1
|
Salihu R, Abd Razak SI, Sani MH, Wsoo MA, Zawawi NA, Shahir S. Citrate-modified bacterial cellulose as a potential scaffolding material for bone tissue regeneration. PLoS One 2024; 19:e0312396. [PMID: 39739716 DOI: 10.1371/journal.pone.0312396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/04/2024] [Indexed: 01/02/2025] Open
Abstract
Bacterial cellulose (BC) is a novel biocompatible polymeric biomaterial with a wide range of biomedical uses, like tissue engineering (TE) scaffolds, wound dressings, and drug delivery. Although BC lacks good cell adhesion due to limited functionality, its tunable surface chemistry still holds promise. Here, hydroxyapatite (HA) was incorporated into a citrate-modified BC (MBC) using the biomimetic synthesis in simulated body fluid (SBF). Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), thermal gravimetric analysis (TGA), and compressive modulus were used to characterize the biomineralized MBC (BMBC) samples. Using 3-(4,5 dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl) -2H-tetrazolium (MTS), trypan blue dye exclusion (TBDE), and cell attachment assays on osteoblast cells, the developed BMBC have shown good cell viability, proliferation, and attachment after 3, 5, and 7 days of culture and therefore suggested as potential bone tissue regeneration scaffolding material.
Collapse
Affiliation(s)
- Rabiu Salihu
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
- Faculty of Science, Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
- Department of Microbiology and Biotechnology, Federal University Dutse, Dutse, Jigawa, Nigeria
| | - Saiful Izwan Abd Razak
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
- Faculty of Engineering, Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Mohd Helmi Sani
- Faculty of Science, Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Mohammed Ahmad Wsoo
- Department of Chemistry, College of Science, University of Raparin, Ranya, Kurdistan Region, Iraq
| | - Nurliyana Ahmad Zawawi
- Faculty of Science, Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Shafinaz Shahir
- Faculty of Science, Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
2
|
Bai L, Kasimu A, Wang S, Qiu Z, Xu M, Qu X, Chen B, Liu Q, Ai Y, Li M, Xiu J, Liu K, Wen N, He J, Zhang J, Yin Z. Electrohydrodynamic-Printed Dual-Triphase Microfibrous Scaffolds Reshaping the Lipidomic Profile for Enthesis Healing in a Rat Rotator Cuff Repair Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406069. [PMID: 39580676 DOI: 10.1002/smll.202406069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/11/2024] [Indexed: 11/26/2024]
Abstract
Rotator cuff injuries often result in chronic pain and functional limitations due to retears and scar formation at the enthesis. This study assess the efficacy of electrohydrodynamic-printed microfibrous dual-triphase scaffolds (DTSs), designed to optimize enthesis repair. These scaffolds, composed of polycaprolactone enhanced with nanohydroxyapatite, nano-magnesium-oxide, and kartogenin demonstrate significant biological advantages. In vitro, the scaffolds support over 95% stem cell viability and promote enhanced expression of critical markers such as tenomodulin (TNMD), sex-determining region Y-Box transcription factor 9 (SOX-9), and runt-related transcription factor 2 (RUNX-2). Enhanced expressions of tendon markers tenomodulin and scleraxis (SCX) are noted, alongside significant upregulation of chondrocyte and osteoblast markers. In vivo, these scaffolds significantly improve the biomechanical properties of the repaired enthesis, with a maximum failure load of 27.0 ± 4.2 N and ultimate stress of 5.5 ± 1.0 MPa at 6 weeks postimplantation. Lipidomic analysis indicates substantial regulation of phospholipids such as phosphatidylcholine and phosphatidylserine, highlighting the scaffold's capacity to modulate biochemical pathways critical for tissue repair and regeneration. This study underscores the potential of DTS to improve clinical outcomes in rotator cuff injury treatment by enhancing cellular differentiation, biomechanical properties, and biochemical environment, setting a foundation for personalized treatment strategies in tendon-bone repair.
