterial libraries, based on natural ECM-coatings and on synthetic supramolecular small molecule additives, were developed. The base material consisted of a bisurea (BU) containing polymer, providing supramolecular BU-additives to be incorporated via specific hydrogen bonding interactions. This system allows for a modular approach and therefore easy fractional factorial based screening. A natural coating on the BU-polymer material with basement membrane proteins, laminin and collagen IV, combined with catechols was shown to induce renal epithelial monolayer formation. Modification of the BU-polymer material with synthetic BU-modified ECM peptide additives did not result in monolayer formation. Unexpectedly, simple BU-catechol additives induced monolayer formation and presented similar levels of epithelial markers and apical transporter function as on the laminin, collagen IV and catechol natural coating. Importantly, when this BU-polymer material was processed into fibrous e-spun membranes the natural coating and the BU-catechol additive were shown to perfectly function. This study clearly indicates that complex natural ECM-coatings can be replaced by simple synthetic additives, and displays the potency of material libraries based on design of experiments in combination with modular, supramolecular chemistry.
Collapse
Affiliation(s)
- Ronald C van Gaal
- Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| | | | | | | | | | | |
Collapse
|
12
|
Xu Q, Ying P, Ren J, Kong N, Wang Y, Li YG, Yao Y, Kaplan DL, Ling S. Biomimetic Design for Bio-Matrix Interfaces and Regenerative Organs. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:411-429. [PMID: 33138695 DOI: 10.1089/ten.teb.2020.0234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The urgent demand for transplanted organs has motivated the development of regenerative medicine to biomimetically reconstruct the structure and function of natural tissues or organs. The prerequisites for constructing multicellular organs include specific cell sources, suitable scaffolding material, and interconnective biofunctional interfaces. As some of the most complex systems in nature, human organs, tissues, and cellular units have unique "bio-matrix" physicochemical interfaces. Human tissues support a large number of cells with distinct biofunctional interfaces for compartmentalization related to metabolism, material exchange, and physical barriers. These naturally shaped biofunctional interfaces support critical metabolic functions that drive adaptive human behavior. In contrast, mutations and disorders during organogenesis can disrupt these interfaces as a consequence of disease and trauma. To replicate the appropriate structure and physiological function of tissues and organs, the biomaterials used in these approaches should have properties that mimic those of natural biofunctional interfaces. In this review, the focus is on the biomimetic design of functional interfaces and hierarchical structures for four regenerative organs, liver, kidney, lung, heart, and the immune system. Research on these organs provides understanding of cell-matrix interactions for hierarchically bioinspired material engineering, and guidance for the design of bioartificial organs. Finally, we provide perspectives on future challenges in biofunctional interface designs and discuss the obstacles that remain toward the generation of functional bioartificial organs.
Collapse
Affiliation(s)
- Quanfu Xu
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Ying
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Na Kong
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yang Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yi-Gang Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Yao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
13
|
Thompson CB, Korley LTJ. 100th Anniversary of Macromolecular Science Viewpoint: Engineering Supramolecular Materials for Responsive Applications-Design and Functionality. ACS Macro Lett 2020; 9:1198-1216. [PMID: 35638621 DOI: 10.1021/acsmacrolett.0c00418] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Supramolecular polymers allow access to dynamic materials, where noncovalent interactions can be used to offer both enhanced material toughness and stimuli-responsiveness. The versatility of self-assembly has enabled these supramolecular motifs to be incorporated into a wide array of glassy and elastomeric materials; moreover, the interaction of these noncovalent motifs with their environment has shown to be a convenient platform for controlling material properties. In this Viewpoint, supramolecular polymers are examined through their self-assembly chemistries, approaches that can be used to control their self-assembly (e.g., covalent cross-links, nanofillers, etc.), and how the strategic application of supramolecular polymers can be used as a platform for designing the next generation of smart materials. This Viewpoint provides an overview of the aspects that have garnered interest in supramolecular polymer chemistry, while also highlighting challenges faced and innovations developed by researchers in the field.
Collapse
Affiliation(s)
- Chase B. Thompson
- Department of Materials Science and Engineering, University of Delaware, 127 The Green, Newark, Delaware 19716, United States
| | - LaShanda T. J. Korley
- Department of Materials Science and Engineering, University of Delaware, 127 The Green, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
14
|
Ippel B, Van Haaften EE, Bouten CVC, Dankers PYW. Impact of Additives on Mechanical Properties of Supramolecular Electrospun Scaffolds. ACS APPLIED POLYMER MATERIALS 2020; 2:3742-3748. [PMID: 32954355 PMCID: PMC7497720 DOI: 10.1021/acsapm.0c00658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
The mechanical properties of scaffolds used for mechanically challenging applications such as cardiovascular implants are unequivocally important. Here, the effect of supramolecular additive functionalization on mechanical behavior of electrospun scaffolds was investigated for one bisurea-based model additive and two previously developed antifouling additives. The model additive has no effect on the mechanical properties of the bulk material, whereas the stiffness of electrospun scaffolds was slightly decreased compared to pristine PCL-BU following the addition of the three different additives. These results show the robustness of supramolecular additives used in biomedical applications, in which mechanical properties are important, such as vascular grafts and heart valve constructs.
