1
|
Jasuja H, Jaswandkar SV, Katti DR, Katti KS. Interstitial fluid flow contributes to prostate cancer invasion and migration to bone; study conducted using a novel horizontal flow bioreactor. Biofabrication 2023; 15:025017. [PMID: 36863017 PMCID: PMC10020972 DOI: 10.1088/1758-5090/acc09a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/01/2023] [Indexed: 03/04/2023]
Abstract
Prostate cancer bone metastasis is the leading cause of cancer-related mortality in men in the United States, causing severe damage to skeletal tissue. The treatment of advanced-stage prostate cancer is always challenging due to limited drug treatment options, resulting in low survival rates. There is a scarcity of knowledge regarding the mechanisms associated with the effects of biomechanical cues by the interstitial fluid flow on prostate cancer cell growth and migration. We have designed a novel bioreactor system to demonstrate the impact of interstitial fluid flow on the migration of prostate cancer cells to the bone during extravasation. First, we demonstrated that a high flow rate induces apoptosis in PC3 cells via TGF-β1 mediated signaling; thus, physiological flow rate conditions are optimum for cell growth. Next, to understand the role of interstitial fluid flow in prostate cancer migration, we evaluated the migration rate of cells under static and dynamic conditions in the presence or absence of bone. We report that CXCR4 levels were not significantly changed under static and dynamic conditions, indicating that CXCR4 activation in PC3 cells is not influenced by flow conditions but by the bone, where CXCR4 levels were upregulated. The bone-upregulated CXCR4 levels led to increased MMP-9 levels resulting in a high migration rate in the presence of bone. In addition, upregulated levels ofαvβ3integrins under fluid flow conditions contributed to an overall increase in the migration rate of PC3 cells. Overall, this study demonstrates the potential role of interstitial fluid flow in prostate cancer invasion. Understanding the critical role of interstitial fluid flow in promoting prostate cancer cell progression will enhance current therapies for advanced-stage prostate cancer and provide improved treatment options for patients.
Collapse
Affiliation(s)
- Haneesh Jasuja
- Department of Civil, Construction and Environmental Engineering North Dakota State University, Fargo, ND 58108, United States of America
| | - Sharad V Jaswandkar
- Department of Civil, Construction and Environmental Engineering North Dakota State University, Fargo, ND 58108, United States of America
| | - Dinesh R Katti
- Department of Civil, Construction and Environmental Engineering North Dakota State University, Fargo, ND 58108, United States of America
| | - Kalpana S Katti
- Department of Civil, Construction and Environmental Engineering North Dakota State University, Fargo, ND 58108, United States of America
- Author to whom any correspondence should be addressed
| |
Collapse
|
2
|
Patient-Derived Breast Cancer Bone Metastasis In Vitro Model Using Bone-Mimetic Nanoclay Scaffolds. J Tissue Eng Regen Med 2023. [DOI: 10.1155/2023/5753666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
The unavailability of reliable models for studying breast cancer bone metastasis is the major challenge associated with poor prognosis in advanced-stage breast cancer patients. Breast cancer cells tend to preferentially disseminate to bone and colonize within the remodeling bone to cause bone metastasis. To improve the outcome of patients with breast cancer bone metastasis, we have previously developed a 3D in vitro breast cancer bone metastasis model using human mesenchymal stem cells (hMSCs) and primary breast cancer cell lines (MCF-7 and MDAMB231), recapitulating late-stage of breast cancer metastasis to bone. In the present study, we have tested our model using hMSCs and patient-derived breast cancer cell lines (NT013 and NT023) exhibiting different characteristics. We investigated the effect of breast cancer metastasis on bone growth using this 3D in vitro model and compared our results with previous studies. The results showed that NT013 and NT023 cells exhibiting hormone-positive and triple-negative characteristics underwent mesenchymal to epithelial transition (MET) and formed tumors in the presence of bone microenvironment, in line with our previous results with MCF-7 and MDAMB231 cell lines. In addition, the results showed upregulation of Wnt-related genes in hMSCs, cultured in the presence of excessive ET-1 cytokine released by NT013 cells, while downregulation of Wnt-related genes in the presence of excessive DKK-1, released by NT023 cells, leading to stimulation and abrogation of the osteogenic pathway, respectively, ultimately mimicking different types of bone lesions in breast cancer patients.