Collapse
Affiliation(s)
- Lang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ayiguli Kasimu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuai Wang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Joint Surgery, Xi'an Aerospace General Hospital, Xi'an, 710100, China
| | - Zhennan Qiu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Meiguang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoli Qu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baojun Chen
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Qiaonan Liu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yixiang Ai
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Meng Li
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jintao Xiu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kai Liu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Nuanyang Wen
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, 710069, China
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
3
|
Alkaron W, Almansoori A, Balázsi K, Balázsi C. Hydroxyapatite-Based Natural Biopolymer Composite for Tissue Regeneration. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4117. [PMID: 39203295 PMCID: PMC11356673 DOI: 10.3390/ma17164117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024]
Abstract
Hydroxyapatite (HAp) polymer composites have gained significant attention due to their applications in bone regeneration and tooth implants. This review examines the synthesis, properties, and applications of Hap, highlighting various manufacturing methods, including wet, dry, hydrothermal, and sol-gel processes. The properties of HAp are influenced by precursor materials and are commonly obtained from natural calcium-rich sources like eggshells, seashells, and fish scales. Composite materials, such as cellulose-hydroxyapatite and gelatin-hydroxyapatite, exhibit promising strength and biocompatibility for bone and tissue replacement. Metallic implants and scaffolds enhance stability, including well-known titanium-based and stainless steel-based implants and ceramic body implants. Biopolymers, like chitosan and alginate, combined with Hap, offer chemical stability and strength for tissue engineering. Collagen, fibrin, and gelatin play crucial roles in mimicking natural bone composition. Various synthesis methods like sol-gel, hydrothermal, and solution casting produce HAp crystals, with potential applications in bone repair and regeneration. Additionally, the use of biowaste materials, like eggshells and snails or seashells, not only supports sustainable HAp production but also reduces environmental impact. This review emphasizes the significance of understanding the properties of calcium-phosphate (Ca-P) compounds and processing methods for scaffold generation, highlighting novel characteristics and mechanisms of biomaterials in bone healing. Comparative studies of these methods in specific applications underscore the versatility and potential of HAp composites in biomedical engineering. Overall, HAp composites offer promising solutions for improving patient outcomes in bone replacement and tissue engineering and advancing medical practices.
Collapse
Affiliation(s)
- Wasan Alkaron
- Institute for Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós Str. 29-33, 1121 Budapest, Hungary; (A.A.); (K.B.)
- Doctoral School of Materials Science and Technologies, Óbuda University, Bécsi Str. 96/B, 1030 Budapest, Hungary
- Technical Institute of Basra, Southern Technical University, Basra 61001, Iraq
| | - Alaa Almansoori
- Institute for Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós Str. 29-33, 1121 Budapest, Hungary; (A.A.); (K.B.)
- Technical Institute of Basra, Southern Technical University, Basra 61001, Iraq
| | - Katalin Balázsi
- Institute for Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós Str. 29-33, 1121 Budapest, Hungary; (A.A.); (K.B.)
| | - Csaba Balázsi
- Institute for Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós Str. 29-33, 1121 Budapest, Hungary; (A.A.); (K.B.)
| |
Collapse
|
4
|
Tamo AK. Nanocellulose-based hydrogels as versatile materials with interesting functional properties for tissue engineering applications. J Mater Chem B 2024; 12:7692-7759. [PMID: 38805188 DOI: 10.1039/d4tb00397g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tissue engineering has emerged as a remarkable field aiming to restore or replace damaged tissues through the use of biomimetic constructs. Among the diverse materials investigated for this purpose, nanocellulose-based hydrogels have garnered attention due to their intriguing biocompatibility, tunable mechanical properties, and sustainability. Over the past few years, numerous research works have been published focusing on the successful use of nanocellulose-based hydrogels as artificial extracellular matrices for regenerating various types of tissues. The review emphasizes the importance of tissue engineering, highlighting hydrogels as biomimetic scaffolds, and specifically focuses on the role of nanocellulose in composites that mimic the structures, properties, and functions of the native extracellular matrix for regenerating damaged tissues. It also summarizes the types of nanocellulose, as well as their structural, mechanical, and biological properties, and their contributions to enhancing the properties and characteristics of functional hydrogels for tissue engineering of skin, bone, cartilage, heart, nerves and blood vessels. Additionally, recent advancements in the application of nanocellulose-based hydrogels for tissue engineering have been evaluated and documented. The review also addresses the challenges encountered in their fabrication while exploring the potential future prospects of these hydrogel matrices for biomedical applications.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France
| |
Collapse
|
5
|
