1
|
Wang T, Yu Z, Lin S, Chen Z, Jin H, Liang L, Zhang ZY. 3D-printed Mg-incorporated PCL-based scaffolds improves rotator cuff tendon-bone healing through regulating macrophage polarization. Front Bioeng Biotechnol 2024; 12:1407512. [PMID: 39040494 PMCID: PMC11260743 DOI: 10.3389/fbioe.2024.1407512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/28/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction: Rotator cuff tear (RCT) is a common shoulder injury impacting mobility and quality of life, while traditional surgeries often result in poor healing. Tissue engineering offers a promising solution, with poly (ε-caprolactone) (PCL) being favored due to its slow degradation, biocompatibility, and non-toxicity. However, PCL lacks sufficient compression resistance. Incorporating Mg, which promotes bone growth and has antibacterial effects, could enhance RCT repair. Methods: The Mg-incorporated PCL-based scaffolds were fabricated using a 3D printing technique. The scaffolds were incorporated with different percentages of Mg (0%, 5%, 10%, 15%, and 20%). The osteogenic activities and anti-inflammatory properties of the scaffolds were evaluated in vitro using human osteoblasts and macrophages. The tissue ingrowth and biocompatibility of the scaffolds were assessed in vivo using a rat model of RCT repair. The ability of the scaffolds to enhance macrophage polarization towards the M2 subtype and inhibit inflammation signaling activation was also investigated. Results: It was found that when incorporated with 10% Mg, PCL-based scaffolds exhibited the optimal bone repairing ability in vitro and in vivo. The in vitro experiments indicated that the successfully constructed 10 Mg/PCL scaffolds enhance osteogenic activities and anti-inflammatory properties. Besides, the in vivo studies demonstrated that 10 Mg/PCL scaffolds promoted tissue ingrowth and enhanced biocompatibility compared to the control PCL scaffolds. Furthermore, the 10 Mg/PCL scaffolds enhanced the macrophages' ability to polarize towards the M2 subtype and inhibited inflammation signaling activation. Discussion: These findings suggest that 3D-printed Mg-incorporated PCL scaffolds have the potential to improve RCT by enhancing osteogenesis, reducing inflammation, and promoting macrophage polarization. The incorporation of 10% Mg into PCL-based scaffolds provided the optimal combination of properties for RCT repair augmentation. This study highlights the potential of tissue engineering approaches in improving the outcomes of RCT repair and provides a foundation for future clinical applications.
Collapse
Affiliation(s)
- Tao Wang
- Translational Research Centre of Regenerative Medicine and 3D Printing, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziqing Yu
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shaozhang Lin
- Department of Anesthesiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhaohuan Chen
- Translational Research Centre of Regenerative Medicine and 3D Printing, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Han Jin
- Basic Medical College, Xiangnan University, Chenzhou, China
| | - Lin Liang
- Department of Orthopaedics, Guangzhou Overseas Chinese Hospital, The First Affiliated Hospital of JINAN University, Guangzhou, China
| | - Zhi-Yong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Belda-Perez R, Heras S, Cimini C, Romero-Aguirregomezcorta J, Valbonetti L, Colosimo A, Colosimo BM, Santoni S, Barboni B, Bernabò N, Coy P. Advancing bovine in vitro fertilization through 3D printing: the effect of the 3D printed materials. Front Bioeng Biotechnol 2023; 11:1260886. [PMID: 37929185 PMCID: PMC10621798 DOI: 10.3389/fbioe.2023.1260886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023] Open
Abstract
Nowadays there is an increasing demand for assisted reproductive technologies due to the growth of infertility problems. Naturally, fertilization occurs in the oviduct, where the oviductal epithelial cells (OECs) secrete many molecules that affect the embryo's metabolism and protect it from oxidative stress. When the OECs are grown in 3D culture systems, they maintain a great part of their functional characteristics, making them an excellent model for in vitro fertilization (IVF) studies. In this work, we aimed to evaluate the suitability of different 3D-printing processes in conjunction with the corresponding set of commercially available biomaterials: extrusion-based processing using polylactic acid (PLA) and polycaprolactone (PCL) and stereolithography or digital-light processing using polyethylene-glycol-diacrylate (PEGDA) with different stiffness (PEGDA500, PEGDA200, PEGDA PhotoInk). All the 3D-printed scaffolds were used to support IVF process in a bovine embryo assay. Following fertilization, embryo development and quality were assessed in terms of cleavage, blastocyst rate at days 7 and 8, total cell number (TCN), inner cell mass/trophectoderm ratio (ICN/TE), and apoptotic cell ratio (ACR). We found a detrimental effect on cleavage and blastocyst rates when the IVF was performed on any medium conditioned by most of the materials available for digital-light processing (PEGDA200, PEGDA500). The observed negative effect could be possibly due to some leaked compound used to print and stabilize the scaffolds, which was not so evident however with PEGDA PhotoInk. On the other hand, all the extrusion-based processable materials did not cause any detrimental effect on cleavage or blastocyst rates. The principal component analysis reveals that embryos produced in presence of 3D-printed scaffolds produced via extrusion exhibit the highest similarity with the control embryos considering cleavage, blastocyst rates, TCN, ICN/TE and ACR per embryo. Conversely, all the photo-cross linkable materials or medium conditioned by PLA, lead to the highest dissimilarities. Since the use of PCL scaffolds, as well as its conditioned medium, bring to embryos that are more similar to the control group. Our results suggest that extrusion-based 3D printing of PCL could be the best option to be used for new IVF devices, possibly including the support of OECs, to enhance bovine embryo development.
Collapse
Affiliation(s)
- Ramses Belda-Perez
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Physiology of Reproduction Group, Department of Physiology, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, Spain
| | - Sonia Heras
- Physiology of Reproduction Group, Department of Physiology, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, Spain
| | - Costanza Cimini
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Jon Romero-Aguirregomezcorta
- Physiology of Reproduction Group, Department of Physiology, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, Spain
| | - Luca Valbonetti
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNRIBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Alessia Colosimo
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Silvia Santoni
- Department of Mechanical Engineering, Politecnico di Milano, Milano, Italy
| | - Barbara Barboni
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Nicola Bernabò
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNRIBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Pilar Coy
- Physiology of Reproduction Group, Department of Physiology, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, Spain
| |
Collapse
|
3
|
Romano IR, D'Angeli F, Vicario N, Russo C, Genovese C, Lo Furno D, Mannino G, Tamburino S, Parenti R, Giuffrida R. Adipose-Derived Mesenchymal Stromal Cells: A Tool for Bone and Cartilage Repair. Biomedicines 2023; 11:1781. [PMID: 37509421 PMCID: PMC10376676 DOI: 10.3390/biomedicines11071781] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The osteogenic and chondrogenic differentiation ability of adipose-derived mesenchymal stromal cells (ASCs) and their potential therapeutic applications in bone and cartilage defects are reported in this review. This becomes particularly important when these disorders can only be poorly treated by conventional therapeutic approaches, and tissue engineering may represent a valuable alternative. Being of mesodermal origin, ASCs can be easily induced to differentiate into chondrocyte-like and osteocyte-like elements and used to repair damaged tissues. Moreover, they can be easily harvested and used for autologous implantation. A plethora of ASC-based strategies are being developed worldwide: they include the transplantation of freshly harvested cells, in vitro expanded cells or predifferentiated cells. Moreover, improving their positive effects, ASCs can be implanted in combination with several types of scaffolds that ensure the correct cell positioning; support cell viability, proliferation and migration; and may contribute to their osteogenic or chondrogenic differentiation. Examples of these strategies are described here, showing the enormous therapeutic potential of ASCs in this field. For safety and regulatory issues, most investigations are still at the experimental stage and carried out in vitro and in animal models. Clinical applications have, however, been reported with promising results and no serious adverse effects.
Collapse
Affiliation(s)
- Ivana Roberta Romano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Floriana D'Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Carlo Genovese
- Faculty of Medicine and Surgery, "Kore" University of Enna, 94100 Enna, Italy
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuliana Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Serena Tamburino
- Chi.Pla Chirurgia Plastica, Via Suor Maria Mazzarello, 54, 95128 Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|
4
|
Zhang Z, Yang X, Cao X, Qin A, Zhao J. Current applications of adipose-derived mesenchymal stem cells in bone repair and regeneration: A review of cell experiments, animal models, and clinical trials. Front Bioeng Biotechnol 2022; 10:942128. [PMID: 36159705 PMCID: PMC9490047 DOI: 10.3389/fbioe.2022.942128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
In the field of orthopaedics, bone defects caused by severe trauma, infection, tumor resection, and skeletal abnormalities are very common. However, due to the lengthy and painful process of related surgery, people intend to shorten the recovery period and reduce the risk of rejection; as a result, more attention is being paid to bone regeneration with mesenchymal stromal cells, one of which is the adipose-derived mesenchymal stem cells (ASCs) from adipose tissue. After continuous subculture and cryopreservation, ASCs still have the potential for multidirectional differentiation. They can be implanted in the human body to promote bone repair after induction in vitro, solve the problems of scarce sources and large damage, and are expected to be used in the treatment of bone defects and non-union fractures. However, the diversity of its differentiation lineage and the lack of bone formation potential limit its current applications in bone disease. Here, we concluded the current applications of ASCs in bone repair, especially with the combination and use of physical and biological methods. ASCs alone have been proved to contribute to the repair of bone damage in vivo and in vitro. Attaching to bone scaffolds or adding bioactive molecules can enhance the formation of the bone matrix. Moreover, we further evaluated the efficiency of ASC-committed differentiation in the bone in conditions of cell experiments, animal models, and clinical trials. The results show that ASCs in combination with synthetic bone grafts and biomaterials may affect the regeneration, augmentation, and vascularization of bone defects on bone healing. The specific conclusion of different materials applied with ASCs may vary. It has been confirmed to benefit osteogenesis by regulating osteogenic signaling pathways and gene transduction. Exosomes secreted by ASCs also play an important role in osteogenesis. This review will illustrate the understanding of scientists and clinicians of the enormous promise of ASCs’ current applications and future development in bone repair and regeneration, and provide an incentive for superior employment of such strategies.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People’s Hospital, Shanghai, China
| | - Xiao Yang
- Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiankun Cao
- Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - An Qin
- Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: An Qin, ; Jie Zhao,
| | - Jie Zhao
- Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: An Qin, ; Jie Zhao,
| |
Collapse
|
5
|
Di Berardino C, Liverani L, Peserico A, Capacchietti G, Russo V, Bernabò N, Tosi U, Boccaccini AR, Barboni B. When Electrospun Fiber Support Matters: In Vitro Ovine Long-Term Folliculogenesis on Poly (Epsilon Caprolactone) (PCL)-Patterned Fibers. Cells 2022; 11:cells11121968. [PMID: 35741097 PMCID: PMC9222101 DOI: 10.3390/cells11121968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/17/2022] [Indexed: 12/14/2022] Open
Abstract
Current assisted reproduction technologies (ART) are insufficient to cover the slice of the population needing to restore fertility, as well as to amplify the reproductive performance of domestic animals or endangered species. The design of dedicated reproductive scaffolds has opened the possibility to better recapitulate the reproductive 3D ovarian environment, thus potentially innovating in vitro folliculogenesis (ivF) techniques. To this aim, the present research has been designed to compare ovine preantral follicles in vitro culture on poly(epsilon-caprolactone) (PCL)-based electrospun scaffolds designed with different topology (Random vs. Patterned fibers) with a previously validated system. The ivF performances were assessed after 14 days under 3D-oil, Two-Step (7 days in 3D-oil and on scaffold), or One-Step PCL protocols (14 days on PCL-scaffold) by assessing morphological and functional outcomes. The results show that Two- and One-Step PCL ivF protocols, when performed on patterned scaffolds, were both able to support follicle growth, antrum formation, and the upregulation of follicle marker genes leading to a greater oocyte meiotic competence than in the 3D-oil system. In conclusion, the One-Step approach could be proposed as a practical and valid strategy to support a synergic follicle-oocyte in vitro development, providing an innovative tool to enhance the availability of matured gametes on an individual basis for ART purposes.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
- Correspondence:
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Giulia Capacchietti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Umberto Tosi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Aldo Roberto Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| |
Collapse
|
6
|
Osteoblast-like Cell Differentiation on 3D-Printed Scaffolds Using Various Concentrations of Tetra-Polymers. Biomimetics (Basel) 2022; 7:biomimetics7020070. [PMID: 35735586 PMCID: PMC9221135 DOI: 10.3390/biomimetics7020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
New bone formation starts from the initial reaction between a scaffold surface and the extracellular matrix. This research aimed to evaluate the effects of various amounts of calcium, phosphate, sodium, sulfur, and chloride ions on osteoblast-like cell differentiation using tetra-polymers of amorphous calcium phosphate (ACP), calcium sulfate hemihydrate (CSH), alginic acid, and hydroxypropyl methylcellulose. Moreover, 3D-printed scaffolds were fabricated to determine the ion distribution and cell differentiation. Various proportions of ACP/CSH were prepared in ratios of 0%, 13%, 15%, 18%, 20%, and 23%. SEM was used to observe the morphology, cell spreading, and ion complements. The scaffolds were also examined for calcium ion release. The mouse osteoblast-like cell line MC3T3-E1 was cultured to monitor the osteogenic differentiation, alkaline phosphatase (ALP) activity, total protein synthesis, osteocalcin expression (OCN), and calcium deposition. All 3D-printed scaffolds exhibited staggered filaments, except for the 0% group. The amounts of calcium, phosphate, sodium, and sulfur ions increased as the amounts of ACP/CSH increased. The 18%ACP/CSH group significantly exhibited the most ALP on days 7, 14, and 21, and the most OCN on days 14 and 21. Moreover, calcium deposition and mineralization showed the highest peak after 7 days. In conclusion, the 18%ACP/CSH group is capable of promoting osteoblast-like cell differentiation on 3D-printed scaffolds.