Collapse
|
3
|
Dozzo A, Chullipalliyalil K, McAuliffe M, O’Driscoll CM, Ryan KB. Nano-Hydroxyapatite/PLGA Mixed Scaffolds as a Tool for Drug Development and to Study Metastatic Prostate Cancer in the Bone. Pharmaceutics 2023; 15:pharmaceutics15010242. [PMID: 36678871 PMCID: PMC9864166 DOI: 10.3390/pharmaceutics15010242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
(1) Background: Three-dimensional (3D) in vitro, biorelevant culture models that recapitulate cancer progression can help elucidate physio-pathological disease cues and enhance the screening of more effective therapies. Insufficient research has been conducted to generate in vitro 3D models to replicate the spread of prostate cancer to the bone, a key metastatic site of the disease, and to understand the interplay between the key cell players. In this study, we aim to investigate PLGA and nano-hydroxyapatite (nHA)/PLGA mixed scaffolds as a predictive preclinical tool to study metastatic prostate cancer (mPC) in the bone and reduce the gap that exists with traditional 2D cultures. (2) Methods: nHA/PLGA mixed scaffolds were produced by electrospraying, compacting, and foaming PLGA polymer microparticles, +/- nano-hydroxyapatite (nHA), and a salt porogen to produce 3D, porous scaffolds. Physicochemical scaffold characterisation together with an evaluation of osteoblastic (hFOB 1.19) and mPC (PC-3) cell behaviour (RT-qPCR, viability, and differentiation) in mono- and co-culture, was undertaken. (3) Results: The results show that the addition of nHA, particularly at the higher-level impacted scaffolds in terms of mechanical and degradation behaviour. The nHA 4 mg resulted in weaker scaffolds, but cell viability increased. Qualitatively, fluorescent imaging of cultures showed an increase in PC-3 cells compared to osteoblasts despite lower initial PC-3 seeding densities. Osteoblast monocultures, in general, caused an upregulation (or at least equivalent to controls) in gene production, which was highest in plain scaffolds and decreased with increases in nHA. Additionally, the genes were downregulated in PC3 and co-cultures. Further, drug toxicity tests demonstrated a significant effect in 2D and 3D co-cultures. (4) Conclusions: The results demonstrate that culture conditions and environment (2D versus 3D, monoculture versus co-culture) and scaffold composition all impact cell behaviour and model development.
Collapse
Affiliation(s)
- Annachiara Dozzo
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland
| | | | - Michael McAuliffe
- Centre for Advanced Photonics & Process Analysis, Munster Technological University Cork, T12 P928 Cork, Ireland
| | - Caitriona M. O’Driscoll
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland
| | - Katie B. Ryan
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland
- Correspondence:
| |
Collapse
|
4
|
Akerkouch L, Jasuja H, Katti K, Katti D, Le T. The Influence of Fluid Shear Stress on Bone and Cancer Cells Proliferation and Distribution. Ann Biomed Eng 2023; 51:1199-1215. [PMID: 36593306 DOI: 10.1007/s10439-022-03123-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
We investigated the potential correlation between the fluid shear stress and the proliferation of bone prostate cancer cells on the surface of nanoclay-based scaffolds in a perfusion bioreactor. Human mesenchymal stem cells (hMSCs) were seeded on the scaffolds to initiate bone growth. After 23 days, prostate cancer cells (MDAPCa2b) were cultured on top of the osteogenically differentiated hMSCs. The scaffolds were separated into two groups subjected to two distinct conditions: (i) static (no flow); and (ii) dynamic (with flow) conditions to recapitulate bone metastasis of prostate cancer. Based on measured data, Computational Fluid Dynamics (CFD) models were constructed to determine the velocity and shear stress distributions on the scaffold surface. Our experimental results show distinct differences in the growth pattern of hMSCs and MDAPCa2b cells between the static and dynamic conditions. Our computational results further suggest that the dynamic flow leads to drastic change in cell morphology and tumorous distribution. Our work points to a strong correlation between tumor growth and local interstitial flows in bones.
Collapse
Affiliation(s)
- Lahcen Akerkouch
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND, USA
| | - Haneesh Jasuja
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND, USA
| | - Kalpana Katti
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND, USA
| | - Dinesh Katti
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND, USA
| | - Trung Le
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
5
|
Kar S, Jaswandkar SV, Katti KS, Kang JW, So PTC, Paulmurugan R, Liepmann D, Venkatesan R, Katti DR. Label-free discrimination of tumorigenesis stages using in vitro prostate cancer bone metastasis model by Raman imaging. Sci Rep 2022; 12:8050. [PMID: 35577856 PMCID: PMC9110417 DOI: 10.1038/s41598-022-11800-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
Metastatic prostate cancer colonizes the bone to pave the way for bone metastasis, leading to skeletal complications associated with poor prognosis and morbidity. This study demonstrates the feasibility of Raman imaging to differentiate between cancer cells at different stages of tumorigenesis using a nanoclay-based three-dimensional (3D) bone mimetic in vitro model that mimics prostate cancer bone metastasis. A comprehensive study comparing the classification of as received prostate cancer cells in a two-dimensional (2D) model and cancer cells in a 3D bone mimetic environment was performed over various time intervals using principal component analysis (PCA). Our results showed distinctive spectral differences in Raman imaging between prostate cancer cells and the cells cultured in 3D bone mimetic scaffolds, particularly at 1002, 1261, 1444, and 1654 cm-1, which primarily contain proteins and lipids signals. Raman maps capture sub-cellular responses with the progression of tumor cells into metastasis. Raman feature extraction via cluster analysis allows for the identification of specific cellular constituents in the images. For the first time, this work demonstrates a promising potential of Raman imaging, PCA, and cluster analysis to discriminate between cancer cells at different stages of metastatic tumorigenesis.