Hoveidaei AH, Sadat-Shojai M, Mosalamiaghili S, Salarikia SR, Roghani-Shahraki H, Ghaderpanah R, Ersi MH, Conway JD. Nano-hydroxyapatite structures for bone regenerative medicine: Cell-material interaction. Bone 2024; 179:116956. [PMID: 37951520 DOI: 10.1016/j.bone.2023.116956] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Bone tissue engineering holds great promise for the regeneration of damaged or severe bone defects. However, several challenges hinder its translation into clinical practice. To address these challenges, interdisciplinary efforts and advances in biomaterials, cell biology, and bioengineering are required. In recent years, nano-hydroxyapatite (nHA)-based scaffolds have emerged as a promising approach for the development of bone regenerative agents. The unique similarity of nHA with minerals found in natural bones promotes remineralization and stimulates bone growth, which are crucial factors for efficient bone regeneration. Moreover, nHA exhibits desirable properties, such as strong chemical interactions with bone and facilitation of tissue growth, without inducing inflammation or toxicity. It also promotes osteoblast survival, adhesion, and proliferation, as well as increasing alkaline phosphatase activity, osteogenic differentiation, and bone-specific gene expression. However, it is important to note that the effect of nHA on osteoblast behavior is dose-dependent, with cytotoxic effects observed at higher doses. Additionally, the particle size of nHA plays a crucial role, with smaller particles having a more significant impact. Therefore, in this review, we highlighted the potential of nHA for improving bone regeneration processes and summarized the available data on bone cell response to nHA-based scaffolds. In addition, an attempt is made to portray the current status of bone tissue engineering using nHA/polymer hybrids and some recent scientific research in the field.
Collapse
Affiliation(s)
- Amir Human Hoveidaei
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Mehdi Sadat-Shojai
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Seyedarad Mosalamiaghili
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Rezvan Ghaderpanah
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hamed Ersi
- Evidence Based Medicine Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Clinical Research Development Center of Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Janet D Conway
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA.
| |
Collapse
|
6
|
Malekpour K, Hazrati A, Khosrojerdi A, Roshangar L, Ahmadi M. An overview to nanocellulose clinical application: Biocompatibility and opportunities in disease treatment. Regen Ther 2023; 24:630-641. [PMID: 38034858 PMCID: PMC10682839 DOI: 10.1016/j.reth.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Recently, the demand for organ transplantation has promptly increased due to the enhanced incidence of body organ failure, the increasing efficiency of transplantation, and the improvement in post-transplant outcomes. However, due to a lack of suitable organs for transplantation to fulfill current demand, significant organ shortage problems have emerged. Developing efficient technologies in combination with tissue engineering (TE) has opened new ways of producing engineered tissue substitutes. The use of natural nanoparticles (NPs) such as nanocellulose (NC) and nano-lignin should be used as suitable candidates in TE due to their desirable properties. Many studies have used these components to form scaffolds and three-dimensional (3D) cultures of cells derived from different tissues for tissue repair. Interestingly, these natural NPs can afford scaffolds a degree of control over their characteristics, such as modifying their mechanical strength and distributing bioactive compounds in a controlled manner. These bionanomaterials are produced from various sources and are highly compatible with human-derived cells as they are derived from natural components. In this review, we discuss some new studies in this field. This review summarizes the scaffolds based on NC, counting nanocrystalline cellulose and nanofibrillated cellulose. Also, the efficient approaches that can extract cellulose with high purity and increased safety are discussed. We concentrate on the most recent research on the use of NC-based scaffolds for the restoration, enhancement, or replacement of injured organs and tissues, such as cartilage, skin, arteries, brain, and bone. Finally, we suggest the experiments and promises of NC-based TE scaffolds.
Collapse
Affiliation(s)
- Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Khosrojerdi
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Bello SA, Cruz-Lebrón J, Rodríguez-Rivera OA, Nicolau E. Bioactive Scaffolds as a Promising Alternative for Enhancing Critical-Size Bone Defect Regeneration in the Craniomaxillofacial Region. ACS APPLIED BIO MATERIALS 2023; 6:4465-4503. [PMID: 37877225 DOI: 10.1021/acsabm.3c00432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Reconstruction of critical-size bone defects (CSDs) in the craniomaxillofacial (CMF) region remains challenging. Scaffold-based bone-engineered constructs have been proposed as an alternative to the classical treatments made with autografts and allografts. Scaffolds, a key component of engineered constructs, have been traditionally viewed as biologically passive temporary replacements of deficient bone lacking intrinsic cues to promote osteogenesis. Nowadays, scaffolds are functionalized, giving rise to bioactive scaffolds promoting bone regeneration more effectively than conventional counterparts. This review focuses on the three approaches most used to bioactivate scaffolds: (1) conferring microarchitectural designs or surface nanotopography; (2) loading bioactive molecules; and (3) seeding stem cells on scaffolds, providing relevant examples of in vivo (preclinical and clinical) studies where these methods are employed to enhance CSDs healing in the CMF region. From these, adding bioactive molecules (specifically bone morphogenetic proteins or BMPs) to scaffolds has been the most explored to bioactivate scaffolds. Nevertheless, the downsides of grafting BMP-loaded scaffolds in patients have limited its successful translation into clinics. Despite these drawbacks, scaffolds containing safer, cheaper, and more effective bioactive molecules, combined with stem cells and topographical cues, remain a promising alternative for clinical use to treat CSDs in the CMF complex replacing autografts and allografts.