Collapse
|
7
|
Luchman NA, Megat Abdul Wahab R, Zainal Ariffin SH, Nasruddin NS, Lau SF, Yazid F. Comparison between hydroxyapatite and polycaprolactone in inducing osteogenic differentiation and augmenting maxillary bone regeneration in rats. PeerJ 2022; 10:e13356. [PMID: 35529494 PMCID: PMC9070322 DOI: 10.7717/peerj.13356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/08/2022] [Indexed: 01/13/2023] Open
Abstract
Background The selection of appropriate scaffold plays an important role in ensuring the success of bone regeneration. The use of scaffolds with different materials and their effect on the osteogenic performance of cells is not well studied and this can affect the selection of suitable scaffolds for transplantation. Hence, this study aimed to investigate the comparative ability of two different synthetic scaffolds, mainly hydroxyapatite (HA) and polycaprolactone (PCL) scaffolds in promoting in vitro and in vivo bone regeneration. Method In vitro cell viability, morphology, and alkaline phosphatase (ALP) activity of MC3T3-E1 cells on HA and PCL scaffolds were determined in comparison to the accepted model outlined for two-dimensional systems. An in vivo study involving the transplantation of MC3T3-E1 cells with scaffolds into an artificial bone defect of 4 mm length and 1.5 mm depth in the rat's left maxilla was conducted. Three-dimensional analysis using micro-computed tomography (micro-CT), hematoxylin and eosin (H&E), and immunohistochemistry analyses evaluation were performed after six weeks of transplantation. Results MC3T3-E1 cells on the HA scaffold showed the highest cell viability. The cell viability on both scaffolds decreased after 14 days of culture, which reflects the dominant occurrence of osteoblast differentiation. An early sign of osteoblast differentiation can be detected on the PCL scaffold. However, cells on the HA scaffold showed more prominent results with intense mineralized nodules and significantly (p < 0.05) high levels of ALP activity with prolonged osteoblast induction. Micro-CT and H&E analyses confirmed the in vitro results with bone formation were significantly (p < 0.05) greater in HA scaffold and was supported by IHC analysis which confirmed stronger expression of osteogenic markers ALP and osteocalcin. Conclusion Different scaffold materials of HA and PCL might have influenced the bone regeneration ability of MC3T3-E1. Regardless, in vitro and in vivo bone regeneration was better in the HA scaffold which indicates its great potential for application in bone regeneration.
Collapse
Affiliation(s)
- Nur Atmaliya Luchman
- Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rohaya Megat Abdul Wahab
- Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shahrul Hisham Zainal Ariffin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nurrul Shaqinah Nasruddin
- Department of Craniofacial Diagnostic and Bioscience, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Seng Fong Lau
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Farinawati Yazid
- Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
BMP-2 Enhances Osteogenic Differentiation of Human Adipose-Derived and Dental Pulp Stem Cells in 2D and 3D In Vitro Models. Stem Cells Int 2022; 2022:4910399. [PMID: 35283997 PMCID: PMC8916887 DOI: 10.1155/2022/4910399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/02/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Bone tissue provides support and protection to different organs and tissues. Aging and different diseases can cause a decrease in the rate of bone regeneration or incomplete healing; thus, tissue-engineered substitutes can be an acceptable alternative to traditional therapies. In the present work, we have developed an in vitro osteogenic differentiation model based on mesenchymal stem cells (MSCs), to first analyse the influence of the culture media and the origin of the cells on the efficiency of this process and secondly to extrapolate it to a 3D environment to evaluate its possible application in bone regeneration therapies. Two osteogenic culture media were used (one commercial from Stemcell Technologies and a second supplemented with dexamethasone, ascorbic acid, glycerol-2-phosphate, and BMP-2), with human cells of a mesenchymal phenotype from two different origins: adipose tissue (hADSCs) and dental pulp (hDPSCs). The expression of osteogenic markers in 2D cultures was evaluated in several culture periods by means of the immunofluorescence technique and real-time gene expression analysis, taking as reference MG-63 cells of osteogenic origin. The same strategy was extrapolated to a 3D environment of polylactic acid (PLA), with a 3% alginate hydrogel. The expression of osteogenic markers was detected in both hADSCs and hDPSCs, cultured in either 2D or 3D environments. However, the osteogenic differentiation of MSCs was obtained based on the culture medium and the cell origin used, since higher osteogenic marker levels were found when hADSCs were cultured with medium supplemented with BMP-2. Furthermore, the 3D culture used was suitable for cell survival and osteogenic induction.
Collapse
|
9
|
Salameh JW, Kumar S, Rivera-Cruz CM, Figueiredo ML. A Second-Generation Nanoluc-IL27 Fusion Cytokine for Targeted-Gene-Therapy Applications. Bioengineering (Basel) 2022; 9:bioengineering9020077. [PMID: 35200430 PMCID: PMC8868604 DOI: 10.3390/bioengineering9020077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 01/05/2023] Open
Abstract
An emerging approach in treating skeletal malignancies utilizes osteoimmunology to investigate new multifunctional immune-stimulatory agents that can simultaneously combat tumor growth and promote bone repair. We have hypothesized that cytokine Interleukin-27 (IL-27) is an excellent candidate biologic to help rebalance the prostate tumor cells and bone cell environment. In this work, we examined the proof of principle for a short, secreted luciferase (Nanoluc or Nluc) fusion with IL-27 to produce a novel cytokine-based biologic (Nluc-27), whereby we examined its efficacy in vitro in reducing prostate tumor growth and rebalancing bone cell proliferation and differentiation. This work demonstrates the targeting and anti-tumor efficacy of the Nluc-27 fusion cytokine in cancer and bone cell models. The fusion cytokine is detectable in conditioned media, and bioactive in different cell systems. This novel Nluc-27 cytokine will allow flexible incorporation of other targeting domains and may serve as flexible tool to augment IL-27′s bioactivity and reengineer its efficacy against prostate tumor or bone cells, and may prove applicable to several other cell types for targeted gene therapy applications.
Collapse
Affiliation(s)
- Janelle Wesleyn Salameh
- The Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (J.W.S.); (S.K.); (C.M.R.-C.)
- The Interdisciplinary Biomedical Sciences Program—The Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Shreya Kumar
- The Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (J.W.S.); (S.K.); (C.M.R.-C.)
| | - Cosette Marie Rivera-Cruz
- The Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (J.W.S.); (S.K.); (C.M.R.-C.)
| | - Marxa Leao Figueiredo
- The Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (J.W.S.); (S.K.); (C.M.R.-C.)
- The Interdisciplinary Biomedical Sciences Program—The Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center for Cancer Research and Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: ; Tel.: +1-765-494-5790
| |
Collapse
|
10
|
Xiong Q, Zhang N, Zhang M, Wang M, Wang L, Fan Y, Lin CY. Engineer a pre-metastatic niched microenvironment to attract breast cancer cells by utilizing a 3D printed polycaprolactone/nano-hydroxyapatite osteogenic scaffold - An in vitro model system for proof of concept. J Biomed Mater Res B Appl Biomater 2022; 110:1604-1614. [PMID: 35112785 DOI: 10.1002/jbm.b.35021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/18/2021] [Accepted: 01/15/2022] [Indexed: 01/17/2023]
Abstract
Breast cancer bone metastasis is not a random process. It is affected by the local microenvironment which determines the propensity of cancer cells to invade and colonize into the secondary sites. This microenvironment is termed a pre-metastatic niche. With the flexibility to incorporate different biofactors, tissue-engineering scaffolds provide an advantageous environment to promote "designed" osteogenesis that may mimic the bony pre-metastatic niche. In the current study, designed polycaprolactone (PCL) scaffolds enriched with nano-hydroxyapatite (nHA) were fabricated through three-dimensional (3D) printing. Subsequently, human mesenchymal stem cells (hMSCs) were seeded onto PCL-nHA scaffolds for osteogenic differentiation to establish the pre-metastatic niched microenvironment. Furthermore, transwell migration assay was used to investigate recruitment of MDA-MB-231, MCF-7, and MDA-MB-453 breast cancer cells to the osseous PCL-nHA scaffolds. Our results showed that the mRNA levels of alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and osteocalcin (OCN) of hMSCs on the PCL-nHA scaffolds were dramatically increased compared those with the PCL scaffolds (control) at day 7, 14, and 28. Meanwhile, the migration analysis showed that the higher maturation of osteogenesis and bone metabolism collectively contributed to the creation of a more favorable niched site for the cancerous invasion. Moreover, one of the hypothesized key mediators for the promoted migration, CXCL12, was confirmed using an assay of antagonist LIT-927. This early study demonstrated that a designed tissue engineering scaffold can be utilized to create a bone-mimicking environment that serves as a novel platform to recapitulate the pre-metastatic niche and help interrogate the scheme of bone metastasis by breast cancer.
