1
|
Hashemi-Afzal F, Fallahi H, Bagheri F, Collins MN, Eslaminejad MB, Seitz H. Advancements in hydrogel design for articular cartilage regeneration: A comprehensive review. Bioact Mater 2025; 43:1-31. [PMID: 39318636 PMCID: PMC11418067 DOI: 10.1016/j.bioactmat.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
This review paper explores the cutting-edge advancements in hydrogel design for articular cartilage regeneration (CR). Articular cartilage (AC) defects are a common occurrence worldwide that can lead to joint breakdown at a later stage of the disease, necessitating immediate intervention to prevent progressive degeneration of cartilage. Decades of research into the biomedical applications of hydrogels have revealed their tremendous potential, particularly in soft tissue engineering, including CR. Hydrogels are highly tunable and can be designed to meet the key criteria needed for a template in CR. This paper aims to identify those criteria, including the hydrogel components, mechanical properties, biodegradability, structural design, and integration capability with the adjacent native tissue and delves into the benefits that CR can obtain through appropriate design. Stratified-structural hydrogels that emulate the native cartilage structure, as well as the impact of environmental stimuli on the regeneration outcome, have also been discussed. By examining recent advances and emerging techniques, this paper offers valuable insights into developing effective hydrogel-based therapies for AC repair.
Collapse
Affiliation(s)
- Fariba Hashemi-Afzal
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Hooman Fallahi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104 USA
| | - Fatemeh Bagheri
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Maurice N. Collins
- School of Engineering, Bernal Institute and Health Research Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 16635-148, Iran
| | - Hermann Seitz
- Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
2
|
Semitela A, Marques PAAP, Completo A. Strategies to engineer articular cartilage with biomimetic zonal features: a review. Biomater Sci 2024. [PMID: 39463257 DOI: 10.1039/d4bm00579a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Articular cartilage (AC) is a highly specialized tissue with restricted ability for self-regeneration, given its avascular and acellular nature. Although a considerable number of surgical treatments is available for the repair, reconstruction, and regeneration of AC defects, most of them do not prioritize the development of engineered cartilage with zonal stratification derived from biomimetic biochemical, biomechanical and topographic cues. In the absence of these zonal elements, engineered cartilage will exhibit increased susceptibility to failure and will neither be able to withstand the mechanical loading to which AC is subjected nor will it integrate well with the surrounding tissue. In this regard, new breakthroughs in the development of hierarchical stratified engineered cartilage are highly sought after. Initially, this review provides a comprehensive analysis of the composition and zonal organization of AC, aiming to enhance our understanding of the significance of the structure of AC for its function. Next, we direct our attention towards the existing in vitro and in vivo studies that introduce zonal elements in engineered cartilage to elicit appropriate AC regeneration by employing tissue engineering strategies. Finally, the advantages, challenges, and future perspectives of these approaches are presented.
Collapse
Affiliation(s)
- Angela Semitela
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Paula A A P Marques
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - António Completo
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Mason JH, Luo L, Reinwald Y, Taffetani M, Hallas-Potts A, Herrington CS, Srsen V, Lin CJ, Barroso IA, Zhang Z, Zhang Z, Ghag AK, Yang Y, Waters S, El Haj AJ, Bagnaninchi PO. Debiased ambient vibrations optical coherence elastography to profile cell, organoid and tissue mechanical properties. Commun Biol 2023; 6:543. [PMID: 37202417 DOI: 10.1038/s42003-023-04788-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/31/2023] [Indexed: 05/20/2023] Open
Abstract
The role of the mechanical environment in defining tissue function, development and growth has been shown to be fundamental. Assessment of the changes in stiffness of tissue matrices at multiple scales has relied mostly on invasive and often specialist equipment such as AFM or mechanical testing devices poorly suited to the cell culture workflow.In this paper, we have developed a unbiased passive optical coherence elastography method, exploiting ambient vibrations in the sample that enables real-time noninvasive quantitative profiling of cells and tissues. We demonstrate a robust method that decouples optical scattering and mechanical properties by actively compensating for scattering associated noise bias and reducing variance. The efficiency for the method to retrieve ground truth is validated in silico and in vitro, and exemplified for key applications such as time course mechanical profiling of bone and cartilage spheroids, tissue engineering cancer models, tissue repair models and single cell. Our method is readily implementable with any commercial optical coherence tomography system without any hardware modifications, and thus offers a breakthrough in on-line tissue mechanical assessment of spatial mechanical properties for organoids, soft tissues and tissue engineering.