Collapse
Affiliation(s)
- Samir A Bello
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Junellie Cruz-Lebrón
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Osvaldo A Rodríguez-Rivera
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Eduardo Nicolau
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| |
Collapse
|
8
|
Nefjodovs V, Andze L, Andzs M, Filipova I, Tupciauskas R, Vecbiskena L, Kapickis M. Wood as Possible Renewable Material for Bone Implants-Literature Review. J Funct Biomater 2023; 14:266. [PMID: 37233376 PMCID: PMC10219062 DOI: 10.3390/jfb14050266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Bone fractures and bone defects affect millions of people every year. Metal implants for bone fracture fixation and autologous bone for defect reconstruction are used extensively in treatment of these pathologies. Simultaneously, alternative, sustainable, and biocompatible materials are being researched to improve existing practice. Wood as a biomaterial for bone repair has not been considered until the last 50 years. Even nowadays there is not much research on solid wood as a biomaterial in bone implants. A few species of wood have been investigated. Different techniques of wood preparation have been proposed. Simple pre-treatments such as boiling in water or preheating of ash, birch and juniper woods have been used initially. Later researchers have tried using carbonized wood and wood derived cellulose scaffold. Manufacturing implants from carbonized wood and cellulose requires more extensive wood processing-heat above 800 °C and chemicals to extract cellulose. Carbonized wood and cellulose scaffolds can be combined with other materials, such as silicon carbide, hydroxyapatite, and bioactive glass to improve biocompatibility and mechanical durability. Throughout the publications wood implants have provided good biocompatibility and osteoconductivity thanks to wood's porous structure.
Collapse
Affiliation(s)
- Vadims Nefjodovs
- Faculty of Residency, Riga Stradins University, Dzirciema iela 16, LV-1007 Riga, Latvia
- Microsurgery Centre of Latvia, Brivibas Gatve 410, LV-1024 Riga, Latvia
| | - Laura Andze
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia (L.V.)
| | - Martins Andzs
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia (L.V.)
| | - Inese Filipova
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia (L.V.)
| | - Ramunas Tupciauskas
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia (L.V.)
| | - Linda Vecbiskena
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia (L.V.)
| | - Martins Kapickis
- Microsurgery Centre of Latvia, Brivibas Gatve 410, LV-1024 Riga, Latvia
| |
Collapse
|
9
|
Liu J, Yang L, Liu K, Gao F. Hydrogel scaffolds in bone regeneration: Their promising roles in angiogenesis. Front Pharmacol 2023; 14:1050954. [PMID: 36860296 PMCID: PMC9968752 DOI: 10.3389/fphar.2023.1050954] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Bone tissue engineering (BTE) has become a hopeful potential treatment strategy for large bone defects, including bone tumors, trauma, and extensive fractures, where the self-healing property of bone cannot repair the defect. Bone tissue engineering is composed of three main elements: progenitor/stem cells, scaffold, and growth factors/biochemical cues. Among the various biomaterial scaffolds, hydrogels are broadly used in bone tissue engineering owing to their biocompatibility, controllable mechanical characteristics, osteoconductive, and osteoinductive properties. During bone tissue engineering, angiogenesis plays a central role in the failure or success of bone reconstruction via discarding wastes and providing oxygen, minerals, nutrients, and growth factors to the injured microenvironment. This review presents an overview of bone tissue engineering and its requirements, hydrogel structure and characterization, the applications of hydrogels in bone regeneration, and the promising roles of hydrogels in bone angiogenesis during bone tissue engineering.