Collapse
Affiliation(s)
- Qisheng Xiong
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Ningze Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Miaomiao Zhang
- Beijing Institute of 3D Printing, Beijing City University, Beijing, China
| | - Meng Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Lizhen Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Chia-Ying Lin
- Department of Orthopaedic Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
11
|
Abstract
Evaluation of mesenchymal stem cell seeding efficiency in three-dimensional (3D) scaffolds is a critical step for constructing a potent and useful tissue engineering product for regenerative medicine. To determine the quantity of cells seeded on a scaffold, their condition and viability, and/or to confirm cell adhesion to the scaffold surface, a number of cellular assays are used. The assays are most often based on a direct or indirect colorimetric-, fluorimetric-, bioluminescent-, or isotope-based measurement of changes reflecting the activity of cellular processes. This chapter presents a selection of assays measuring the efficiency of cell seeding on scaffolds, that is, the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)) assay, the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, the ATP (adenosine triphosphate), DAPI (4',6-diamidino-2-phenylindole) assay, the Alamar Blue (7-hydroxy-10-oxidophenoxazin-10-ium-3-one, resazurin) assay and the Pico Green dsDNA (N'-[3-(dimethylamino)propyl]-N,N-dimethyl-N'-[4-[(E)-(3-methyl-1,3-benzothiazol-2-ylidene)methyl]-1-phenylquinolin-1-ium-2-yl]propane-1,3-diamine) assay. These assays monitor the number of viable cells, sometimes in conjunction with specifying cell membrane integrity, determine enzymatic activity associated with cell metabolism, measure cell proliferation rate, and assess the total protein or DNA content in the cell-scaffold construct. The choice of the appropriate methods and the details for testing 3D cultures are of utmost importance to properly evaluate tissue engineering products. Still, developing standards for assessment of cell-scaffold constructs remains a challenge in tissue engineering.
Collapse
Affiliation(s)
- Agata Kurzyk
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.
| |
Collapse
|
12
|
Xiong Q, Wang M, Liu J, Lin CY. Breast Cancer Cells Metastasize to the Tissue-Engineered Premetastatic Niche by Using an Osteoid-Formed Polycaprolactone/Nanohydroxyapatite Scaffold. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:9354202. [PMID: 34938359 PMCID: PMC8687766 DOI: 10.1155/2021/9354202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/23/2021] [Indexed: 11/21/2022]
Abstract
It has been deemed that the premetastatic niche (PMN) plays a critical role in facilitating bone metastasis of breast cancer cells. Tissue engineering scaffolds provide an advantageous environment to promote osteogenesis that may mimic the bony premetastatic niches (BPMNs). In this study, human mesenchymal stem cells (hMSCs) were seeded onto designed polycaprolactone/nanohydroxyapatite (PCL-nHA) scaffolds for osteogenic differentiation. Subsequently, a coculture system was used to establish the tissue-engineered BPMNs by culturing breast cancer cells, hMSCs, and osteoid-formed PCL-nHA scaffolds. Afterwards, a migration assay was used to investigate the recruitment of MDA-MB-231, MCF-7, and MDA-MB-453 cells to the BPMNs' supernatants. The cancer stem cell (CSC) properties of these migrated cells were investigated by flow cytometry. Our results showed that the mRNA expression levels of alkaline phosphatase (ALP), Osterix, runt-related transcription factor 2 (Runx2), and collagen type I alpha 1 (COL1A1) on the PCL-nHA scaffolds were dramatically increased compared to the PCL scaffolds on days 11, 18, and 32. The expression of CXCL12 in these BPMNs was increased gradually over coculturing time, and it may be a feasible marker for BPMNs. Furthermore, migration analysis results showed that the higher maturation of BPMNs collectively contributed to the creation of a more favorable niched site for the cancerous invasion. The subpopulation of breast cancer stem cells (BCSCs) was more likely to migrate to fertile BPMNs. The proportion of BCSCs in metastatic MDA-MB-231, MCF-7, and MDA-MB-453 cells were increased by approximately 63.47%, 149.48%, and 127.60%. The current study demonstrated that a designed tissue engineering scaffold can provide a novel method to create a bone-mimicking environment that serves as a useable platform to recapitulate the BPMNs and help interrogate the scheme of bone metastasis by breast cancer.
Collapse
Affiliation(s)
- Qisheng Xiong
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Meng Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Jinglong Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Chia-Ying Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- Department of Orthopaedic Surgery, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
13
|
Shanbhag S, Kampleitner C, Mohamed-Ahmed S, Yassin MA, Dongre H, Costea DE, Tangl S, Hassan MN, Stavropoulos A, Bolstad AI, Suliman S, Mustafa K. Ectopic Bone Tissue Engineering in Mice Using Human Gingiva or Bone Marrow-Derived Stromal/Progenitor Cells in Scaffold-Hydrogel Constructs. Front Bioeng Biotechnol 2021; 9:783468. [PMID: 34917602 PMCID: PMC8670384 DOI: 10.3389/fbioe.2021.783468] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/16/2021] [Indexed: 01/22/2023] Open
Abstract
Three-dimensional (3D) spheroid culture can promote the osteogenic differentiation and bone regeneration capacity of mesenchymal stromal cells (MSC). Gingiva-derived progenitor cells (GPC) represent a less invasive alternative to bone marrow MSC (BMSC) for clinical applications. The aim of this study was to test the in vivo bone forming potential of human GPC and BMSC cultured as 3D spheroids or dissociated cells (2D). 2D and 3D cells encapsulated in constructs of human platelet lysate hydrogels (HPLG) and 3D-printed poly (L-lactide-co-trimethylene carbonate) scaffolds (HPLG-PLATMC) were implanted subcutaneously in nude mice; cell-free HPLG-PLATMC constructs served as a control. Mineralization was assessed using micro-computed tomography (µCT), histology, scanning electron microscopy (SEM) and in situ hybridization (ISH). After 4–8 weeks, µCT revealed greater mineralization in 3D-BMSC vs. 2D-BMSC and 3D-GPC (p < 0.05), and a similar trend in 2D-GPC vs. 2D-BMSC (p > 0.05). After 8 weeks, greater mineralization was observed in cell-free constructs vs. all 2D- and 3D-cell groups (p < 0.05). Histology and SEM revealed an irregular but similar mineralization pattern in all groups. ISH revealed similar numbers of 2D and 3D BMSC/GPC within and/or surrounding the mineralized areas. In summary, spheroid culture promoted ectopic mineralization in constructs of BMSC, while constructs of dissociated GPC and BMSC performed similarly. The combination of HPLG and PLATMC represents a promising scaffold for bone tissue engineering applications.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
- *Correspondence: Siddharth Shanbhag, ; Kamal Mustafa,
| | - Carina Kampleitner
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, Vienna, Austria
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Samih Mohamed-Ahmed
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Mohammed Ahmad Yassin
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Harsh Dongre
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Daniela Elena Costea
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Stefan Tangl
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mohamad Nageeb Hassan
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Andreas Stavropoulos
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Anne Isine Bolstad
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Salwa Suliman
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
- *Correspondence: Siddharth Shanbhag, ; Kamal Mustafa,
| |
Collapse
|
14
|
Yang X, Wang Y, Zhou Y, Chen J, Wan Q. The Application of Polycaprolactone in Three-Dimensional Printing Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2021; 13:polym13162754. [PMID: 34451293 PMCID: PMC8400029 DOI: 10.3390/polym13162754] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/25/2021] [Accepted: 08/12/2021] [Indexed: 02/05/2023] Open
Abstract
Bone tissue engineering commonly encompasses the use of three-dimensional (3D) scaffolds to provide a suitable microenvironment for the propagation of cells to regenerate damaged tissues or organs. 3D printing technology has been extensively applied to allow direct 3D scaffolds manufacturing. Polycaprolactone (PCL) has been widely used in the fabrication of 3D scaffolds in the field of bone tissue engineering due to its advantages such as good biocompatibility, slow degradation rate, the less acidic breakdown products in comparison to other polyesters, and the potential for loadbearing applications. PCL can be blended with a variety of polymers and hydrogels to improve its properties or to introduce new PCL-based composites. This paper describes the PCL used in developing state of the art of scaffolds for bone tissue engineering. In this review, we provide an overview of the 3D printing techniques for the fabrication of PCL-based composite scaffolds and recent studies on applications in different clinical situations. For instance, PCL-based composite scaffolds were used as an implant surgical guide in dental treatment. Furthermore, future trend and potential clinical translations will be discussed.
Collapse
Affiliation(s)
- Xiangjun Yang
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.Y.); (Y.W.); (Y.Z.)
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuting Wang
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.Y.); (Y.W.); (Y.Z.)
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ying Zhou
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.Y.); (Y.W.); (Y.Z.)
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junyu Chen
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.Y.); (Y.W.); (Y.Z.)
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (J.C.); (Q.W.)
| | - Qianbing Wan
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.Y.); (Y.W.); (Y.Z.)
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (J.C.); (Q.W.)
| |
Collapse
|
15
|
Kaboodkhani R, Mehrabani D, Karimi-Busheri F. Achievements and Challenges in Transplantation of Mesenchymal Stem Cells in Otorhinolaryngology. J Clin Med 2021; 10:2940. [PMID: 34209041 PMCID: PMC8267672 DOI: 10.3390/jcm10132940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Otorhinolaryngology enrolls head and neck surgery in various tissues such as ear, nose, and throat (ENT) that govern different activities such as hearing, breathing, smelling, production of vocal sounds, the balance, deglutition, facial animation, air filtration and humidification, and articulation during speech, while absence of these functions can lead to high morbidity and even mortality. Conventional therapies for head and neck damaged tissues include grafts, transplants, and artificial materials, but grafts have limited availability and cause morbidity in the donor site. To improve these limitations, regenerative medicine, as a novel and rapidly growing field, has opened a new therapeutic window in otorhinolaryngology by using cell transplantation to target the healing and replacement of injured tissues. There is a high risk of rejection and tumor formation for transplantation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs); mesenchymal stem cells (MSCs) lack these drawbacks. They have easy expansion and antiapoptotic properties with a wide range of healing and aesthetic functions that make them a novel candidate in otorhinolaryngology for craniofacial defects and diseases and hold immense promise for bone tissue healing; even the tissue sources and types of MSCs, the method of cell introduction and their preparation quality can influence the final outcome in the injured tissue. In this review, we demonstrated the anti-inflammatory and immunomodulatory properties of MSCs, from different sources, to be safely used for cell-based therapies in otorhinolaryngology, while their achievements and challenges have been described too.
Collapse
Affiliation(s)
- Reza Kaboodkhani
- Otorhinolaryngology Research Center, Department of Otorhinolaryngology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71936-36981, Iran;
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71987-74731, Iran
- Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Feridoun Karimi-Busheri
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
16
|
Ścieżyńska A, Soszyńska M, Szpak P, Krześniak N, Malejczyk J, Kalaszczyńska I. Influence of Hypothermic Storage Fluids on Mesenchymal Stem Cell Stability: A Comprehensive Review and Personal Experience. Cells 2021; 10:cells10051043. [PMID: 33925059 PMCID: PMC8146384 DOI: 10.3390/cells10051043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells have generated a great deal of interest due to their potential use in regenerative medicine and tissue engineering. Examples illustrating their therapeutic value across various in vivo models are demonstrated in the literature. However, some clinical trials have not proved their therapeutic efficacy, showing that translation into clinical practice is considerably more difficult and discrepancies in clinical protocols can be a source of failure. Among the critical factors which play an important role in MSCs’ therapeutic efficiency are the method of preservation of the stem cell viability and various characteristics during their storage and transportation from the GMP production facility to the patient’s bedside. The cell storage medium should be considered a key factor stabilizing the environment and greatly influencing cell viability and potency and therefore the effectiveness of advanced therapy medicinal product (ATMP) based on MSCs. In this review, we summarize data from 826 publications concerning the effect of the most frequently used cell preservation solutions on MSC potential as cell-based therapeutic medicinal products.
Collapse
Affiliation(s)
- Aneta Ścieżyńska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (A.Ś.); (M.S.); (P.S.); (J.M.)
- Laboratory of Experimental Immunology, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Marta Soszyńska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (A.Ś.); (M.S.); (P.S.); (J.M.)