Collapse
Affiliation(s)
- Jonathan H Mason
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Lu Luo
- Healthcare Technology Institute, University of Birmingham, Birmingham, UK
| | - Yvonne Reinwald
- Department of Engineering, Nottingham Trent University, Nottingham, UK
| | | | - Amelia Hallas-Potts
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - C Simon Herrington
- Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Vlastimil Srsen
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Chih-Jen Lin
- MRC Centre for Reproductive Health, The Univeristy of Edinburgh, Edinburgh, UK
| | - Inês A Barroso
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Zhihua Zhang
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Zhibing Zhang
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Anita K Ghag
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Ying Yang
- Institute of Science and Technology in Medicine, Keele University, Stoke-on-Trent, UK
| | - Sarah Waters
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Alicia J El Haj
- Healthcare Technology Institute, University of Birmingham, Birmingham, UK.
| | - Pierre O Bagnaninchi
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
4
|
Dehghan-Baniani D, Mehrjou B, Chu PK, Lee WYW, Wu H. Recent Advances in "Functional Engineering of Articular Cartilage Zones by Polymeric Biomaterials Mediated with Physical, Mechanical, and Biological/Chemical Cues". Adv Healthc Mater 2022; 12:e2202581. [PMID: 36571465 DOI: 10.1002/adhm.202202581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/19/2022] [Indexed: 12/27/2022]
Abstract
Articular cartilage (AC) plays an unquestionable role in joint movements but unfortunately the healing capacity is restricted due to its avascular and acellular nature. While cartilage tissue engineering has been lifesaving, it is very challenging to remodel the complex cartilage composition and architecture with gradient physio-mechanical properties vital to proper tissue functions. To address these issues, a better understanding of the intrinsic AC properties and how cells respond to stimuli from the external microenvironment must be better understood. This is essential in order to take one step closer to producing functional cartilaginous constructs for clinical use. Recently, biopolymers have aroused much attention due to their versatility, processability, and flexibility because the properties can be tailored to match the requirements of AC. This review highlights polymeric scaffolds developed in the past decade for reconstruction of zonal AC layers including the superficial zone, middle zone, and deep zone by means of exogenous stimuli such as physical, mechanical, and biological/chemical signals. The mimicked properties are reviewed in terms of the biochemical composition and organization, cell fate (morphology, orientation, and differentiation), as well as mechanical properties and finally, the challenges and potential ways to tackle them are discussed.
Collapse
Affiliation(s)
- Dorsa Dehghan-Baniani
- Department of Chemical and Biological Engineering Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.,Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Babak Mehrjou
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wayne Yuk Wai Lee
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China.,Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong SAR, China
| | - Hongkai Wu
- Department of Chemical and Biological Engineering Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.,Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
5
|
Boosting in vitro cartilage tissue engineering through the fabrication of polycaprolactone-gelatin 3D scaffolds with specific depth-dependent fiber alignments and mechanical stimulation. J Mech Behav Biomed Mater 2021; 117:104373. [PMID: 33618241 DOI: 10.1016/j.jmbbm.2021.104373] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 11/21/2022]
Abstract
Due to the limited self-healing ability of natural cartilage, several tissue engineering strategies have been explored to develop functional replacements. Still, most of these approaches do not attempt to recreate in vitro the anisotropic organization of its extracellular matrix, which is essential for a suitable load-bearing function. In this work, different depth-dependent alignments of polycaprolactone-gelatin electrospun fibers were assembled into three-dimensional scaffold architectures to assess variations on chondrocyte response under static, unconfined compressed and perfused culture conditions. The in vitro results confirmed that not only the 3D scaffolds specific depth-dependent fiber alignments potentiated chondrocyte proliferation and migration towards the fibrous systems, but also the mechanical stimulation protocols applied were able to enhance significantly cell metabolic activity and extracellular matrix deposition, respectively.