Collapse
Affiliation(s)
- Jun Liu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Lili Yang
- Department of Spinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Kexin Liu
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Feng Gao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China,*Correspondence: Feng Gao,
| |
Collapse
|
10
|
Effects of Calcium Carbonate Microcapsules and Nanohydroxyapatite on Properties of Thermosensitive Chitosan/Collagen Hydrogels. Polymers (Basel) 2023; 15:polym15020416. [PMID: 36679297 PMCID: PMC9861171 DOI: 10.3390/polym15020416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Thermosensitive chitosan/collagen hydrogels are osteoconductive and injectable materials. In this study, we aimed to improve these properties by adjusting the ratio of nanohydroxyapatite particles to calcium carbonate microcapsules in a β-glycerophosphate-crosslinked chitosan/collagen hydrogel. Two hydrogel systems with 2% and 5% nanohydroxyapatite particles were studied, each of which had varying microcapsule content (i.e., 0%, 1%, 2%, and 5%). Quercetin-incorporated calcium carbonate microcapsules were prepared. Calcium carbonate microcapsules and nanohydroxyapatite particles were then added to the hydrogel according to the composition of the studied system. The properties of the hydrogels, including cytotoxicity and biocompatibility, were investigated in mice. The calcium carbonate microcapsules were 2-6 µm in size, spherical, with rough and nanoporous surfaces, and thus exhibited a burst release of impregnated quercetin. The 5% nanohydroxyapatite system is a solid particulate gel that supports homogeneous distribution of microcapsules in the three-dimensional matrix of the hydrogels. Calcium carbonate microcapsules increased the mechanical and physical strength, viscoelasticity, and physical stability of the nanohydroxyapatite hydrogels while decreasing their porosity, swelling, and degradation rates. The calcium carbonate microcapsules-nanohydroxyapatite hydrogels were noncytotoxic and biocompatible. The properties of the hydrogel can be tailored by adjusting the ratio of calcium carbonate microcapsules to the nanohydroxyapatite particles. The 1% calcium carbonate microcapsules containing 5% nanohydroxyapatite particle-chitosan/collagen hydrogel exhibited mechanical and physical strength, permeability, and prolonged release profiles of quercetin, which were superior to those of the other studied systems and were optimal for promoting bone regeneration and delivering natural flavonoids.
Collapse
|
11
|
Meneghetti DH, Bagne L, de Andrade Pinto SA, de Carvalho Zavaglia CA, Amaral MEC, Esquisatto MAM, Dos Santos GMT, de Andrade TAM, Santamaria M, Caetano GF, de Aro AA, Mendonça FAS. Electrical stimulation therapy and rotary jet-spinning scaffold to treat bone defects. Anat Rec (Hoboken) 2023; 306:79-91. [PMID: 35535414 DOI: 10.1002/ar.24994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 01/29/2023]
Abstract
The combination of electrical stimulation (ES) and bone tissue engineering (BTE) has been successful in treatments of bone regeneration. This study evaluated the effects of ES combined with PCL + β-TCP 5% scaffolds obtained by rotary jet spinning (RJS) in the regeneration of bone defects in the calvaria of Wistar rats. We used 120 animals with induced bone defects divided into 4 groups (n = 30): (C) without treatment; (S) with PCL+ β-TCP 5% scaffold; (ES) treated with ES (10 μA/5 min); (ES + S) with PCL + β-TCP 5% scaffold. The ES occurred twice a week during the entire experimental period. Cell viability (in vitro: Days 3 and 7) and histomorphometric, histochemical, and immunohistochemical (in vivo; Days 30, 60, and 90) analysis were performed. In vitro, ES + S increased cell viability after Day 7 of incubation. In vivo, it was observed modulation of inflammatory cells in ES therapy, which also promoted blood vessels proliferation, and increase of collagen. Moreover, ES therapy played a role in osteogenesis by decreasing ligand kappa B nuclear factor-TNFSF11 (RANKL), increasing alkaline phosphatase (ALP), and decreasing the tartarate-resistant acid phosphatase. The combination of ES with RJS scaffolds may be a promising strategy for bone defects regeneration, since the therapy controlled inflammation, favored blood vessels proliferation, and osteogenesis, which are important processes in bone remodeling.