- Laboratory of Experimental Immunology, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Patrycja Szpak
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (A.Ś.); (M.S.); (P.S.); (J.M.)
| | - Natalia Krześniak
- Department of Plastic Surgery, Medical Centre for Postgraduate Education, 00-416 Warsaw, Poland;
| | - Jacek Malejczyk
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (A.Ś.); (M.S.); (P.S.); (J.M.)
- Laboratory of Experimental Immunology, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Ilona Kalaszczyńska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (A.Ś.); (M.S.); (P.S.); (J.M.)
- Laboratory for Cell Research and Application, Medical University of Warsaw, 02-097 Warsaw, Poland
- Correspondence:
| |
Collapse
|
17
|
Yang S, Jiang X, Xiao X, Niu C, Xu Y, Huang Z, Kang YJ, Feng L. Controlling the Poly(ε-caprolactone) Degradation to Maintain the Stemness and Function of Adipose-Derived Mesenchymal Stem Cells in Vascular Regeneration Application. Macromol Biosci 2020; 21:e2000226. [PMID: 33094556 DOI: 10.1002/mabi.202000226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 02/05/2023]
Abstract
Biodegradable poly(ε-caprolactone) (PCL) scaffolds with adipose-derived mesenchymal stem cells (ADSCs) have been used in vascular regeneration studies. An evaluation method of the effect of PCL degradation products (DP) on the viability, stemness, and differentiation capacities of ADSCs is established. ADSCs are cultured in medium containing different concentrations of PCL DP before evaluating the effect of PCL DP on the cell apoptosis and proliferation, cell surface antigens, adipogenic and osteogenic differentiation capacities, and capacities to differentiate into endothelial cells and smooth muscle cells. The results demonstrate that PCL DP exceed 0.05 mg mL-1 may change the stemness and differentiation capacities of ADSCs. Therefore, to control the proper concentration of PCL DP is essential for ADSCs in vascular regeneration application.
Collapse
Affiliation(s)
- Shaojie Yang
- S. Yang, Dr. X. Jiang, X. Xiao, C. Niu, Y. Xu, Z. Huang, Prof. Y. J. Kang, Prof. L. Feng, Regenerative Medicine Research Center, Sichuan University West China Hospital, No. 4 Keyuan Road, Wuhou District, Chengdu, 610041, China
| | - Xia Jiang
- S. Yang, Dr. X. Jiang, X. Xiao, C. Niu, Y. Xu, Z. Huang, Prof. Y. J. Kang, Prof. L. Feng, Regenerative Medicine Research Center, Sichuan University West China Hospital, No. 4 Keyuan Road, Wuhou District, Chengdu, 610041, China
| | - Xiong Xiao
- S. Yang, Dr. X. Jiang, X. Xiao, C. Niu, Y. Xu, Z. Huang, Prof. Y. J. Kang, Prof. L. Feng, Regenerative Medicine Research Center, Sichuan University West China Hospital, No. 4 Keyuan Road, Wuhou District, Chengdu, 610041, China
| | - Chuan Niu
- S. Yang, Dr. X. Jiang, X. Xiao, C. Niu, Y. Xu, Z. Huang, Prof. Y. J. Kang, Prof. L. Feng, Regenerative Medicine Research Center, Sichuan University West China Hospital, No. 4 Keyuan Road, Wuhou District, Chengdu, 610041, China
| | - Yue Xu
- S. Yang, Dr. X. Jiang, X. Xiao, C. Niu, Y. Xu, Z. Huang, Prof. Y. J. Kang, Prof. L. Feng, Regenerative Medicine Research Center, Sichuan University West China Hospital, No. 4 Keyuan Road, Wuhou District, Chengdu, 610041, China
| | - Ziwei Huang
- S. Yang, Dr. X. Jiang, X. Xiao, C. Niu, Y. Xu, Z. Huang, Prof. Y. J. Kang, Prof. L. Feng, Regenerative Medicine Research Center, Sichuan University West China Hospital, No. 4 Keyuan Road, Wuhou District, Chengdu, 610041, China
| | - Y James Kang
- S. Yang, Dr. X. Jiang, X. Xiao, C. Niu, Y. Xu, Z. Huang, Prof. Y. J. Kang, Prof. L. Feng, Regenerative Medicine Research Center, Sichuan University West China Hospital, No. 4 Keyuan Road, Wuhou District, Chengdu, 610041, China
| | - Li Feng
- S. Yang, Dr. X. Jiang, X. Xiao, C. Niu, Y. Xu, Z. Huang, Prof. Y. J. Kang, Prof. L. Feng, Regenerative Medicine Research Center, Sichuan University West China Hospital, No. 4 Keyuan Road, Wuhou District, Chengdu, 610041, China
| |
Collapse
|
18
|
Shaqour B, Reigada I, Górecka Ż, Choińska E, Verleije B, Beyers K, Święszkowski W, Fallarero A, Cos P. 3D-Printed Drug Delivery Systems: The Effects of Drug Incorporation Methods on Their Release and Antibacterial Efficiency. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3364. [PMID: 32751210 PMCID: PMC7435804 DOI: 10.3390/ma13153364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023]
Abstract
Additive manufacturing technologies have been widely used in the medical field. More specifically, fused filament fabrication (FFF) 3D-printing technology has been thoroughly investigated to produce drug delivery systems. Recently, few researchers have explored the possibility of directly 3D printing such systems without the need for producing a filament which is usually the feedstock material for the printer. This was possible via direct feeding of a mixture consisting of the carrier polymer and the required drug. However, as this direct feeding approach shows limited homogenizing abilities, it is vital to investigate the effect of the pre-mixing step on the quality of the 3D printed products. Our study investigates the two commonly used mixing approaches-solvent casting and powder mixing. For this purpose, polycaprolactone (PCL) was used as the main polymer under investigation and gentamicin sulfate (GS) was selected as a reference. The produced systems' efficacy was investigated for bacterial and biofilm prevention. Our data show that the solvent casting approach offers improved drug distribution within the polymeric matrix, as was observed from micro-computed topography and scanning electron microscopy visualization. Moreover, this approach shows a higher drug release rate and thus improved antibacterial efficacy. However, there were no differences among the tested approaches in terms of thermal and mechanical properties.
Collapse
Affiliation(s)
- Bahaa Shaqour
- Voxdale bv, Bijkhoevelaan 32C, 2110 Wijnegem, Belgium; (B.V.); (K.B.)
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1 S.7, 2610 Antwerp, Belgium;
| | - Inés Reigada
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland; (I.R.); (A.F.)
| | - Żaneta Górecka
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (Ż.G.); (E.C.); (W.Ś.)
| | - Emilia Choińska
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (Ż.G.); (E.C.); (W.Ś.)
| | - Bart Verleije
- Voxdale bv, Bijkhoevelaan 32C, 2110 Wijnegem, Belgium; (B.V.); (K.B.)
| | - Koen Beyers
- Voxdale bv, Bijkhoevelaan 32C, 2110 Wijnegem, Belgium; (B.V.); (K.B.)
| | - Wojciech Święszkowski
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (Ż.G.); (E.C.); (W.Ś.)
| | - Adyary Fallarero
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland; (I.R.); (A.F.)
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1 S.7, 2610 Antwerp, Belgium;
| |
Collapse
|
19
|
Rumiński S, Kalaszczyńska I, Lewandowska-Szumieł M. Effect of cAMP Signaling Regulation in Osteogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells. Cells 2020; 9:E1587. [PMID: 32629962 PMCID: PMC7408391 DOI: 10.3390/cells9071587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
The successful implementation of adipose-derived mesenchymal stem cells (ADSCs) in bone regeneration depends on efficient osteogenic differentiation. However, a literature survey and our own experience demonstrated that current differentiation methods are not effective enough. Since the differentiation of mesenchymal stem cells (MSCs) into osteoblasts and adipocytes can be regulated by cyclic adenosine monophosphate (cAMP) signaling, we investigated the effects of cAMP activator, forskolin, and inhibitor, SQ 22,536, on the early and late osteogenic differentiation of ADSCs cultured in spheroids or in a monolayer. Intracellular cAMP concentration, protein kinase A (PKA) activity, and inhibitor of DNA binding 2 (ID2) expression examination confirmed cAMP up- and downregulation. cAMP upregulation inhibited the cell cycle and protected ADSCs from osteogenic medium (OM)-induced apoptosis. Surprisingly, the upregulation of cAMP level at the early stages of osteogenic differentiation downregulated the expression of osteogenic markers RUNX2, Osterix, and IBSP, which was more significant in spheroids, and it is used for the more efficient commitment of ADSCs into preosteoblasts, according to the previously reported protocol. However, cAMP upregulation in a culture of ADSCs in spheroids resulted in significantly increased osteocalcin production and mineralization. Thus, undifferentiated and predifferentiated ADSCs respond differently to cAMP pathway stimulation in terms of osteogenesis, which might explain the ambiguous results from the literature.
Collapse
Affiliation(s)
- Sławomir Rumiński
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, 02-004 Warsaw, Poland;
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Ilona Kalaszczyńska
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, 02-004 Warsaw, Poland;
- Laboratory for Cell Research and Application, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Małgorzata Lewandowska-Szumieł
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, 02-004 Warsaw, Poland;
- Laboratory for Cell Research and Application, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
20
|
Sawadkar P, Mohanakrishnan J, Rajasekar P, Rahmani B, Kohli N, Bozec L, García-Gareta E. A Synergistic Relationship between Polycaprolactone and Natural Polymers Enhances the Physical Properties and Biological Activity of Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13587-13597. [PMID: 32107914 DOI: 10.1021/acsami.9b19715] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biomaterials for tissue engineering include natural and synthetic polymers, but their clinical application is still limited due to various disadvantages associated with the use of these polymers. This uncertainty of the polymeric approach in tissue engineering launches an opportunity to address a key question: can we eliminate the disadvantages of both natural and synthetic polymers by combining them to form a synergistic relationship? To answer this question, we fabricated scaffolds from elastin, collagen, fibrin, and electrospun polycaprolactone (PCL) with different ratios. The material characterization of these scaffolds investigated degradation, water contact angle, angiogenesis by an ex ovo chorion allantoic membrane (CAM) assay, and mechanical and structural properties. Biological activity and specific differentiation pathways (MSC, adipogenic, osteogenic, myogenic, and chondrogenic) were studied by using human adipose-derived stem cells. Results indicated that all composite polymers degraded at a different rate, thus affecting their mechanical integrity. Cell-based assays demonstrated continual proliferative and viable properties of the cells on all seeded scaffolds with the particular initiation of a differentiation pathway among which the PCL/collagen/fibrin composite was the most angiogenic material with maximum vasculature. We were able to tailor the physical and biological properties of PCL-based composites to form a synergistic relationship for various tissue regeneration applications.