Collapse
Affiliation(s)
- Sumanta Kar
- Department of Civil, Construction and Environmental Engineering, Center for Engineered Cancer Testbeds, Materials and Nanotechnology Program, North Dakota State University, Fargo, ND, 58108, USA
| | - Sharad V Jaswandkar
- Department of Civil, Construction and Environmental Engineering, Center for Engineered Cancer Testbeds, Materials and Nanotechnology Program, North Dakota State University, Fargo, ND, 58108, USA
| | - Kalpana S Katti
- Department of Civil, Construction and Environmental Engineering, Center for Engineered Cancer Testbeds, Materials and Nanotechnology Program, North Dakota State University, Fargo, ND, 58108, USA
| | - Jeon Woong Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, MB, 02139, Cambridge, USA
| | - Peter T C So
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, MB, 02139, Cambridge, USA
| | - Ramasamy Paulmurugan
- Cellular Pathway Imaging Laboratory (CPIL), Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive, Suite 2236, Palo Alto, CA, 94304, USA
| | - Dorian Liepmann
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Renugopalakrishnan Venkatesan
- Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Dinesh R Katti
- Department of Civil, Construction and Environmental Engineering, Center for Engineered Cancer Testbeds, Materials and Nanotechnology Program, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
6
|
Costard LS, Hosn RR, Ramanayake H, O'Brien FJ, Curtin CM. Influences of the 3D microenvironment on cancer cell behaviour and treatment responsiveness: A recent update on lung, breast and prostate cancer models. Acta Biomater 2021; 132:360-378. [PMID: 33484910 DOI: 10.1016/j.actbio.2021.01.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/21/2022]
Abstract
The majority of in vitro studies assessing cancer treatments are performed in two-dimensional (2D) monolayers and are subsequently validated in in vivo animal models. However, 2D models fail to accurately model the tumour microenvironment. Furthermore, animal models are not directly applicable to mimic the human scenario. Three-dimensional (3D) culture models may help to address the discrepancies of 2D and animal models. When cancer cells escape the primary tumour, they can invade at distant organs building secondary tumours, called metastasis. The development of metastasis leads to a dramatic decrease in the life expectancy of patients. Therefore, 3D systems to model the microenvironment of metastasis have also been developed. Several studies have demonstrated changes in cell behaviour and gene expression when cells are cultured in 3D compared to 2D and concluded a better comparability to cells in vivo. Of special importance is the effect seen in response to anti-cancer treatments as models are built primarily to serve as drug-testing platforms. This review highlights these changes between cancer cells grown in 2D and 3D models for some of the most common cancers including lung, breast and prostate tumours. In addition to models aiming to mimic the primary tumour site, the effects of 3D cell culturing in bone metastasis models are also described. STATEMENT OF SIGNIFICANCE: Most in vitro studies in cancer research are performed in 2D and are subsequently validated in in vivo animal models. However, both models possess numerous limitations: 2D models fail to accurately model the tumour microenvironment while animal models are expensive, time-consuming and can differ considerably from humans. It is accepted that the cancer microenvironment plays a critical role in the disease, thus, 3D models have been proposed as a potential solution to address the discrepancies of 2D and animal models. This review highlights changes in cell behaviour, including proliferation, gene expression and chemosensitivity, between cancer cells grown in 2D and 3D models for some of the most common cancers including lung, breast and prostate cancer as well as bone metastasis.
Collapse
|
7
|
Katti KS, Jasuja H, Kar S, Katti DR. Nanostructured Biomaterials for In Vitro Models of Bone Metastasis Cancer. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 17:100254. [PMID: 33718691 PMCID: PMC7948119 DOI: 10.1016/j.cobme.2020.100254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent years, tissue engineering approaches have attracted substantial attention owing to their ability to create physiologically relevant in vitro disease models that closely mimic in vivo conditions. Here, we review nanocomposite materials and scaffolds used for the design of in vitro models of cancer, including metastatic sites. We discuss the role of material properties in modulating cellular phenotype in 3D disease models. Also, we highlight the application of tissue-engineered bone as a tool for faithful recapitulation of the microenvironment of metastatic prostate and breast cancer, since these two types of cancer have the propensity to metastasize to bone. Overall, we summarize recent efforts on developing 3D in vitro models of bone metastatic cancers that provide a platform to study tumor progression and facilitate high-throughput drug screening.