Collapse
Affiliation(s)
- Damaris Helena Meneghetti
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, Araras, Brazil
| | - Leonardo Bagne
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, Araras, Brazil
| | | | | | | | | | | | | | - Milton Santamaria
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, Araras, Brazil.,Faculty of Mechanical Engineering, University of Campinas, Campinas, Brazil.,Graduate Program in Orthodontics, University Center of Hermínio Ometto Foundation, Araras, Brazil
| | - Guilherme Ferreira Caetano
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, Araras, Brazil
| | - Andrea Aparecida de Aro
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, Araras, Brazil
| | | |
Collapse
|
12
|
Arias-Betancur A, Badilla-Wenzel N, Astete-Sanhueza Á, Farfán-Beltrán N, Dias FJ. Carrier systems for bone morphogenetic proteins: An overview of biomaterials used for dentoalveolar and maxillofacial bone regeneration. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:316-327. [PMID: 36281233 PMCID: PMC9587372 DOI: 10.1016/j.jdsr.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
Different types of biomaterials have been used to fabricate carriers to deliver bone morphogenetic proteins (BMPs) in both dentoalveolar and maxillofacial bone regeneration procedures. Despite that absorbable collagen sponge (ACS) is considered the gold standard for BMP delivery, there is still some concerns regarding its use mainly due to its poor mechanical properties. To overcome this, novel systems are being developed, however, due to the wide variety of biomaterial combination, the heterogeneous assessment of newly formed tissue, and the intended clinical applications, there is still no consensus regarding which is more efficient in a particular clinical scenario. The combination of two or more biomaterials in different topological configurations has allowed specific controlled-release patterns for BMPs, improving their biological and mechanical properties compared with classical single-material carriers. However, more basic research is needed. Since the BMPs can be used in multiple clinical scenarios having different biological and mechanical needs, novel carriers should be developed in a context-specific manner. Thus, the purpose of this review is to gather current knowledge about biomaterials used to fabricate delivery systems for BMPs in both dentoalveolar and maxillofacial contexts. Aspects related with the biological, physical and mechanical characteristics of each biomaterial are also presented and discussed. Strategies for bone formation and regeneration are a major concern in dentistry. Topical delivery of bone morphogenetic proteins (BMPs) allows rapid bone formation. BMPs requires proper carrier system to allow controlled and sustained release. Carrier should also fulfill mechanical requirements of bone defect sites. By using complex composites, it would be possible to develop new carriers for BMPs.
Collapse
Affiliation(s)
- Alain Arias-Betancur
- Department of Integral Adult Dentistry, Research Centre for Dental Sciences (CICO-UFRO), Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nicolás Badilla-Wenzel
- Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Álvaro Astete-Sanhueza
- Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nicole Farfán-Beltrán
- Department of Integral Adult Dentistry, Research Centre for Dental Sciences (CICO-UFRO), Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile.,Universidad Adventista de Chile, Chillán 3780000, Chile
| | - Fernando José Dias
- Department of Integral Adult Dentistry, Oral Biology Research Centre (CIBO-UFRO), Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
13
|
The Effect of Germanium-Loaded Hydroxyapatite Biomaterials on Bone Marrow Mesenchymal Stem Cells Growth. Cells 2022; 11:cells11192993. [PMID: 36230954 PMCID: PMC9563598 DOI: 10.3390/cells11192993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022] Open
Abstract
Hydroxyapatite (HA) is a hard mineral component of mineralized tissues, mainly composed of calcium and phosphate. Due to its bioavailability, HA is potentially used for the repair and regeneration of mineralized tissues. For this purpose, the properties of HA are significantly improved by adding natural and synthetic materials. In this sense, the germanium (Ge) mineral was loaded in HA biomaterial by cold isostatic pressure for the first time and characterization and biocompatibility using bone marrow mesenchymal stem cells (BM-MSCs) were investigated. The addition of Ge at 5% improved the solubility (3.32%), stiffness (18.34 MPa), water holding (31.27%) and biodegradation (21.87%) properties of HA, compared to control. Compared to all composite biomaterials, the drug-releasing behavior of HA-3% Ge was higher at pH 1 and 3 and the maximum drug release was obtained at pH 7 and 9 with HA-5% Ge biomaterials. Among the different mediums tested, the DMEM-medium showed a higher drug release rate, especially at 60 min. HA-Ge biomaterials showed better protein adhesion and apatite layer formation, which ultimately proves the compatibility in BM-MSCs culture. Except for higher concentrations of HA (5 and 10 mg/mL), the different concentrations of Ge and HA and wells coated with 1% of HA-1% Ge had higher BM-MSCs growth than control. All these findings concluded that the fabricated HA biomaterials loaded with Ge could be the potential biomaterial for culturing mammalian cells towards mineralized tissue repair and regeneration.