Collapse
|
6
|
Martínez-Moreno D, Jiménez G, Chocarro-Wrona C, Carrillo E, Montañez E, Galocha-León C, Clares-Naveros B, Gálvez-Martín P, Rus G, de Vicente J, Marchal JA. Pore geometry influences growth and cell adhesion of infrapatellar mesenchymal stem cells in biofabricated 3D thermoplastic scaffolds useful for cartilage tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111933. [PMID: 33641924 DOI: 10.1016/j.msec.2021.111933] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/24/2022]
Abstract
The most pressing need in cartilage tissue engineering (CTE) is the creation of a biomaterial capable to tailor the complex extracellular matrix of the tissue. Despite the standardized used of polycaprolactone (PCL) for osteochondral scaffolds, the pronounced stiffness mismatch between PCL scaffold and the tissue it replaces remarks the biomechanical incompatibility as main limitation. To overcome it, the present work was focused in the design and analysis of several geometries and pore sizes and how they affect cell adhesion and proliferation of infrapatellar fat pad-derived mesenchymal stem cells (IPFP-MSCs) loaded in biofabricated 3D thermoplastic scaffolds. A novel biomaterial for CTE, the 1,4-butanediol thermoplastic polyurethane (b-TPUe) together PCL were studied to compare their mechanical properties. Three different geometrical patterns were included: hexagonal (H), square (S), and, triangular (T); each one was printed with three different pore sizes (PS): 1, 1.5 and 2 mm. Results showed differences in cell adhesion, cell proliferation and mechanical properties depending on the geometry, porosity and type of biomaterial used. Finally, the microstructure of the two optimal geometries (T1.5 and T2) was deeply analyzed using multiaxial mechanical tests, with and without perimeters, μCT for microstructure analysis, DNA quantification and degradation assays. In conclusion, our results evidenced that IPFP-MSCs-loaded b-TPUe scaffolds had higher similarity with cartilage mechanics and T1.5 was the best adapted morphology for CTE.
Collapse
Affiliation(s)
- D Martínez-Moreno
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - G Jiménez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - C Chocarro-Wrona
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - E Carrillo
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - E Montañez
- Department of Orthopedic Surgery and Traumatology, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
| | - C Galocha-León
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - B Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - P Gálvez-Martín
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain; R&D Human Health, Bioibérica S.A.U., Barcelona E-08029, Spain
| | - G Rus
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain; Department of Structural Mechanics, University of Granada, Politécnico de Fuentenueva, Granada E-18071, Spain
| | - J de Vicente
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain; Department of Applied Physics, Faculty of Sciences, University of Granada, Granada, Spain.
| | - J A Marchal
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain.