Collapse
Affiliation(s)
- Prasad Sawadkar
- Regenerative Biomaterials Group, RAFT Institute, Mount Vernon Hospital, Northwood HA6 2RN, U.K
| | - Jeviya Mohanakrishnan
- Regenerative Biomaterials Group, RAFT Institute, Mount Vernon Hospital, Northwood HA6 2RN, U.K
| | - Poojitha Rajasekar
- Division of Respiratory Medicine, University of Nottingham, Nottingham NG5 1PB, U.K
| | - Benyamin Rahmani
- Department of Mechanical Engineering, University College London, London WC1E 6BT, U.K
| | - Nupur Kohli
- Regenerative Biomaterials Group, RAFT Institute, Mount Vernon Hospital, Northwood HA6 2RN, U.K
| | - Laurent Bozec
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Elena García-Gareta
- Regenerative Biomaterials Group, RAFT Institute, Mount Vernon Hospital, Northwood HA6 2RN, U.K
| |
Collapse
|
21
|
Cengiz IF, Maia FR, da Silva Morais A, Silva-Correia J, Pereira H, Canadas RF, Espregueira-Mendes J, Kwon IK, Reis RL, Oliveira JM. Entrapped in cage (EiC) scaffolds of 3D-printed polycaprolactone and porous silk fibroin for meniscus tissue engineering. Biofabrication 2020; 12:025028. [PMID: 32069441 DOI: 10.1088/1758-5090/ab779f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The meniscus has critical functions in the knee joint kinematics and homeostasis. Injuries of the meniscus are frequent, and the lack of a functional meniscus between the femur and tibial plateau can cause articular cartilage degeneration leading to osteoarthritis development and progression. Regeneration of meniscus tissue has outstanding challenges to be addressed. In the current study, novel Entrapped in cage (EiC) scaffolds of 3D-printed polycaprolactone (PCL) and porous silk fibroin were proposed for meniscus tissue engineering. As confirmed by micro-structural analysis the entrapment of silk fibroin was successful, and all scaffolds had excellent interconnectivity (≥99%). The EiC scaffolds had more favorable micro-structure compared with the PCL cage scaffolds by improving the pore size while keeping the interconnectivity almost the same. When compared with the PCL cage, the entrapment of porous silk fibroin into the PCL cage decreased the high compressive modulus in a favorable matter in the wet state thanks to the silk fibroin's high swelling properties. The in vitro studies with human stem cells or meniscocytes seeded constructs, demonstrated that the EiC scaffolds had superior cell adhesion, metabolic activity, and proliferation compared to the PCL cage scaffolds. Upon subcutaneous implantation of scaffolds in nude mice, all groups were free of adverse incidents, and mildly invaded by inflammatory cells with neovascularization, while the EiC scaffolds showed better tissue infiltration. The results of this work indicated that the EiC scaffolds of PCL and silk fibroin are favorable for meniscus tissue engineering, and the findings are encouraging for further studies using a larger animal model.
Collapse
Affiliation(s)
- Ibrahim Fatih Cengiz
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wałach W, Oleszko-Torbus N, Utrata-Wesołek A, Bochenek M, Kijeńska-Gawrońska E, Górecka Ż, Święszkowski W, Dworak A. Processing of (Co)Poly(2-oxazoline)s by Electrospinning and Extrusion from Melt and the Postprocessing Properties of the (Co)Polymers. Polymers (Basel) 2020; 12:E295. [PMID: 32024273 PMCID: PMC7077476 DOI: 10.3390/polym12020295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 01/31/2023] Open
Abstract
Poly(2-oxazoline) (POx) matrices in the form of non-woven fibrous mats and three-dimensional moulds were obtained by electrospinning and fused deposition modelling (FDM), respectively. To obtain these materials, poly(2-isopropyl-2-oxazoline) (PiPrOx) and gradient copolymers of 2-isopropyl- with 2-n-propyl-2-oxazoline (P(iPrOx-nPrOx)), with relatively low molar masses and low dispersity values, were processed. The conditions for the electrospinning of POx were optimised for both water and the organic solvent. Also, the FDM conditions for the fabrication of POx multi-layer moulds of cylindrical or cubical shape were optimised. The properties of the POx after electrospinning and extrusion from melt were determined. The molar mass of all (co)poly(2-oxazoline)s did not change after electrospinning. Also, FDM did not influence the molar masses of the (co)polymers; however, the long processing of the material caused degradation and an increase in molar mass dispersity. The thermal properties changed significantly after processing of POx what was monitored by increase in enthalpy of exo- and endothermic peaks in differential scanning calorimetry (DSC) curve. The influence of the processing conditions on the structure and properties of the final material were evaluated having in a mind their potential application as scaffolds.
Collapse
Affiliation(s)
- Wojciech Wałach
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Skłodowskiej St., 41-819 Zabrze, Poland; (N.O.-T.); (A.U.-W.); (M.B.); (A.D.)
| | - Natalia Oleszko-Torbus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Skłodowskiej St., 41-819 Zabrze, Poland; (N.O.-T.); (A.U.-W.); (M.B.); (A.D.)
| | - Alicja Utrata-Wesołek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Skłodowskiej St., 41-819 Zabrze, Poland; (N.O.-T.); (A.U.-W.); (M.B.); (A.D.)
| | - Marcelina Bochenek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Skłodowskiej St., 41-819 Zabrze, Poland; (N.O.-T.); (A.U.-W.); (M.B.); (A.D.)
| | - Ewa Kijeńska-Gawrońska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska St., 02-507 Warsaw, Poland; (E.K.-G.); (Ż.G.); (W.Ś.)
| | - Żaneta Górecka
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska St., 02-507 Warsaw, Poland; (E.K.-G.); (Ż.G.); (W.Ś.)
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska St., 02-507 Warsaw, Poland; (E.K.-G.); (Ż.G.); (W.Ś.)
| | - Andrzej Dworak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Skłodowskiej St., 41-819 Zabrze, Poland; (N.O.-T.); (A.U.-W.); (M.B.); (A.D.)
| |
Collapse
|
23
|
Zhao Y, Ding X, Dong Y, Sun X, Wang L, Ma X, Zhu M, Xu B, Yang Q. Role of the Calcified Cartilage Layer of an Integrated Trilayered Silk Fibroin Scaffold Used to Regenerate Osteochondral Defects in Rabbit Knees. ACS Biomater Sci Eng 2020; 6:1208-1216. [PMID: 33464868 DOI: 10.1021/acsbiomaterials.9b01661] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The repair of osteochondral defects remains challenging, given the complexity of native osteochondral tissue and the limited self-repair capacity of cartilage. Osteochondral tissue engineering is a promising strategy. Here, we fabricated a biomimetic osteochondral scaffold using silk fibroin and hydroxyapatite, including a calcified cartilage layer (CCL). We studied the role played by the CCL in terms of cell viability in vivo. We established osteochondral defects in rabbit knees to investigate the effects of CCL-containing scaffolds with or without adipose tissue-derived stem cells (ADSCs). We evaluated osteochondral tissue regeneration by calculating gross observational scores, via histological and immunohistochemical assessments, by performing quantitative biochemical and biomechanical analyses of new osteochondral tissue, and via microcomputed tomography of new bone at 4, 8, and 12 weeks after surgery. In terms of surface roughness and integrity, the CCL + ADSCs group was better than the CCL and the non-CCL + ADSCs groups at all time points tested; the glycosaminoglycan and collagen type II levels of the CCL + ADSCs group were highest, reflecting the important role played by the CCL in cartilage tissue repair. Subchondral bone smoothness was better in the CCL + ADSCs group than in the non-CCL + ADSCs and CCL groups. The CCL promoted smooth subchondral bone regeneration but did not obviously affect bone strength or quality. In conclusion, a biomimetic osteochondral scaffold with a CCL, combined with autologous ADSCs, satisfactorily regenerated a rabbit osteochondral defect. The CCL enhances cartilage and subchondral bone regeneration.
Collapse
Affiliation(s)
- Yanhong Zhao
- Stomatological Hospital of Tianjin Medical University, 12 Qixiangtai Road, Heping District, Tianjin 300070, People's Republic of China
| | - Xiaoming Ding
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, 406 Jiefang Nan Road, Hexi District, Tianjin 300211, People's Republic of China.,Department of Orthopedics, Rizhao Traditional Chinese Medicine Hospital, 35 Haiwang Road, Donggang District, Rizhao, Shandong 276800, People's Republic of China
| | - Yunsheng Dong
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, People's Republic of China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, 406 Jiefang Nan Road, Hexi District, Tianjin 300211, People's Republic of China
| | - Lianyong Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, People's Republic of China
| | - Xinlong Ma
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, 406 Jiefang Nan Road, Hexi District, Tianjin 300211, People's Republic of China
| | - Meifeng Zhu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, People's Republic of China
| | - Baoshan Xu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, 406 Jiefang Nan Road, Hexi District, Tianjin 300211, People's Republic of China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, 406 Jiefang Nan Road, Hexi District, Tianjin 300211, People's Republic of China
| |
Collapse
|
24
|
Yu X, Hu L, Wang G, Huang T, Wei W, Wang M, Xia Z. DNA-mediated biomineralization of calcium-deficient hydroxyapatite for bone tissue engineering. NEW J CHEM 2020. [DOI: 10.1039/c9nj04921e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A random DNA duplex was utilized as the biotemplate to mediate the biomineralization of calcium-deficient hydroxyapatite with osteoconductive properties.
Collapse
Affiliation(s)
- Xinsheng Yu
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing
- China
| | - Lianzhe Hu
- Chongqing Key Laboratory of Green Synthesis and Applications
- College of Chemistry
- Chongqing Normal University
- Chongqing
- China
| | - Guixia Wang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471934
- China
| | - Ting Huang
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing
- China
| | - Weili Wei
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing
- China
| | - Min Wang
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing
- China
| | - Zhining Xia
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing
- China
| |
Collapse
|
25
|
Chen J, Tu C, Tang X, Li H, Yan J, Ma Y, Wu H, Liu C. The combinatory effect of sinusoidal electromagnetic field and VEGF promotes osteogenesis and angiogenesis of mesenchymal stem cell-laden PCL/HA implants in a rat subcritical cranial defect. Stem Cell Res Ther 2019; 10:379. [PMID: 31842985 PMCID: PMC6915868 DOI: 10.1186/s13287-019-1464-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Restoration of massive bone defects remains a huge challenge for orthopedic surgeons. Insufficient vascularization and slow bone regeneration limited the application of tissue engineering in bone defect. The effect of electromagnetic field (EMF) on bone defect has been reported for many years. However, sinusoidal EMF (SEMF) combined with tissue engineering in bone regeneration remains poorly investigated. METHODS In the present study, we investigated the effect of SEMF and vascular endothelial growth factor (VEGF) on osteogenic and vasculogenic differentiation of rat bone marrow-derived mesenchymal stem cells (rBMSCs). Furthermore, pretreated rBMSC- laden polycaprolactone-hydroxyapatite (PCL/HA) scaffold was constructed and implanted into the subcritical cranial defect of rats. The bone formation and vascularization were evaluated 4 and 12 weeks after implantation. RESULTS It was shown that SEMF and VEGF could enhance the protein and mRNA expression levels of osteoblast- and endothelial cell-related markers, respectively. The combinatory effect of SEMF and VEGF slightly promoted the angiogenic differentiation of rBMSCs. The proteins of Wnt1, low-density lipoprotein receptor-related protein 6 (LRP-6), and β-catenin increased in all inducted groups, especially in SEMF + VEGF group. The results indicated that Wnt/β-catenin pathway might participate in the osteogenic and angiogenic differentiation of rBMSCs. Histological evaluation and reconstructed 3D graphs revealed that tissue-engineered constructs significantly promoted the new bone formation and angiogenesis compared to other groups. CONCLUSION The combinatory effect of SEMF and VEGF raised an efficient approach to enhance the osteogenesis and vascularization of tissue-engineered constructs, which provided a useful guide for regeneration of bone defects.