Collapse
|
14
|
Averianov I, Stepanova M, Solomakha O, Gofman I, Serdobintsev M, Blum N, Kaftuirev A, Baulin I, Nashchekina J, Lavrentieva A, Vinogradova T, Korzhikov-Vlakh V, Korzhikova-Vlakh E. 3D-Printed composite scaffolds based on poly(ε-caprolactone) filled with poly(glutamic acid)-modified cellulose nanocrystals for improved bone tissue regeneration. J Biomed Mater Res B Appl Biomater 2022; 110:2422-2437. [PMID: 35618683 DOI: 10.1002/jbm.b.35100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/19/2022]
Abstract
The manufacturing of modern scaffolds with customized geometry and personalization has become possible due to the three-dimensional (3D) printing technique. A novel type of 3D-printed scaffolds for bone tissue regeneration based on poly(ε-caprolactone) (PCL) filled with nanocrystalline cellulose modified by poly(glutamic acid) (PGlu-NCC) has been proposed in this study. The 3D printing set-ups were optimized in order to obtain homogeneous porous scaffolds. Both polymer composites and manufactured 3D scaffolds have demonstrated mechanical properties suitable for a human trabecular bone. Compression moduli were in the range of 334-396 MPa for non-porous PCL and PCL-based composites, and 101-122 MPa for porous scaffolds made of the same materials. In vitro mineralization study with the use of human mesenchymal stem cells (hMSCs) revealed the larger Ca deposits on the surface of PCL/PGlu-NCC composite scaffolds. Implantation of the developed 3D scaffolds into femur of the rabbits was carried out to observe close and delayed effects. The histological analysis showed the lowest content of immune cells and thin fibrous capsule, revealing low toxicity of the PCL/PGlu-NCC scaffolds seeded with rabbit MSCs (rMSCs) to the surrounding tissues. The most pronounced result on the generation of new bone tissue after implantation of PCL/PGlu-NCC + rMSCs scaffolds was detected by both microcomputed tomography and histological analysis. Around 33% and 55% of bone coverage were detected for composite 3D scaffolds with adhered rMSCs after 1 and 3 months of implantation, respectively. This achievement can be a result of synergistic effect of PGlu, which attracts calcium ions, and stem cells with osteogenic potential.
Collapse
Affiliation(s)
- Ilia Averianov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
| | - Mariia Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
| | - Olga Solomakha
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
| | - Iosif Gofman
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
| | - Mikhail Serdobintsev
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, St. Petersburg, Russia
| | - Natalya Blum
- Interregional Laboratory Center, St. Petersburg, Russia
| | - Aleksander Kaftuirev
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, St. Petersburg, Russia
| | - Ivan Baulin
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, St. Petersburg, Russia
| | - Juliya Nashchekina
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Antonina Lavrentieva
- Institute of Technical Chemistry, Leibniz University of Hannover, Hannover, Germany
| | - Tatiana Vinogradova
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, St. Petersburg, Russia
| | - Viktor Korzhikov-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia.,Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia.,Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
15
|
Barbosa F, Ferreira FC, Silva JC. Piezoelectric Electrospun Fibrous Scaffolds for Bone, Articular Cartilage and Osteochondral Tissue Engineering. Int J Mol Sci 2022; 23:2907. [PMID: 35328328 PMCID: PMC8952277 DOI: 10.3390/ijms23062907] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 01/15/2023] Open
Abstract
Osteochondral tissue (OCT) related diseases, particularly osteoarthritis, number among the most prevalent in the adult population worldwide. However, no satisfactory clinical treatments have been developed to date to resolve this unmet medical issue. Osteochondral tissue engineering (OCTE) strategies involving the fabrication of OCT-mimicking scaffold structures capable of replacing damaged tissue and promoting its regeneration are currently under development. While the piezoelectric properties of the OCT have been extensively reported in different studies, they keep being neglected in the design of novel OCT scaffolds, which focus primarily on the tissue's structural and mechanical properties. Given the promising potential of piezoelectric electrospun scaffolds capable of both recapitulating the piezoelectric nature of the tissue's fibrous ECM and of providing a platform for electrical and mechanical stimulation to promote the regeneration of damaged OCT, the present review aims to examine the current state of the art of these electroactive smart scaffolds in OCTE strategies. A summary of the piezoelectric properties of the different regions of the OCT and an overview of the main piezoelectric biomaterials applied in OCTE applications are presented. Some recent examples of piezoelectric electrospun scaffolds developed for potentially replacing damaged OCT as well as for the bone or articular cartilage segments of this interfacial tissue are summarized. Finally, the current challenges and future perspectives concerning the use of piezoelectric electrospun scaffolds in OCT regeneration are discussed.