| |
Collapse
|
7
|
Taheem DK, Jell G, Gentleman E. Hypoxia Inducible Factor-1α in Osteochondral Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:105-115. [PMID: 31774026 PMCID: PMC7166133 DOI: 10.1089/ten.teb.2019.0283] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022]
Abstract
Damage to osteochondral (OC) tissues can lead to pain, loss of motility, and progress to osteoarthritis. Tissue engineering approaches offer the possibility of replacing damaged tissues and restoring joint function; however, replicating the spatial and functional heterogeneity of native OC tissue remains a pressing challenge. Chondrocytes in healthy cartilage exist in relatively low-oxygen conditions, while osteoblasts in the underlying bone experience higher oxygen pressures. Such oxygen gradients also exist in the limb bud, where they influence OC tissue development. The cellular response to these spatial variations in oxygen pressure, which is mediated by the hypoxia inducible factor (HIF) pathway, plays a central role in regulating osteo- and chondrogenesis by directing progenitor cell differentiation and promoting and maintaining appropriate extracellular matrix production. Understanding the role of the HIF pathway in OC tissue development may enable new approaches to engineer OC tissue. In this review, we discuss strategies to spatially and temporarily regulate the HIF pathway in progenitor cells to create functional OC tissue for regenerative therapies. Impact statement Strategies to engineer osteochondral (OC) tissue are limited by the complex and varying microenvironmental conditions in native bone and cartilage. Indeed, native cartilage experiences low-oxygen conditions, while the underlying bone is relatively normoxic. The cellular response to these low-oxygen conditions, which is mediated through the hypoxia inducible factor (HIF) pathway, is known to promote and maintain the chondrocyte phenotype. By using tissue engineering scaffolds to spatially and temporally harness the HIF pathway, it may be possible to improve OC tissue engineering strategies for the regeneration of damaged cartilage and its underlying subchondral bone.
Collapse
Affiliation(s)
- Dheraj K. Taheem
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Gavin Jell
- Division of Surgery and Interventional Sciences, University College London, London, United Kingdom
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| |
Collapse
|
8
|
Zhong YC, Wang SC, Han YH, Wen Y. Recent Advance in Source, Property, Differentiation, and Applications of Infrapatellar Fat Pad Adipose-Derived Stem Cells. Stem Cells Int 2020; 2020:2560174. [PMID: 32215015 PMCID: PMC7081037 DOI: 10.1155/2020/2560174] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Infrapatellar fat pad (IPFP) can be easily obtained during knee surgery, which avoids the damage to patients for obtaining IPFP. Infrapatellar fat pad adipose-derived stem cells (IPFP-ASCs) are also called infrapatellar fat pad mesenchymal stem cells (IPFP-MSCs) because the morphology of IPFP-ASCs is similar to that of bone marrow mesenchymal stem cells (BM-MSCs). IPFP-ASCs are attracting more and more attention due to their characteristics suitable to regenerative medicine such as strong proliferation and differentiation, anti-inflammation, antiaging, secreting cytokines, multipotential capacity, and 3D culture. IPFP-ASCs can repair articular cartilage and relieve the pain caused by osteoarthritis, so most of IPFP-related review articles focus on osteoarthritis. This article reviews the anatomy and function of IPFP, as well as the discovery, amplification, multipotential capacity, and application of IPFP-ASCs in order to explain why IPFP-ASC is a superior stem cell source in regenerative medicine.
Collapse
Affiliation(s)
- Yu-chen Zhong
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
- Class 4, Phase 102, China Medical University, Shenyang 110122, China
| | - Shi-chun Wang
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
- Class 4, Phase 102, China Medical University, Shenyang 110122, China
| | - Yin-he Han
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
| | - Yu Wen
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
| |
Collapse
|
9
|
Jiang LF, Fang JH, Wu LD. Role of infrapatellar fat pad in pathological process of knee osteoarthritis: Future applications in treatment. World J Clin Cases 2019; 7:2134-2142. [PMID: 31531309 PMCID: PMC6718789 DOI: 10.12998/wjcc.v7.i16.2134] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/11/2019] [Accepted: 06/27/2019] [Indexed: 02/05/2023] Open
Abstract
It has been found that obese people have a higher proportion in suffering from osteoarthritis (OA), not only in the weight-bearing joints like knee and hip joints, even in non-weight-bearing joints such as hand joints. One of the reasons is because the large amount of adipose tissue secretes some factors, which can promote the occurrence of arthritis. As an important structure of the knee joint, the infrapatellar fat pad (IPFP) is actually a piece of adipose tissue. The aim of this review is to offer a comprehensive view of the anatomy and physiological characteristics of IPFP and its relationship with the pathological process of OA, indicating the important function of IPFP in OA. At the same time, with the development of adipose derived stem cells in the treatment of OA, owing to its special advantages, the IPFP is becoming a kind of important, minimally invasive fat stem cell source, providing a new approach for the treatment of OA. We hope that this review will offer an overview of all published data regarding the IPFP and will indicate novel directions for future research.