Collapse
Affiliation(s)
- Kalpana S. Katti
- Center for Engineered Cancer Test Beds, Department of Civil and Environmental Engineering North Dakota State University, Fargo ND 58108, USA
| | - Haneesh Jasuja
- Center for Engineered Cancer Test Beds, Department of Civil and Environmental Engineering North Dakota State University, Fargo ND 58108, USA
| | - Sumanta Kar
- Center for Engineered Cancer Test Beds, Department of Civil and Environmental Engineering North Dakota State University, Fargo ND 58108, USA
| | - Dinesh R. Katti
- Center for Engineered Cancer Test Beds, Department of Civil and Environmental Engineering North Dakota State University, Fargo ND 58108, USA
| |
Collapse
|
8
|
Kar S, Katti DR, Katti KS. Evaluation of quasi-static and dynamic nanomechanical properties of bone-metastatic breast cancer cells using a nanoclay cancer testbed. Sci Rep 2021; 11:3096. [PMID: 33542384 PMCID: PMC7862348 DOI: 10.1038/s41598-021-82664-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/20/2021] [Indexed: 01/07/2023] Open
Abstract
In recent years, there has been increasing interest in investigating the mechanical properties of individual cells to delineate disease mechanisms. Reorganization of cytoskeleton facilitates the colonization of metastatic breast cancer at bone marrow space, leading to bone metastasis. Here, we report evaluation of mechanical properties of two breast cancer cells with different metastatic ability at the site of bone metastases, using quasi-static and dynamic nanoindentation methods. Our results showed that the significant reduction in elastic modulus along with increased liquid-like behavior of bone metastasized MCF-7 cells was induced by depolymerization and reorganization of F-actin to the adherens junctions, whereas bone metastasized MDA-MB-231 cells showed insignificant changes in elastic modulus and F-actin reorganization over time, compared to their respective as-received counterparts. Taken together, our data demonstrate evolution of breast cancer cell mechanics at bone metastases.
Collapse
Affiliation(s)
- Sumanta Kar
- Center for Engineered Cancer Test Beds, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, 58108, USA
| | - Dinesh R Katti
- Center for Engineered Cancer Test Beds, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, 58108, USA
| | - Kalpana S Katti
- Center for Engineered Cancer Test Beds, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
9
|
Jasuja H, Kar S, Katti DR, Katti K. Perfusion bioreactor enabled fluid-derived shear stress conditions for novel bone metastatic prostate cancer testbed. Biofabrication 2021; 13. [PMID: 33418550 DOI: 10.1088/1758-5090/abd9d6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 01/08/2021] [Indexed: 12/27/2022]
Abstract
Critical understanding of the complex metastatic cascade of prostate cancer is necessary for the development of a therapeutic interventions for treating metastatic prostate cancer. Increasing evidence supports the synergistic role of biochemical and biophysical cues in cancer progression at metastases. The biochemical factors such as cytokines have been extensively studied in relation to prostate cancer progression to the bone; however, the role of shear stress-induced by interstitial fluid around bone extracellular matrix has not been fully explored as a driving factor for prostate cancer metastasis. Shear stress governs various cellular processes, including cell proliferation and migration. Thus, it is essential to understand the impact of fluid-derived shear stress on the aggressiveness of prostate cancer at the metastatic stage. Here, we report development of a three-dimensional (3D) in-vitro dynamic cell culture system to recapitulate the microenvironment of prostate cancer bone metastasis, to understand the cause of modulation in cell response under fluid-derived shear stress. We observed an increased human mesenchymal stem cells (hMSCs) proliferation and differentiation rate under dynamic culture. We observed that hMSCs under static culture form cell agglutinates, whereas under dynamic culture, hMSCs exhibited a directional alignment with broad and flattened morphology. Next, we observed increased expression of mesenchymal to epithelial transition (MET) biomarkers in bone metastasized prostate cancer models as well as large changes in cellular and tumoroid morphologies with shear stress. Evaluation of cell adhesion proteins indicated that the altered cancer cell morphologies resulted from the constant force pulling due to increased E-Cadherin and phosphorylated Focal adhesion kinase (FAK) proteins under shear stress. Collectively, we have successfully developed a 3D in-vitro dynamic model to recapitulate the behavior of bone metastatic prostate cancer under dynamic conditions.