Collapse
Affiliation(s)
- Bastiaan
D. Ippel
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Laboratory
for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Eline E. Van Haaften
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Laboratory
for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Carlijn V. C. Bouten
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Laboratory
for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Patricia Y. W. Dankers
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Laboratory
for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
15
|
van Gaal RC, van Sprang JF, Borneman Z, Dankers PYW. Development of Poor Cell Adhesive Immersion Precipitation Membranes Based on Supramolecular Bis-Urea Polymers. Macromol Biosci 2019; 20:e1900277. [PMID: 31885206 DOI: 10.1002/mabi.201900277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/19/2019] [Indexed: 11/07/2022]
Abstract
A variety of biomedical applications requires tailored membranes; fabrication through a mix-and-match approach is simple and desired. Polymers based on supramolecular bis-urea (BU) moieties are capable of modular integration through directed non-covalent stacking. Here, it is proposed that non-cell adhesive properties can be introduced in polycaprolactone-BU-based membranes by the addition of poly(ethylene glycol) (PEG)-BU during immersion precipitation membrane fabrication, while unmodified PEG is not retained in the membrane. PEG-BU addition results in denser membranes with a similar pore size compared to pristine membranes, while PEG addition induces defect formation. Infrared spectroscopy and surface hydrophobicity measurements indicate that PEG-BU is retained during membrane processing. Additionally, PEG-BU incorporation successfully leads to poor cell adhesive surfaces. No evidence is observed to indicate PEG retention. The results obtained indicate that the BU system enables intimate mixing of BU-modified polymers after processing. Collectively, the results provide the first steps toward BU-based immersion precipitated supramolecular membranes for biomedical applications.
Collapse
Affiliation(s)
- Ronald C van Gaal
- Department of Biomedical Engineering, Laboratory of Chemical Biology, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Johnick F van Sprang
- Department of Biomedical Engineering, Laboratory of Chemical Biology, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Zandrie Borneman
- Department of Chemical Engineering and Chemistry, Membrane Materials and Processes, Eindhoven University of Technology, P. O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Patricia Y W Dankers
- Department of Biomedical Engineering, Laboratory of Chemical Biology, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
16
|
Fernández-Colino A, Iop L, Ventura Ferreira MS, Mela P. Fibrosis in tissue engineering and regenerative medicine: treat or trigger? Adv Drug Deliv Rev 2019; 146:17-36. [PMID: 31295523 DOI: 10.1016/j.addr.2019.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/11/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
Fibrosis is a life-threatening pathological condition resulting from a dysfunctional tissue repair process. There is no efficient treatment and organ transplantation is in many cases the only therapeutic option. Here we review tissue engineering and regenerative medicine (TERM) approaches to address fibrosis in the cardiovascular system, the kidney, the lung and the liver. These strategies have great potential to achieve repair or replacement of diseased organs by cell- and material-based therapies. However, paradoxically, they might also trigger fibrosis. Cases of TERM interventions with adverse outcome are also included in this review. Furthermore, we emphasize the fact that, although organ engineering is still in its infancy, the advances in the field are leading to biomedically relevant in vitro models with tremendous potential for disease recapitulation and development of therapies. These human tissue models might have increased predictive power for human drug responses thereby reducing the need for animal testing.
Collapse
|
17
|
Caetano-Pinto P, Stahl SH. Perspective on the Application of Microphysiological Systems to Drug Transporter Studies. Drug Metab Dispos 2018; 46:1647-1657. [PMID: 30135246 DOI: 10.1124/dmd.118.082750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/20/2018] [Indexed: 02/13/2025] Open
Abstract
Transmembrane flux of a drug within a tissue or organ frequently involves a complex system of transporters from multiple families that have redundant and overlapping specificities. Current in vitro systems poorly represent physiology, with reduced expression and activity of drug transporter proteins; therefore, novel models that recapitulate the complexity and interplay among various transporters are needed. The development of microphysiological systems that bring simulated physiologic conditions to in vitro cell culture models has enormous potential to better reproduce the morphology and transport activity across several organ models, especially in tissues such as the liver, kidney, intestine, or the blood-brain barrier, in which drug transporters play a key role. The prospect of improving the in vitro function of organ models highly prolific in drug transporters holds the promise of implementing novel tools to study these mechanisms with far more representative biology than before. In this short review, we exemplify recent developments in the characterization of perfused microphysiological systems involving the activity of drug transporters. Furthermore, we analyze the challenges and opportunities for the implementation of such systems in the study of transporter-mediated drug disposition and the generation of clinically relevant physiology-based in silico models incorporating relevant drug transport activity.