Collapse
Affiliation(s)
- Jingyuan Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
| | - Chang Tu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
| | - Xiangyu Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
| | - Hao Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
| | - Jiyuan Yan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
| | - Yongzhuang Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China.
| | - Chaoxu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China.
| |
Collapse
|
26
|
Unagolla JM, Jayasuriya AC. Enhanced cell functions on graphene oxide incorporated 3D printed polycaprolactone scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:1-11. [PMID: 31146979 PMCID: PMC6546300 DOI: 10.1016/j.msec.2019.04.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/28/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
For tissue engineering applications, a porous scaffold with an interconnected network is essential to facilitate the cell attachment and proliferation in a three dimensional (3D) structure. This study aimed to fabricate the scaffolds by an extrusion-based 3D printer using a blend of polycaprolactone (PCL), and graphene oxide (GO) as a favorable platform for bone tissue engineering. The mechanical properties, morphology, biocompatibility, and biological activities such as cell proliferation and differentiation were studied concerning the two different pore sizes; 400 μm, and 800 μm, and also with two different GO content; 0.1% (w/w) and 0.5% (w/w). The compressive strength of the scaffolds was not significantly changed due to the small amount of GO, but, as expected scaffolds with 400 μm pores showed a higher compressive modulus in comparison to the scaffolds with 800 μm pores. The data indicated that the cell attachment and proliferation were increased by adding a small amount of GO. According to the results, pore size did not play a significant role in cell proliferation and differentiation. Alkaline Phosphate (ALP) activity assay further confirmed that the GO increase the ALP activity and further Elemental analysis of Calcium and Phosphorous showed that the GO increased the mineralization compared to PCL only scaffolds. Western blot analysis showed the porous structure facilitate the secretion of bone morphogenic protein-2 (BMP-2) and osteopontin at both day 7 and 14 which galvanizes the osteogenic capability of PCL and PCL + GO scaffolds.
Collapse
Affiliation(s)
- Janitha M Unagolla
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43607, USA
| | - Ambalangodage C Jayasuriya
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43607, USA; Department of Orthopedic Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
27
|
Kunisch E, Gunnella F, Wagner S, Dees F, Maenz S, Bossert J, Jandt KD, Kinne RW. The poly (l-lactid-co-glycolide; PLGA) fiber component of brushite-forming calcium phosphate cement induces the osteogenic differentiation of human adipose tissue-derived stem cells. ACTA ACUST UNITED AC 2019; 14:055012. [PMID: 31465298 DOI: 10.1088/1748-605x/ab3544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A brushite-forming calcium phosphate cement (CPC) was mechanically stabilized by addition of poly (l-lactid-co-glycolide; PLGA) fibers (≤10% w/w). It proved highly biocompatible and its fiber component enhanced bone formation in a sheep lumbar vertebroplasty model. However, possible effects on the osteogenic differentiation of resident mesenchymal stem cells (MSCs) remained unexplored. The present study used a novel approach, simultaneously analyzing the influence of a solid CPC scaffold and its relatively low PLGA proportion (a mimicry of natural bone) on osteogenic, chondrogenic, and adipogenic differentiation, as well as the pluripotency of human adipose tissue-derived mesenchymal stem cells (hASCs). hASCs were cultured on CPC discs with/without PLGA fibers (5% and 10%) in the absence of osteogenic medium for 3, 7, and 14 d. Gene expression of osteogenic markers (Runx2, osterix, alkaline phosphatase, collagen I, osteonectin, osteopontin, osteocalcin), chondrogenic markers (collagen II, Sox9, aggrecan), adipogenic markers (PPARG, Leptin, and FABP4), and pluripotency markers (Nanog, Tert, Rex) was analyzed by RT-PCR. The ability of hASCs to synthesize alkaline phosphatase was also evaluated. Cell number and viability were determined by fluorescein diacetate/propidium iodide staining. Compared to pure CPC, cultivation of hASCs on fiber-reinforced CPC transiently induced the gene expression of Runx2 and osterix (day 3), and long-lastingly augmented the expression of alkaline phosphatase (and its enzyme activity), collagen I, and osteonectin (until day 14). In contrast, augmented expression of all chondrogenic, adipogenic, and pluripotency markers was limited to day 3, followed by significant downregulation. Cultivation of hASCs on fiber-reinforced CPC reduced the cell number, but not the proportion of viable cells (viability > 95%). The PLGA component of fiber-reinforced, brushite-forming CPC supports long-lasting osteogenic differentiation of hASCs, whereas chondrogenesis, adipogenesis, and pluripotency are initially augmented, but subsequently suppressed. In view of parallel animal results, PLGA fibers may represent an interesting clinical target for future improvement of CPC- based bone regeneration.
Collapse
Affiliation(s)
- Elke Kunisch
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Häussling V, Deninger S, Vidoni L, Rinderknecht H, Ruoß M, Arnscheidt C, Athanasopulu K, Kemkemer R, Nussler AK, Ehnert S. Impact of Four Protein Additives in Cryogels on Osteogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells. Bioengineering (Basel) 2019; 6:E67. [PMID: 31394780 PMCID: PMC6784125 DOI: 10.3390/bioengineering6030067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Human adipose-derived mesenchymal stem/stromal cells (Ad-MSCs) have great potential for bone tissue engineering. Cryogels, mimicking the three-dimensional structure of spongy bone, represent ideal carriers for these cells. We developed poly(2-hydroxyethyl methacrylate) cryogels, containing hydroxyapatite to mimic inorganic bone matrix. Cryogels were additionally supplemented with different types of proteins, namely collagen (Coll), platelet-rich plasma (PRP), immune cells-conditioned medium (CM), and RGD peptides (RGD). The different protein components did not affect scaffolds' porosity or water-uptake capacity, but altered pore size and stiffness. Stiffness was highest in scaffolds with PRP (82.3 kPa), followed by Coll (55.3 kPa), CM (45.6 kPa), and RGD (32.8 kPa). Scaffolds with PRP, CM, and Coll had the largest pore diameters (~60 µm). Ad-MSCs were osteogenically differentiated on these scaffolds for 14 days. Cell attachment and survival rates were comparable for all four scaffolds. Runx2 and osteocalcin levels only increased in Ad-MSCs on Coll, PRP and CM cryogels. Osterix levels increased slightly in Ad-MSCs differentiated on Coll and PRP cryogels. With differentiation alkaline phosphatase activity decreased under all four conditions. In summary, besides Coll cryogel our PRP cryogel constitutes as an especially suitable carrier for bone tissue engineering. This is of special interest, as this scaffold can be generated with patients' PRP.
Collapse
Affiliation(s)
- Victor Häussling
- Siegfried Weller Research Institute, BG Unfallklinik Tuebingen, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Sebastian Deninger
- Siegfried Weller Research Institute, BG Unfallklinik Tuebingen, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Laura Vidoni
- Siegfried Weller Research Institute, BG Unfallklinik Tuebingen, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Helen Rinderknecht
- Siegfried Weller Research Institute, BG Unfallklinik Tuebingen, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Marc Ruoß
- Siegfried Weller Research Institute, BG Unfallklinik Tuebingen, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Christian Arnscheidt
- Siegfried Weller Research Institute, BG Unfallklinik Tuebingen, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Kiriaki Athanasopulu
- Department of Applied Chemistry Reutlingen University, 72762 Reutlingen, Germany
| | - Ralf Kemkemer
- Department of Applied Chemistry Reutlingen University, 72762 Reutlingen, Germany
| | - Andreas K Nussler
- Siegfried Weller Research Institute, BG Unfallklinik Tuebingen, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, 72074 Tübingen, Germany.
| | - Sabrina Ehnert
- Siegfried Weller Research Institute, BG Unfallklinik Tuebingen, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
29
|
Prasopthum A, Cooper M, Shakesheff KM, Yang J. Three-Dimensional Printed Scaffolds with Controlled Micro-/Nanoporous Surface Topography Direct Chondrogenic and Osteogenic Differentiation of Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18896-18906. [PMID: 31067023 DOI: 10.1021/acsami.9b01472] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The effect of topography in three-dimensional (3D) printed polymer scaffolds on stem cell differentiation is a significantly underexplored area. Compared to two-dimensional (2D) biomaterials on which various well-defined topographies have been incorporated and shown to direct a range of cell behaviors including adhesion, cytoskeleton organization, and differentiation, incorporating topographical features to 3D polymer scaffolds is challenging due to the difficulty of accessing the inside of a porous scaffold. Only the roughened strut surface has been introduced to 3D printed porous scaffolds. Here, a rapid, single-step 3D printing method to fabricate polymeric scaffolds consisting of microstruts (ca. 60 μm) with micro-/nanosurface pores (0.2-2.4 μm) has been developed based on direct ink writing of an agitated viscous polymer solution. The density, size, and alignment of these pores can be controlled by changing the degree of agitation or the speed of printing. Three-dimensional printed scaffolds with micro-/nanoporous struts enhanced chondrogenic and osteogenic differentiation of mesenchymal stem cells (MSCs) without soluble differentiation factors. The topography also selectively affected adhesion, morphology, and differentiation of MSC to chondrogenic and osteogenic lineages depending on the composition of the differentiation medium. This fabrication method can potentially be used for a wide range of polymers where desirable architecture and topography are required.
Collapse
|
30
|
Rindone AN, Kachniarz B, Achebe CC, Riddle RC, O'Sullivan AN, Dorafshar AH, Grayson WL. Heparin-Conjugated Decellularized Bone Particles Promote Enhanced Osteogenic Signaling of PDGF-BB to Adipose-Derived Stem Cells in Tissue Engineered Bone Grafts. Adv Healthc Mater 2019; 8:e1801565. [PMID: 30941920 DOI: 10.1002/adhm.201801565] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/17/2019] [Indexed: 12/29/2022]
Abstract
Adipose-derived stem cells (ASCs) are a promising cell source for regenerating critical-sized craniofacial bone defects, but their clinical use is limited due to the supraphysiological levels of bone morphogenetic protein-2 required to induce bone formation in large grafts. It has been recently reported that platelet-derived growth factor-BB (PDGF) directly enhances the osteogenesis of ASCs when applied at physiological concentrations. In this study, a biomimetic delivery system that tethers PDGF to decellularized bone matrix (DCB) is developed to enhance osteogenic signaling in bone grafts by colocalizing PDGF-extracellular matrix cues. Heparin is conjugated to DCB particles (HC-DCB) to promote sustained binding of PDGF via electrostatic interactions. HC-DCB particles bind to PDGF with >99% efficiency and release significantly less PDGF over 21 days compared to nonconjugated DCB particles (1.1% vs 22.8%). HC-DCB-PDGF signaling in polycaprolactone (PCL)-fibrin grafts promotes >40 µg Ca2+ µg-1 DNA deposition by ASCs during in vitro osteogenic culture compared to grafts without HC-DCB or PDGF. Furthermore, more bone formation is observed in grafts with HC-DCB-PDGF at 12 weeks following implantation of grafts into murine critical-sized calvarial defects. Collectively, these results demonstrate that HC-DCB enhances the osteogenic signaling of PDGF to ASCs and may be applied to promote ASC-mediated bone regeneration in critical-sized defects.