Collapse
Affiliation(s)
- Haneesh Jasuja
- North Dakota State University, 1410 14th Ave N, North Dakota State University, Fargo, North Dakota, 58105, UNITED STATES
| | - Sumanta Kar
- North Dakota State University, 1410 14th Ave N, North Dakota State University, Fargo, North Dakota, 58108-6050, UNITED STATES
| | - Dinesh R Katti
- Department of Civil Engineering, North Dakota State University, 1410 14th Ave N, Fargo, North Dakota, 58108-6050, UNITED STATES
| | - Kalpana Katti
- Department of Civil and Environmental Engineering, North Dakota State University, 1410 14th Ave N, North Dakota State University, Fargo, North Dakota, 58105, UNITED STATES
| |
Collapse
|
10
|
Molla MS, Katti DR, Katti KS. Mechanobiological evaluation of prostate cancer metastasis to bone using an in vitro prostate cancer testbed. J Biomech 2021; 114:110142. [PMID: 33290947 PMCID: PMC8281967 DOI: 10.1016/j.jbiomech.2020.110142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 12/26/2022]
Abstract
Prostate cancer exhibits a propensity to metastasize to the bone, which often leads to fatality. Bone metastasis is characterized by complex biochemical, morphological, pathophysiological, and genetic changes to cancer cells as they colonize at bone sites. In this study, we report the evaluation of MDA PCa2b prostate cancer cells' nanomechanical properties during the mesenchymal-to-epithelial transition (MET) and during disease progression at the metastatic site. Bone-mimetic tissue-engineered 3D nanoclay scaffolds have been used to create in vitro metastatic site for prostate cancer. A significant softening of the prostate cancer cells during MET and further softening as disease progression occurs at metastasis is also reported. The significant reduction in elastic modulus of prostate cancer cells during MET was attributed to actin reorganization and depolymerization. This study provides input towards direct nanomechanical measurements to evaluate the time evolution of cells' mechanical behavior in tumors at bone metastasis site.
Collapse
Affiliation(s)
- Md Shahjahan Molla
- Center for Engineered Cancer Testbeds, Department of Civil and Environmental Engineering, NDSU, Fargo, ND 58104, United States; Biomedical Engineering, NDSU, Fargo, ND 58104, United States; Materials and Nanotechnology, NDSU, Fargo, ND 58104, United States.
| | - Dinesh R Katti
- Center for Engineered Cancer Testbeds, Department of Civil and Environmental Engineering, NDSU, Fargo, ND 58104, United States; Biomedical Engineering, NDSU, Fargo, ND 58104, United States; Materials and Nanotechnology, NDSU, Fargo, ND 58104, United States.
| | - Kalpana S Katti
- Center for Engineered Cancer Testbeds, Department of Civil and Environmental Engineering, NDSU, Fargo, ND 58104, United States; Biomedical Engineering, NDSU, Fargo, ND 58104, United States; Materials and Nanotechnology, NDSU, Fargo, ND 58104, United States.
| |
Collapse
|
11
|
Bone interface modulates drug resistance in breast cancer bone metastasis. Colloids Surf B Biointerfaces 2020; 195:111224. [PMID: 32634713 DOI: 10.1016/j.colsurfb.2020.111224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/03/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022]
Abstract
Metastatic breast cancer cells on arriving at bone site interact with the bone cells to influence their growth, proliferation, and chemoresistance. There are currently no effective therapeutics available in the clinic for bone metastases. Many existing anti-cancer therapeutics are ineffective at the metastatic bone site due to a lack of accurate models of breast cancer bone metastasis for drug screening. Here, we report the development of an effective in vitro model using osteogenically differentiated human mesenchymal stem cells (MSCs) and human breast cancer cells on 3D nanoclay scaffolds as a testbed for screening drugs. Our results demonstrate that breast cancer cells grown in 3D bone-mimetic scaffolds exhibited altered physiological and biochemical properties, including tumoroids formation, elevated levels of cytokine such as IL-6, and its downstream effector-mediated inhibition of apoptosis and upregulation of multidrug transporters proteins, leading to drug resistance against paclitaxel. Most importantly, Signal Transducer and Activator of Transcription 3 (STAT3), a potential biomarker for chemoresistance in many cancers, was activated in the 3D breast cancer bone metastasis model. Thus, our data suggest that 3D bone-mimetic nanoclay scaffolds-based in vitro tumor model is a promising testbed for screening new therapeutics for breast cancer bone metastasis where bone interface governs drug resistance in breast cancer cells.