Collapse
Affiliation(s)
- Pedro Caetano-Pinto
- Mechanistic Safety and ADME Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Simone H Stahl
- Mechanistic Safety and ADME Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
18
|
Genderen AM, Jansen J, Cheng C, Vermonden T, Masereeuw R. Renal Tubular- and Vascular Basement Membranes and their Mimicry in Engineering Vascularized Kidney Tubules. Adv Healthc Mater 2018; 7:e1800529. [PMID: 30091856 DOI: 10.1002/adhm.201800529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/18/2018] [Indexed: 01/09/2023]
Abstract
The high prevalence of chronic kidney disease leads to an increased need for renal replacement therapies. While there are simply not enough donor organs available for transplantation, there is a need to seek other therapeutic avenues as current dialysis modalities are insufficient. The field of regenerative medicine and whole organ engineering is emerging, and researchers are looking for innovative ways to create (part of) a functional new organ. To biofabricate a kidney or its functional units, it is necessary to understand and learn from physiology to be able to mimic the specific tissue properties. Herein is provided an overview of the knowledge on tubular and vascular basement membranes' biochemical components and biophysical properties, and the major differences between the two basement membranes are highlighted. Furthermore, an overview of current trends in membrane technology for developing renal replacement therapies and to stimulate kidney regeneration is provided.
Collapse
Affiliation(s)
- Anne Metje Genderen
- Division of PharmacologyUtrecht Institute for Pharmaceutical Sciences 3584 CG Utrecht The Netherlands
| | - Jitske Jansen
- Division of PharmacologyUtrecht Institute for Pharmaceutical Sciences 3584 CG Utrecht The Netherlands
| | - Caroline Cheng
- Regenerative Medicine Center UtrechtUniversity Medical Center Utrecht 3584 CT Utrecht The Netherlands
- Department of Nephrology and HypertensionUniversity Medical Center Utrecht 3508 GA Utrecht The Netherlands
- Department of Experimental CardiologyErasmus Medical Center 3015 GD Rotterdam The Netherlands
| | - Tina Vermonden
- Division of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences 3584 CG Utrecht The Netherlands
| | - Rosalinde Masereeuw
- Division of PharmacologyUtrecht Institute for Pharmaceutical Sciences 3584 CG Utrecht The Netherlands
| |
Collapse
|
19
|
Regimes of Flow over Complex Structures of Endothelial Glycocalyx: A Molecular Dynamics Simulation Study. Sci Rep 2018; 8:5732. [PMID: 29636511 PMCID: PMC5893603 DOI: 10.1038/s41598-018-24041-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/26/2018] [Indexed: 01/20/2023] Open
Abstract
Flow patterns on surfaces grafted with complex structures play a pivotal role in many engineering and biomedical applications. In this research, large-scale molecular dynamics (MD) simulations are conducted to study the flow over complex surface structures of an endothelial glycocalyx layer. A detailed structure of glycocalyx has been adopted and the flow/glycocalyx system comprises about 5,800,000 atoms. Four cases involving varying external forces and modified glycocalyx configurations are constructed to reveal intricate fluid behaviour. Flow profiles including temporal evolutions and spatial distributions of velocity are illustrated. Moreover, streamline length and vorticity distributions under the four scenarios are compared and discussed to elucidate the effects of external forces and glycocalyx configurations on flow patterns. Results show that sugar chain configurations affect streamline length distributions but their impact on vorticity distributions is statistically insignificant, whilst the influence of the external forces on both streamline length and vorticity distributions are trivial. Finally, a regime diagram for flow over complex surface structures is proposed to categorise flow patterns.
Collapse
|
20
|
Grounds MD. Obstacles and challenges for tissue engineering and regenerative medicine: Australian nuances. Clin Exp Pharmacol Physiol 2018; 45:390-400. [DOI: 10.1111/1440-1681.12899] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 01/31/2023]
Affiliation(s)
- Miranda D Grounds
- School of Human Sciences; the University of Western Australia; Perth WA Australia
| |
Collapse
|