Collapse
Affiliation(s)
- Alexandra N. Rindone
- Translational Tissue Engineering CenterJohns Hopkins University School of Medicine Baltimore MD 21287 USA
- Department of Biomedical EngineeringJohns Hopkins University School of Medicine Baltimore MD 21205 USA
| | - Bartlomiej Kachniarz
- Department of Plastic and Reconstructive SurgeryJohns Hopkins University School of Medicine Baltimore MD 21205 USA
| | - Chukwuebuka C. Achebe
- Department of Biomedical EngineeringJohns Hopkins University School of Medicine Baltimore MD 21205 USA
| | - Ryan C. Riddle
- Department of Orthopaedic SurgeryJohns Hopkins University School of Medicine Baltimore MD 21205 USA
| | - Aine N. O'Sullivan
- Translational Tissue Engineering CenterJohns Hopkins University School of Medicine Baltimore MD 21287 USA
| | - Amir H. Dorafshar
- Department of Plastic and Reconstructive SurgeryJohns Hopkins University School of Medicine Baltimore MD 21205 USA
| | - Warren L. Grayson
- Translational Tissue Engineering CenterJohns Hopkins University School of Medicine Baltimore MD 21287 USA
- Department of Biomedical EngineeringJohns Hopkins University School of Medicine Baltimore MD 21205 USA
- Department of Materials Science and EngineeringJohns Hopkins University Baltimore MD 21218 USA
- Institute for NanoBioTechnologyJohns Hopkins University Baltimore MD 21218 USA
| |
Collapse
|
31
|
Siddiqui N, Asawa S, Birru B, Baadhe R, Rao S. PCL-Based Composite Scaffold Matrices for Tissue Engineering Applications. Mol Biotechnol 2019; 60:506-532. [PMID: 29761314 DOI: 10.1007/s12033-018-0084-5] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Biomaterial-based scaffolds are important cues in tissue engineering (TE) applications. Recent advances in TE have led to the development of suitable scaffold architecture for various tissue defects. In this narrative review on polycaprolactone (PCL), we have discussed in detail about the synthesis of PCL, various properties and most recent advances of using PCL and PCL blended with either natural or synthetic polymers and ceramic materials for TE applications. Further, various forms of PCL scaffolds such as porous, films and fibrous have been discussed along with the stem cells and their sources employed in various tissue repair strategies. Overall, the present review affords an insight into the properties and applications of PCL in various tissue engineering applications.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Stem Cell Research Laboratory, Department of Biotechnology, NIT Warangal, Warangal, Telangana, 506004, India
| | - Simran Asawa
- Stem Cell Research Laboratory, Department of Biotechnology, NIT Warangal, Warangal, Telangana, 506004, India
| | - Bhaskar Birru
- Stem Cell Research Laboratory, Department of Biotechnology, NIT Warangal, Warangal, Telangana, 506004, India
| | - Ramaraju Baadhe
- Stem Cell Research Laboratory, Department of Biotechnology, NIT Warangal, Warangal, Telangana, 506004, India
| | - Sreenivasa Rao
- Stem Cell Research Laboratory, Department of Biotechnology, NIT Warangal, Warangal, Telangana, 506004, India.
| |
Collapse
|
32
|
Characterization and Optimization of the Seeding Process of Adipose Stem Cells on the Polycaprolactone Scaffolds. Stem Cells Int 2019; 2019:1201927. [PMID: 30915123 PMCID: PMC6402208 DOI: 10.1155/2019/1201927] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/24/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
Abstract
The purpose of the current study was to evaluate the usefulness of adipose-derived stem cells (ASCs) for bone injury therapy. Lipoaspirates were collected from the abdomen regions of 17 healthy female donors (mean age 49 ± 6 years) using Coleman technique or Body-jet liposuction. In the present study, the primary objective was the in vitro characteristics of human ASCs. The secondary objective was the optimization of the cell seeding process on 3D-printed scaffolds using polycaprolactone (PCL) or polycaprolactone covered with tricalcium phosphate (PCL + 5% TCP). Biological evaluation of human ASC showed high efficiency of isolation obtaining a satisfying amount of homogeneous cell populations. Results suggest that ASCs can be cultured in vitro for a long time without impairing their proliferative capacity. Growth kinetics shows that the highest number of cells can be achieved in passage 5 and after the 16th passage; there is a significant decrease of cell numbers and their proliferative potential. The percentage of colony forming units from the adipose stem cells is 8% ± 0.63% (p < 0.05). It was observed that the accumulation of calcium phosphate in the cells in vitro, marked with Alizarin Red S, was increased along with the next passage. Analysis of key parameters critically related to the cell seeding process shows that volume of cell suspension and propagation time greatly improve the efficiency of seeding both in PCL and PCL + 5% TCP scaffolds. The cell seeding efficiency did differ significantly between scaffold materials and cell seeding methods (p < 0.001). Increased seeding efficiency was observed when using the saturation of cell suspension into scaffolds with additional incubation. Alkaline phosphatase level production in PCL + 5% TCP scaffold was better than in PCL-only scaffold. The study results can be used for the optimization of the seeding process and quantification methods determining the successful implementation of the preclinical model study in the future tissue engineering strategies.
Collapse
|
33
|
Celikkin N, Mastrogiacomo S, Walboomers XF, Swieszkowski W. Enhancing X-ray Attenuation of 3D Printed Gelatin Methacrylate (GelMA) Hydrogels Utilizing Gold Nanoparticles for Bone Tissue Engineering Applications. Polymers (Basel) 2019; 11:E367. [PMID: 30960351 PMCID: PMC6419199 DOI: 10.3390/polym11020367] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/20/2022] Open
Abstract
Bone tissue engineering is a rapidly growing field which is currently progressing toward clinical applications. Effective imaging methods for longitudinal studies are critical to evaluating the new bone formation and the fate of the scaffolds. Computed tomography (CT) is a prevailing technique employed to investigate hard tissue scaffolds; however, the CT signal becomes weak in mainly-water containing materials, which hinders the use of CT for hydrogels-based materials. Nevertheless, hydrogels such as gelatin methacrylate (GelMA) are widely used for tissue regeneration due to their optimal biological properties and their ability to induce extracellular matrix formation. To date, gold nanoparticles (AuNPs) have been suggested as promising contrast agents, due to their high X-ray attenuation, biocompatibility, and low toxicity. In this study, the effects of different sizes and concentrations of AuNPs on the mechanical properties and the cytocompatibility of the bulk GelMA-AuNPs scaffolds were evaluated. Furthermore, the enhancement of CT contrast with the cytocompatible size and concentration of AuNPs were investigated. 3D printed GelMA and GelMA-AuNPs scaffolds were obtained and assessed for the osteogenic differentiation of mesenchymal stem cells (MSC). Lastly, 3D printed GelMA and GelMA-AuNPs scaffolds were scanned in a bone defect utilizing µCT as the proof of concept that the GelMA-AuNPs are good candidates for bone tissue engineering with enhanced visibility for µCT imaging.
Collapse
Affiliation(s)
- Nehar Celikkin
- Faculty of Material Science and Engineering, Warsaw University of Technology, 00-661 Warszawa, Poland.
| | - Simone Mastrogiacomo
- Radboud University Medical Center, Department of Biomaterials, Philips van Leijdenlaan 25, 6525 EX, Nijmegen, The Netherlands.
- Laboratory of Functional and Molecular Imaging, NINDS, National Institutes of Health, Building 10, 5S261, Bethesda, MD 20892, USA.
| | - X Frank Walboomers
- Radboud University Medical Center, Department of Biomaterials, Philips van Leijdenlaan 25, 6525 EX, Nijmegen, The Netherlands.
| | - Wojciech Swieszkowski
- Faculty of Material Science and Engineering, Warsaw University of Technology, 00-661 Warszawa, Poland.
| |
Collapse
|
34
|
Kurzyk A, Dębski T, Święszkowski W, Pojda Z. Comparison of adipose stem cells sources from various locations of rat body for their application for seeding on polymer scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:376-397. [DOI: 10.1080/09205063.2019.1570433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Agata Kurzyk
- Department of Regenerative Medicine, Maria Sklodowska Curie Institute – Oncology Center, Warsaw, Poland
| | - Tomasz Dębski
- Department of Regenerative Medicine, Maria Sklodowska Curie Institute – Oncology Center, Warsaw, Poland
| | - Wojciech Święszkowski
- Materials Design Division, Faculty of Material Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Zygmunt Pojda
- Department of Regenerative Medicine, Maria Sklodowska Curie Institute – Oncology Center, Warsaw, Poland
| |
Collapse
|
35
|
Engineered bone for probing organotypic growth and therapy response of prostate cancer tumoroids in vitro. Biomaterials 2019; 197:296-304. [PMID: 30682644 DOI: 10.1016/j.biomaterials.2019.01.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/24/2018] [Accepted: 01/20/2019] [Indexed: 01/23/2023]
Abstract
Mechanistic analysis of metastatic prostate cancer (PCa) biology and therapy response critically depends upon clinically relevant three-dimensional (3D) bone-like, organotypic culture. We here combine an engineered bone-mimetic environment (BME) with longitudinal microscopy to test the growth and therapy response of 3D PCa tumoroids. Besides promoting both tumor-cell autonomous and microenvironment-dependent growth in PCa cell lines and patient-derived xenograft cells, the BME enables in vivo-like tumor cell response to therapy, and reveals bone stroma dependent resistance to chemotherapy and BME-targeted localization and induction of cytoxicity by Radium-223. The BME platform will allow the propagation, compound screening and mechanistic dissection of patient-derived bone tumor isolates and applications toward personalized medicine.
Collapse
|
36
|
Wu YD, Li M, Liao X, Li SH, Yan JX, Fan L, She WL, Song JX, Liu HW. Effects of storage culture media, temperature and duration on human adipose‑derived stem cell viability for clinical use. Mol Med Rep 2019; 19:2189-2201. [PMID: 30664198 PMCID: PMC6390032 DOI: 10.3892/mmr.2019.9842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) are mesenchymal stem cells that are often used in regenerative medicine. Maintaining ADSC viability is important, as this optimizes the curative effects of cell therapy. However, the optimal conditions for cell viability preservation remain unknown. The present study aimed to acquire a better protocol for ADSC storage by comparing the effects of various solutions and temperatures for ADSC preservation, in order to suggest the most effective methods of short-term ADSC preservation for clinical use. ADSCs from passage 2 were suspended in solutions comprising 0.9% NaCl, 10% human serum (HS) or 10% platelet-rich plasma (PRP). Suspended cells were maintained at 4°C or room temperature (~26°C) for 2, 4 and 6 h. The differentiation capacity, apoptosis and proliferation of ADSCs were determined by oil red O/alizarin red S staining, flow cytometry, and a cell counting kit-8 cell proliferation assay, respectively. In addition, reverse transcription-quantitative polymerase chain reaction and western blot analysis was performed. The results revealed that proliferation of ADSCs decreased with time. The optimal time for ADSC use was ~2 h, and 4 h was determined to be the latest time that ADSCs should be used. The 10% HS group had the highest survival rate, followed by the 10% PRP group; these two groups had higher survival rates than the 0.9% NaCl group (P<0.05). HS and PRP at 4°C enhanced the ADSC proliferation rate (P<0.05), although the difference between these two groups was insignificant (P>0.05). In conclusion, the optimal time to use ADSCs was <2 h, and should not exceed 4 h. It was recommended that, for the transportation and short-term storage of ADSCs during clinical use, they should be stored with 10% HS at 4°C to maintain ADSC viability. In addition, this was a cost-effective and safe method.