Collapse
|
12
|
Molla MDS, Katti DR, Iswara J, Venkatesan R, Paulmurugan R, Katti KS. Prostate Cancer Phenotype Influences Bone Mineralization at Metastasis: A Study Using an In Vitro Prostate Cancer Metastasis Testbed. JBMR Plus 2020; 4:e10256. [PMID: 32083238 PMCID: PMC7017885 DOI: 10.1002/jbm4.10256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022] Open
Abstract
In this study, two types of prostate cancer cell lines, highly metastatic PC-3 and low metastatic MDA PCa 2b (PCa) were cultured on bone mimetic scaffolds to recapitulate metastasis to bone. A unique in vitro 3D tumor model that uses a sequential culture (SC) of human mesenchymal stem cells followed by seeding with cancer cells after bone formation was initiated to study the phenotype-specific interaction between prostate cancer cells and bone microenvironment. The PCa cells were observed to be less prolific and less metastatic, and to form multicellular tumoroids in the bone microenvironment, whereas PC-3 cells were more prolific and were highly metastatic, and did not form multicellular tumoroids in the bone microenvironment. The metastatic process exhibited by these two prostate cancer cell lines showed a significant and different effect on bone mineralization and extracellular matrix formation. Excessive bone formation in the presence of PC-3 and significant osteolysis in the presence of PCa were observed, which was also indicated by osteocalcin and MMP-9 expression as measured by ELISA and qRT-PCR. The field emission scanning electron microscopy images revealed that the structure of mineralized collagen in the presence of PC-3 is different than the one observed in healthy bone. All experimental results indicated that both osteolytic and osteoblastic bone lesions can be recapitulated in our tumor testbed model and that different cancer phenotypes have a very different influence on bone at metastasis. The 3D in vitro model presented in this study provides an improved, reproducible, and controllable system that is a useful tool to elucidate osteotropism of prostate cancer cells. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- MD Shahjahan Molla
- Center for Engineered Cancer TestbedsNorth Dakota State UniversityFargoNDUSA
- Department of Civil and Environmental EngineeringNorth Dakota State UniversityFargoNDUSA
- Scintillon InstituteSan DiegoUSA
| | - Dinesh R Katti
- Center for Engineered Cancer TestbedsNorth Dakota State UniversityFargoNDUSA
- Department of Civil and Environmental EngineeringNorth Dakota State UniversityFargoNDUSA
| | - Jairam Iswara
- Department of Urology, Saint Elizabeth's Medical CenterTufts UniversityBostonMAUSA
| | - Renugopalkrishnan Venkatesan
- Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMAUSA
- Center for Life SciencesBoston Children's Hospital, Harvard Medical School, BostonMassachusettsUSA
| | - Ramasamy Paulmurugan
- Department of RadiologyCellular Pathway Imaging Laboratory (CPIL), Stanford University School of MedicinePalo AltoCAUSA
| | - Kalpana S Katti
- Center for Engineered Cancer TestbedsNorth Dakota State UniversityFargoNDUSA
| |
Collapse
|
13
|
Kar S, Jasuja H, Katti DR, Katti KS. Wnt/β-Catenin Signaling Pathway Regulates Osteogenesis for Breast Cancer Bone Metastasis: Experiments in an In Vitro Nanoclay Scaffold Cancer Testbed. ACS Biomater Sci Eng 2019; 6:2600-2611. [PMID: 33463270 DOI: 10.1021/acsbiomaterials.9b00923] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer shows a high affinity toward bone, causing bone-related complications, leading to a poor clinical prognosis. The Wnt/β-catenin signaling pathway has been well-documented for the bone regenerative process; however, the regulation of the Wnt/β-catenin pathway in breast cancer bone metastasis is poorly explored. Here, we report that the Wnt/β-catenin signaling pathway has a significant effect on osteogenesis during breast cancer bone metastasis. In this study, we have created a 3D in vitro breast cancer bone metastatic microenvironment using nanoclay-based scaffolds along with osteogenically differentiated human mesenchymal stem cells (MSCs) and human breast cancer cells (MCF-7 and MDA-MB-231). The results showed upregulation in expressions of Wnt-related factors (Wnt-5a, β-catenin, AXIN2, and LRP5) in sequential cultures of MSCs with MCF-7 as compared to sequential cultures of MSCs with MDA-MB-231. Sequential cultures of MSCs with MCF-7 also showed higher β-catenin expression on the protein levels than sequential cultures of MSCs with MDA-MB-231. Stimulation of Wnt/β-catenin signaling in sequential cultures of MSCs with MCF-7 by ET-1 resulted in increased bone formation, whereas inactivation of Wnt/β-catenin signaling by DKK-1 displayed a significant decrease in bone formation, mimicking bone lesions in breast cancer patients. These data collectively demonstrate that Wnt/β-catenin signaling governs osteogenesis within the tumor-harboring bone microenvironment, leading to bone metastasis. The nanoclay scaffold provides a unique testbed approach for analysis of the pathways of cancer metastasis.