Collapse
Affiliation(s)
- Li-Feng Jiang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Jing-Hua Fang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Li-Dong Wu
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
10
|
Sthijns MMJPE, van Blitterswijk CA, LaPointe VLS. Redox regulation in regenerative medicine and tissue engineering: The paradox of oxygen. J Tissue Eng Regen Med 2018; 12:2013-2020. [PMID: 30044552 PMCID: PMC6221092 DOI: 10.1002/term.2730] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/07/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022]
Abstract
One of the biggest challenges in tissue engineering and regenerative medicine is to incorporate a functioning vasculature to overcome the consequences of a lack of oxygen and nutrients in the tissue construct. Otherwise, decreased oxygen tension leads to incomplete metabolism and the formation of the so‐called reactive oxygen species (ROS). Cells have many endogenous antioxidant systems to ensure a balance between ROS and antioxidants, but if this balance is disrupted by factors such as high levels of ROS due to long‐term hypoxia, there will be tissue damage and dysfunction. Current attempts to solve the oxygen problem in the field rarely take into account the importance of the redox balance and are instead centred on releasing or generating oxygen. The first problem with this approach is that although oxygen is necessary for life, it is paradoxically also a highly toxic molecule. Furthermore, although some oxygen‐generating biomaterials produce oxygen, they also generate hydrogen peroxide, a ROS, as an intermediate product. In this review, we discuss why it would be a superior strategy to supplement oxygen delivery with molecules to safeguard the important redox balance. Redox sensor proteins that can stimulate the anaerobic metabolism, angiogenesis, and enhancement of endogenous antioxidant systems are discussed as promising targets. We propose that redox regulating biomaterials have the potential to tackle some of the challenges related to angiogenesis and that the knowledge in this review will help scientists in tissue engineering and regenerative medicine realize this aim.
Collapse
Affiliation(s)
- Mireille M J P E Sthijns
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Clemens A van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Vanessa L S LaPointe
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
11
|
Combating Osteoarthritis through Stem Cell Therapies by Rejuvenating Cartilage: A Review. Stem Cells Int 2018; 2018:5421019. [PMID: 29765416 PMCID: PMC5885495 DOI: 10.1155/2018/5421019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/05/2018] [Indexed: 12/13/2022] Open
Abstract
Knee osteoarthritis (OA) is a chronic degenerative disorder which could be distinguished by erosion of articular cartilage, pain, stiffness, and crepitus. Not only aging-associated alterations but also the metabolic factors such as hyperglycemia, dyslipidemia, and obesity affect articular tissues and may initiate or exacerbate the OA. The poor self-healing ability of articular cartilage due to limited regeneration in chondrocytes further adversely affects the osteoarthritic microenvironment. Traditional and current surgical treatment procedures for OA are limited and incapable to reverse the damage of articular cartilage. To overcome these limitations, cell-based therapies are currently being employed to repair and regenerate the structure and function of articular tissues. These therapies not only depend upon source and type of stem cells but also on environmental conditions, growth factors, and chemical and mechanical stimuli. Recently, the pluripotent and various multipotent mesenchymal stem cells have been employed for OA therapy, due to their differentiation potential towards chondrogenic lineage. Additionally, the stem cells have also been supplemented with growth factors to achieve higher healing response in osteoarthritic cartilage. In this review, we summarized the current status of stem cell therapies in OA pathophysiology and also highlighted the potential areas of further research needed in regenerative medicine.