Collapse
Affiliation(s)
- Yin-Di Wu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong 510630, P.R. China
| | - Meng Li
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong 510630, P.R. China
| | - Xuan Liao
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong 510630, P.R. China
| | - Sheng-Hong Li
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong 510630, P.R. China
| | - Jian-Xin Yan
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong 510630, P.R. China
| | - Lei Fan
- Department of Orthopedics, Third Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Wen-Li She
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong 510630, P.R. China
| | - Jian-Xin Song
- Department of Plastic Surgery, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Hong-Wei Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
37
|
Yan Y, Chen H, Zhang H, Guo C, Yang K, Chen K, Cheng R, Qian N, Sandler N, Zhang YS, Shen H, Qi J, Cui W, Deng L. Vascularized 3D printed scaffolds for promoting bone regeneration. Biomaterials 2019; 190-191:97-110. [DOI: 10.1016/j.biomaterials.2018.10.033] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 10/28/2022]
|
38
|
Kosik-Kozioł A, Graham E, Jaroszewicz J, Chlanda A, Kumar PTS, Ivanovski S, Święszkowski W, Vaquette C. Surface Modification of 3D Printed Polycaprolactone Constructs via a Solvent Treatment: Impact on Physical and Osteogenic Properties. ACS Biomater Sci Eng 2018; 5:318-328. [DOI: 10.1021/acsbiomaterials.8b01018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Alicja Kosik-Kozioł
- Faculty of Materials Science and Engineering, Warsaw University of Technology (WUT), 02-507 Warsaw, Poland
| | - Elizabeth Graham
- Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| | - Jakub Jaroszewicz
- Faculty of Materials Science and Engineering, Warsaw University of Technology (WUT), 02-507 Warsaw, Poland
| | - Adrian Chlanda
- Faculty of Materials Science and Engineering, Warsaw University of Technology (WUT), 02-507 Warsaw, Poland
| | - P. T. Sudheesh Kumar
- School of Dentistry and Oral Health, Gold Coast Campus, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Saso Ivanovski
- School of Dentistry and Oral Health, Gold Coast Campus, Griffith University, Gold Coast, Queensland 4222, Australia
- School of Dentistry, The University of Queensland (UQ), Brisbane, Queensland 4006, Australia
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology (WUT), 02-507 Warsaw, Poland
| | - Cedryck Vaquette
- Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
- School of Dentistry, The University of Queensland (UQ), Brisbane, Queensland 4006, Australia
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| |
Collapse
|
39
|
Liu G, Ding Z, Yuan Q, Xie H, Gu Z. Multi-Layered Hydrogels for Biomedical Applications. Front Chem 2018; 6:439. [PMID: 30320070 PMCID: PMC6167445 DOI: 10.3389/fchem.2018.00439] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/03/2018] [Indexed: 02/05/2023] Open
Abstract
Multi-layered hydrogels with organization of various functional layers have been the materials of choice for biomedical applications. This review summarized the recent progress of multi-layered hydrogels according to their preparation methods: layer-by-layer self-assembly technology, step-wise technique, photo-polymerization technique and sequential electrospinning technique. In addition, their morphology and biomedical applications were also introduced. At the end of this review, we discussed the current challenges to the development of multi-layered hydrogels and pointed out that 3D printing may provide a new platform for the design of multi-layered hydrogels and expand their applications in the biomedical field.
Collapse
Affiliation(s)
- Guiting Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Zhangfan Ding
- State Key Laboratory of Oral Diseases, Department of Head and Neck Oncology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qijuan Yuan
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Huixu Xie
- State Key Laboratory of Oral Diseases, Department of Head and Neck Oncology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhipeng Gu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
40
|
Reumann MK, Linnemann C, Aspera-Werz RH, Arnold S, Held M, Seeliger C, Nussler AK, Ehnert S. Donor Site Location Is Critical for Proliferation, Stem Cell Capacity, and Osteogenic Differentiation of Adipose Mesenchymal Stem/Stromal Cells: Implications for Bone Tissue Engineering. Int J Mol Sci 2018; 19:ijms19071868. [PMID: 29949865 PMCID: PMC6073876 DOI: 10.3390/ijms19071868] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 12/14/2022] Open
Abstract
Human adipose mesenchymal stem/stromal cells (Ad-MSCs) have been proposed as a suitable option for bone tissue engineering. However, donor age, weight, and gender might affect the outcome. There is still a lack of knowledge of the effects the donor tissue site might have on Ad-MSCs function. Thus, this study investigated proliferation, stem cell, and osteogenic differentiation capacity of human Ad-MSCs obtained from subcutaneous fat tissue acquired from different locations (abdomen, hip, thigh, knee, and limb). Ad-MSCs from limb and knee showed strong proliferation despite the presence of osteogenic stimuli, resulting in limited osteogenic characteristics. The less proliferative Ad-MSCs from hip and thigh showed the highest alkaline phosphatase (AP) activity and matrix mineralization. Ad-MSCs from the abdomen showed good proliferation and osteogenic characteristics. Interestingly, the observed differences were not dependent on donor age, weight, or gender, but correlated with the expression of Sox2, Lin28A, Oct4α, and Nanog. Especially, low basal Sox2 levels seemed to be pivotal for osteogenic differentiation. Our data clearly show that the donor tissue site affects the proliferation and osteogenic differentiation of Ad-MSCs significantly. Thus, for bone tissue engineering, the donor site of the adipose tissue from which the Ad-MSCs are derived should be adapted depending on the requirements, e.g., cell number and differentiation state.
Collapse
Affiliation(s)
- Marie K Reumann
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Research Institute, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Caren Linnemann
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Research Institute, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Romina H Aspera-Werz
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Research Institute, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Sigrid Arnold
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Research Institute, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Manuel Held
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Research Institute, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
- Department of Hand, Plastic, Reconstructive and Aesthetic Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Claudine Seeliger
- Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, 85354 Freising, Germany.
- Experimental Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany.
| | - Andreas K Nussler
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Research Institute, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Sabrina Ehnert
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Research Institute, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| |
Collapse
|
41
|
Celikkin N, Simó Padial J, Costantini M, Hendrikse H, Cohn R, Wilson CJ, Rowan AE, Święszkowski W. 3D Printing of Thermoresponsive Polyisocyanide (PIC) Hydrogels as Bioink and Fugitive Material for Tissue Engineering. Polymers (Basel) 2018; 10:polym10050555. [PMID: 30966589 PMCID: PMC6415434 DOI: 10.3390/polym10050555] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 11/29/2022] Open
Abstract
Despite the rapid and great developments in the field of 3D hydrogel printing, a major ongoing challenge is represented by the development of new processable materials that can be effectively used for bioink formulation. In this work, we present an approach to 3D deposit, a new class of fully-synthetic, biocompatible PolyIsoCyanide (PIC) hydrogels that exhibit a reverse gelation temperature close to physiological conditions (37 °C). Being fully-synthetic, PIC hydrogels are particularly attractive for tissue engineering, as their properties—such as hydrogel stiffness, polymer solubility, and gelation kinetics—can be precisely tailored according to process requirements. Here, for the first time, we demonstrate the feasibility of both 3D printing PIC hydrogels and of creating dual PIC-Gelatin MethAcrylate (GelMA) hydrogel systems. Furthermore, we propose the use of PIC as fugitive hydrogel to template structures within GelMA hydrogels. The presented approach represents a robust and valid alternative to other commercial thermosensitive systems—such as those based on Pluronic F127—for the fabrication of 3D hydrogels through additive manufacturing technologies to be used as advanced platforms in tissue engineering.
Collapse
Affiliation(s)
- Nehar Celikkin
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska str., 02-507 Warsaw, Poland.
| | - Joan Simó Padial
- Department of Molecular Materials, Radboud Universities, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
- Noviotech B.V., Molenveldlaan 43, 6523 RJ Nijmegen, The Netherlands.
| | - Marco Costantini
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska str., 02-507 Warsaw, Poland.
| | - Hans Hendrikse
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska str., 02-507 Warsaw, Poland.
- Department of Molecular Materials, Radboud Universities, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Rebecca Cohn
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska str., 02-507 Warsaw, Poland.
| | | | - Alan Edward Rowan
- Department of Molecular Materials, Radboud Universities, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska str., 02-507 Warsaw, Poland.
| |
Collapse
|
42
|
Kuss MA, Wu S, Wang Y, Untrauer JB, Li W, Lim JY, Duan B. Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture. J Biomed Mater Res B Appl Biomater 2017; 106:1788-1798. [PMID: 28901689 DOI: 10.1002/jbm.b.33994] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/25/2017] [Accepted: 08/28/2017] [Indexed: 01/11/2023]
Abstract
Vascularization is a fundamental prerequisite for large bone construct development and remains one of the main challenges of bone tissue engineering. Our current study presents the combination of 3D printing technique with a hydrogel-based prevascularization strategy to generate prevascularized bone constructs. Human adipose derived mesenchymal stem cells (ADMSC) and human umbilical vein endothelial cells (HUVEC) were encapsulated within our bioactive hydrogels, and the effects of culture conditions on in vitro vascularization were determined. We further generated composite constructs by forming 3D printed polycaprolactone/hydroxyapatite scaffolds coated with cell-laden hydrogels and determined how the co-culture affected vascularization and osteogenesis. It was demonstrated that 3D co-cultured ADMSC-HUVEC generated capillary-like networks within the porous 3D printed scaffold. The co-culture systems promoted in vitro vascularization, but had no significant effects on osteogenesis. The prevascularized constructs were subcutaneously implanted into nude mice to evaluate the in vivo vascularization capacity and the functionality of engineered vessels. The hydrogel systems facilitated microvessel and lumen formation and promoted anastomosis of vascular networks of human origin with host murine vasculature. These findings demonstrate the potential of prevascularized 3D printed scaffolds with anatomical shape for the healing of larger bone defects. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1788-1798, 2018.
Collapse
Affiliation(s)
- Mitchell A Kuss
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska.,Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shaohua Wu
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska.,Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ying Wang
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska.,Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jason B Untrauer
- Division of Oral and Maxillofacial Surgery, Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Wenlong Li
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Jung Yul Lim
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Bin Duan
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska.,Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
43
|
Maisani M, Pezzoli D, Chassande O, Mantovani D. Cellularizing hydrogel-based scaffolds to repair bone tissue: How to create a physiologically relevant micro-environment? J Tissue Eng 2017; 8:2041731417712073. [PMID: 28634532 PMCID: PMC5467968 DOI: 10.1177/2041731417712073] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/26/2017] [Indexed: 12/16/2022] Open
Abstract
Tissue engineering is a promising alternative to autografts or allografts for the regeneration of large bone defects. Cell-free biomaterials with different degrees of sophistication can be used for several therapeutic indications, to stimulate bone repair by the host tissue. However, when osteoprogenitors are not available in the damaged tissue, exogenous cells with an osteoblast differentiation potential must be provided. These cells should have the capacity to colonize the defect and to participate in the building of new bone tissue. To achieve this goal, cells must survive, remain in the defect site, eventually proliferate, and differentiate into mature osteoblasts. A critical issue for these engrafted cells is to be fed by oxygen and nutrients: the transient absence of a vascular network upon implantation is a major challenge for cells to survive in the site of implantation, and different strategies can be followed to promote cell survival under poor oxygen and nutrient supply and to promote rapid vascularization of the defect area. These strategies involve the use of scaffolds designed to create the appropriate micro-environment for cells to survive, proliferate, and differentiate in vitro and in vivo. Hydrogels are an eclectic class of materials that can be easily cellularized and provide effective, minimally invasive approaches to fill bone defects and favor bone tissue regeneration. Furthermore, by playing on their composition and processing, it is possible to obtain biocompatible systems with adequate chemical, biological, and mechanical properties. However, only a good combination of scaffold and cells, possibly with the aid of incorporated growth factors, can lead to successful results in bone regeneration. This review presents the strategies used to design cellularized hydrogel-based systems for bone regeneration, identifying the key parameters of the many different micro-environments created within hydrogels.
Collapse
Affiliation(s)
- Mathieu Maisani
- Laboratory for Biomaterials & Bioengineering (CRC-I), Department Min-Met-Materials Engineering & Research Center CHU de Québec, Laval University, Québec City, QC, Canada
- Laboratoire BioTis, Inserm U1026, Université de Bordeaux, Bordeaux, France
| | - Daniele Pezzoli
- Laboratory for Biomaterials & Bioengineering (CRC-I), Department Min-Met-Materials Engineering & Research Center CHU de Québec, Laval University, Québec City, QC, Canada
| | - Olivier Chassande
- Laboratoire BioTis, Inserm U1026, Université de Bordeaux, Bordeaux, France
| | - Diego Mantovani
- Laboratory for Biomaterials & Bioengineering (CRC-I), Department Min-Met-Materials Engineering & Research Center CHU de Québec, Laval University, Québec City, QC, Canada
| |
Collapse
|