Collapse
Affiliation(s)
- Sumanta Kar
- Center for Engineered Cancer Test Beds, Materials and Nanotechnology Program, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Haneesh Jasuja
- Center for Engineered Cancer Test Beds, Materials and Nanotechnology Program, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Dinesh R Katti
- Center for Engineered Cancer Test Beds, Materials and Nanotechnology Program, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Kalpana S Katti
- Center for Engineered Cancer Test Beds, Materials and Nanotechnology Program, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
14
|
Ham J, Lever L, Fox M, Reagan MR. In Vitro 3D Cultures to Reproduce the Bone Marrow Niche. JBMR Plus 2019; 3:e10228. [PMID: 31687654 PMCID: PMC6820578 DOI: 10.1002/jbm4.10228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 12/30/2022] Open
Abstract
Over the past century, the study of biological processes in the human body has progressed from tissue culture on glass plates to complex 3D models of tissues, organs, and body systems. These dynamic 3D systems have allowed for more accurate recapitulation of human physiology and pathology, which has yielded a platform for disease study with a greater capacity to understand pathophysiology and to assess pharmaceutical treatments. Specifically, by increasing the accuracy with which the microenvironments of disease processes are modeled, the clinical manifestation of disease has been more accurately reproduced in vitro. The application of these models is crucial in all realms of medicine, but they find particular utility in diseases related to the complex bone marrow niche. Osteoblast, osteoclasts, bone marrow adipocytes, mesenchymal stem cells, and red and white blood cells represent some of cells that call the bone marrow microenvironment home. During states of malignant marrow disease, neoplastic cells migrate to and join this niche. These cancer cells both exploit and alter the niche to their benefit and to the patient's detriment. Malignant disease of the bone marrow, both primary and secondary, is a significant cause of morbidity and mortality today. Innovative study methods are necessary to improve patient outcomes. In this review, we discuss the evolution of 3D models and compare them to the preceding 2D models. With a specific focus on malignant bone marrow disease, we examine 3D models currently in use, their observed efficacy, and their potential in developing improved treatments and eventual cures. Finally, we comment on the aspects of 3D models that must be critically examined as systems continue to be optimized so that they can exert greater clinical impact in the future. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Justin Ham
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMEUSA,University of New EnglandBiddefordMEUSA
| | - Lauren Lever
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMEUSA,University of New EnglandBiddefordMEUSA
| | - Maura Fox
- University of New EnglandBiddefordMEUSA
| | - Michaela R Reagan
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMEUSA,University of Maine Graduate School of Biomedical Science and EngineeringOronoMEUSA,Sackler School of Graduate Biomedical SciencesTufts UniversityBostonMAUSA
| |
Collapse
|
15
|
Kar S, Katti DR, Katti KS. Fourier transform infrared spectroscopy based spectral biomarkers of metastasized breast cancer progression. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 208:85-96. [PMID: 30292907 DOI: 10.1016/j.saa.2018.09.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 06/08/2023]
Abstract
Breast cancer is a global health issue and the second leading cause of cancer death in women. Breast cancer tends to migrate to bone and causes bone metastases which is ultimately the cause of death. Here, we report the use of FTIR to identify spectral biomarkers of cancer progression on 3D in vitro model of breast cancer bone metastasis. Our results indicate that the following spectral biomarkers can monitor cancer progression, for example, lipids (CH2 asymmetric/CH2 symmetric stretch), Amide I/Amide II, and RNA/DNA. Principal component analysis also confirmed the involvement of protein, lipids and nucleic acids in cancer progression on sequential culture. The collective observations from this study suggest successful application of FTIR as a non-invasive and accurate method to identify biochemical changes in cancer cells during the progression of breast cancer bone metastasis.
Collapse
Affiliation(s)
- Sumanta Kar
- Department of Civil and Environmental Engineering, CIE 201, NDSU, Fargo, ND 58104, United States of America
| | - Dinesh R Katti
- Department of Civil and Environmental Engineering, CIE 201, NDSU, Fargo, ND 58104, United States of America
| | - Kalpana S Katti
- Department of Civil and Environmental Engineering, CIE 201, NDSU, Fargo, ND 58104, United States of America.
| |
Collapse
|
16
|
Sen S, Dey A, Chowdhury S, Maulik U, Chattopadhyay K. Understanding the evolutionary trend of intrinsically structural disorders in cancer relevant proteins as probed by Shannon entropy scoring and structure network analysis. BMC Bioinformatics 2019; 19:549. [PMID: 30717651 PMCID: PMC7394331 DOI: 10.1186/s12859-018-2552-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Malignant diseases have become a threat for health care system. A panoply of biological processes is involved as the cause of these diseases. In order to unveil the mechanistic details of these diseased states, we analyzed protein families relevant to these diseases. RESULTS Our present study pivots around four apparently unrelated cancer types among which two are commonly occurring viz. Prostate Cancer, Breast Cancer and two relatively less frequent viz. Acute Lymphoblastic Leukemia and Lymphoma. Eight protein families were found to have implications for these cancer types. Our results strikingly reveal that some of the proteins with implications in the cancerous cellular states were showing the structural organization disparate from the signature of the family it constitutes. The sequences were further mapped onto respective structures and compared with the entropic profile. The structures reveal that entropic scores were able to reveal the inherent structural bias of these proteins with quantitative precision, otherwise unseen from other analysis. Subsequently, the betweenness centrality scoring of each residue from the structure network models was resorted to explore the changes in dependencies on residue owing to structural disorder. CONCLUSION These observations help to obtain the mechanistic changes resulting from the structural orchestration of protein structures. Finally, the hydropathy indexes were obtained to validate the sequence space observations using Shannon entropy and in-turn establishing the compatibility.