Collapse
|
12
|
do Amaral RJFC, Almeida HV, Kelly DJ, O'Brien FJ, Kearney CJ. Infrapatellar Fat Pad Stem Cells: From Developmental Biology to Cell Therapy. Stem Cells Int 2017; 2017:6843727. [PMID: 29018484 PMCID: PMC5606137 DOI: 10.1155/2017/6843727] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022] Open
Abstract
The ideal cell type to be used for cartilage therapy should possess a proven chondrogenic capacity, not cause donor-site morbidity, and should be readily expandable in culture without losing their phenotype. There are several cell sources being investigated to promote cartilage regeneration: mature articular chondrocytes, chondrocyte progenitors, and various stem cells. Most recently, stem cells isolated from joint tissue, such as chondrogenic stem/progenitors from cartilage itself, synovial fluid, synovial membrane, and infrapatellar fat pad (IFP) have gained great attention due to their increased chondrogenic capacity over the bone marrow and subcutaneous adipose-derived stem cells. In this review, we first describe the IFP anatomy and compare and contrast it with other adipose tissues, with a particular focus on the embryological and developmental aspects of the tissue. We then discuss the recent advances in IFP stem cells for regenerative medicine. We compare their properties with other stem cell types and discuss an ontogeny relationship with other joint cells and their role on in vivo cartilage repair. We conclude with a perspective for future clinical trials using IFP stem cells.
Collapse
Affiliation(s)
- Ronaldo J. F. C. do Amaral
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Henrique V. Almeida
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Daniel J. Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Cathal J. Kearney
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
13
|
Kim M, Farrell MJ, Steinberg DR, Burdick JA, Mauck RL. Enhanced nutrient transport improves the depth-dependent properties of tri-layered engineered cartilage constructs with zonal co-culture of chondrocytes and MSCs. Acta Biomater 2017. [PMID: 28629894 DOI: 10.1016/j.actbio.2017.06.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Biomimetic design in cartilage tissue engineering is a challenge given the complexity of the native tissue. While numerous studies have generated constructs with near-native bulk properties, recapitulating the depth-dependent features of native tissue remains a challenge. Furthermore, limitations in nutrient transport and matrix accumulation in engineered constructs hinders maturation within the central core of large constructs. To overcome these limitations, we fabricated tri-layered constructs that recapitulate the depth-dependent cellular organization and functional properties of native tissue using zonally derived chondrocytes co-cultured with MSCs. We also introduced porous hollow fibers (HFs) and HFs/cotton threads to enhance nutrient transport. Our results showed that tri-layered constructs with depth-dependent organization and properties could be fabricated. The addition of HFs or HFs/threads improved matrix accumulation in the central core region. With HF/threads, the local modulus in the deep region of tri-layered constructs nearly matched that of native tissue, though the properties in the central regions remained lower. These constructs reproduced the zonal organization and depth-dependent properties of native tissue, and demonstrate that a layer-by-layer fabrication scheme holds promise for the biomimetic repair of focal cartilage defects. STATEMENT OF SIGNIFICANCE Articular cartilage is a highly organized tissue driven by zonal heterogeneity of cells, extracellular matrix proteins and fibril orientations, resulting in depth-dependent mechanical properties. Therefore, the recapitulation of the functional properties of native cartilage in a tissue engineered construct requires such a biomimetic design of the morphological organization, and this has remained a challenge in cartilage tissue engineering. This study demonstrates that a layer-by-layer fabrication scheme, including co-cultures of zone-specific articular CHs and MSCs, can reproduce the depth-dependent characteristics and mechanical properties of native cartilage while minimizing the need for large numbers of chondrocytes. In addition, introduction of a porous hollow fiber (combined with a cotton thread) enhanced nutrient transport and depth-dependent properties of the tri-layered construct. Such a tri-layered construct may provide critical advantages for focal cartilage repair. These constructs hold promise for restoring native tissue structure and function, and may be beneficial in terms of zone-to-zone integration with adjacent host tissue and providing more appropriate strain transfer after implantation.
Collapse
Affiliation(s)
- Minwook Kim
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Megan J Farrell
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - David R Steinberg
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA.
| |
Collapse
|