Collapse
Affiliation(s)
- Sagnik Sen
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, 700032 India
| | - Ashmita Dey
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, 700032 India
| | - Sourav Chowdhury
- CSIR-Indian Institute of Chemical Biology, Raja S.C. Mullick Road, Kolkata, 700032 India
| | - Ujjwal Maulik
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, 700032 India
| | - Krishnananda Chattopadhyay
- Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts, 02138 USA
| |
Collapse
|
17
|
Molla MDS, Katti DR, Katti KS. An in vitro model of prostate cancer bone metastasis for highly metastatic and non-metastatic prostate cancer using nanoclay bone-mimetic scaffolds. ACTA ACUST UNITED AC 2019. [DOI: 10.1557/adv.2018.682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Sung Y, Park S, Park SJ, Jeong J, Choi M, Lee J, Kwon W, Jang S, Lee MH, Kim DJ, Liu K, Kim SH, Lee JH, Ha YS, Kwon TG, Lee S, Dong Z, Ryoo ZY, Kim MO. Jazf1 promotes prostate cancer progression by activating JNK/Slug. Oncotarget 2017; 9:755-765. [PMID: 29416651 PMCID: PMC5787507 DOI: 10.18632/oncotarget.23146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 11/14/2017] [Indexed: 01/23/2023] Open
Abstract
Juxtaposed with another zinc finger protein 1 (Jazf1) is a zinc finger protein and is known to affect both prostate cancer and type 2 diabetes. Jazf1 inhibits testicular nuclear receptor 4 (TR4) activation through protein-protein interaction, which results in weight loss and alleviates diabetes. However, the role of Jazf1 in prostate cancer is still poorly understood. Hence, we investigated whether the expression of Jazf1 is associated with prostate cancer progression. We confirmed the upregulation of Jazf1 expression in human prostate tissue samples. In addition, using Jazf1 overexpressing prostate cancer cell lines, DU145 and LNCaP, we found Jazf1 promoted cell proliferation and colony formation ability. We also observed that Jazf1 dramatically enhanced cell migration and invasion in transwell assays. Additionally, we checked the upregulation of vimentin and downregulation of E-cadherin expression in Jazf1-overexpressing DU145 and LNCaP cells. Moreover, we found that Slug, which is known to be regulated by JNK/c-Jun phosphorylation, was upregulated in the microarray analysis of two prostate cancer cell lines. Jazf1 promotes the phosphorylation of JNK/c-Jun, likely promoting cell proliferation and invasion through Slug. In a xenograft model, tumors overexpressing Jazf1 were larger than control tumors, and tumors with decreased Jazf1 were smaller. These data indicated that Jazf1 enhances prostate cancer progression and metastasis via regulating JNK/Slug signaling. Taken together, these results suggest that Jazf1 plays an important role in both androgen dependent and independent prostate cancer.
Collapse
Affiliation(s)
- Yonghun Sung
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, Republic of Korea
| | - Song Park
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, Republic of Korea.,Core Protein Resources Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Si Jun Park
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, Republic of Korea
| | - Jain Jeong
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, Republic of Korea
| | - Minjee Choi
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, Republic of Korea
| | - Jinhee Lee
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, Republic of Korea
| | - Wookbong Kwon
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, Republic of Korea
| | - Soyoung Jang
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, Republic of Korea
| | - Mee-Hyun Lee
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Dong Joon Kim
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Sung-Hyun Kim
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Jae-Ho Lee
- Department of Anatomy, Keimyung University School of Medicine, Dalseo-gu, Daegu, Republic of Korea
| | - Yun-Sok Ha
- Department of Urology, Kyungpook National University Medical Center, Buk-gu, Daegu, Korea
| | - Tae Gyun Kwon
- Department of Urology, Kyungpook National University Medical Center, Buk-gu, Daegu, Korea
| | - Sanggyu Lee
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, Republic of Korea
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, NE, Austin, Minnesota, USA
| | - Zae Young Ryoo
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, Republic of Korea
| | - Myoung Ok Kim
- The School of Animal BT Science, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, Korea
| |
Collapse
|