Collapse
Affiliation(s)
- Frederico Barbosa
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (F.B.); (F.C.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Frederico Castelo Ferreira
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (F.B.); (F.C.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João Carlos Silva
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (F.B.); (F.C.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- CDRSP—Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
| |
Collapse
|
16
|
Zhang Q, Huang K, Tan J, Lei X, Huang L, Song Y, Li Q, Zou C, Xie H. Metal-phenolic networks modified polyurethane as periosteum for bone regeneration. CHINESE CHEM LETT 2022; 33:1623-1626. [DOI: 10.1016/j.cclet.2021.09.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Yang Y, Chu C, Xiao W, Liu L, Man Y, Lin J, Qu Y. Strategies for advanced particulate bone substitutes regulating the osteo-immune microenvironment. Biomed Mater 2022; 17. [PMID: 35168224 DOI: 10.1088/1748-605x/ac5572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/15/2022] [Indexed: 02/05/2023]
Abstract
The usage of bone substitute granule materials has improved the clinical results of alveolar bone deficiencies treatment and thus broadened applications in implant dentistry. However, because of the complicated mechanisms controlling the foreign body response, no perfect solution can avoid the fibrotic encapsulation of materials till now, which may impair the results of bone regeneration, even cause the implant materials rejection. Recently, the concept of 'osteoimmunology' has been stressed. The outcomes of bone regeneration are proved to be related to the bio-physicochemical properties of biomaterials, which allow them to regulate the biological behaviours of both innate and adaptive immune cells. With the development of single cell transcriptome, the truly heterogeneity of osteo-immune cells has been clarifying, which is helpful to overcome the limitations of traditional M1/M2 macrophage nomenclature and drive the advancements of particulate biomaterials applications. This review aims at introducing the mechanisms of optimal osseointegration regulated by immune systems and provides feasible strategies for the design of next generation 'osteoimmune-smart' particulate bone substitute materials in dental clinic.
Collapse
Affiliation(s)
- Yang Yang
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chenyu Chu
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Wenlan Xiao
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Li Liu
- State Key Laboratory of Biotherapy and Laboratory, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yi Man
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jie Lin
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yili Qu
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
18
|
Wickramasinghe ML, Dias GJ, Premadasa KMGP. A novel classification of bone graft materials. J Biomed Mater Res B Appl Biomater 2022; 110:1724-1749. [PMID: 35156317 DOI: 10.1002/jbm.b.35029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Maduni L. Wickramasinghe
- Department of Biomedical Engineering General Sir John Kotelawala Defense University Ratmalana Sri Lanka
| | - George J. Dias
- Department of Anatomy, School of Medical Sciences University of Otago Dunedin New Zealand
| | | |
Collapse
|
19
|
Prado JPDS, Yamamura H, Magri AMP, Ruiz PLM, Prado JLDS, Rennó ACM, Ribeiro DA, Granito RN. In vitro and in vivo biological performance of hydroxyapatite from fish waste. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:109. [PMID: 34453621 PMCID: PMC8403112 DOI: 10.1007/s10856-021-06591-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/09/2021] [Indexed: 05/13/2023]
Abstract
The aim of this study was to evaluate biocompatibility of hydroxyapatite (HAP) from fish waste using in vitro and in vivo assays. Fish samples (whitemouth croaker - Micropogonias furnieri) from the biowaste was used as HAP source. Pre-osteoblastic MC3T3-E1 cells were used in vitro study. In addition, bone defects were artificially created in rat calvaria and filled with HAP in vivo. The results demonstrated that HAP reduced cytotoxicity in pre-osteoblast cells after 3 and 6 days following HAP exposure. DNA concentration was lower in the HAP group after 6 days. Quantitative RT-PCR did not show any significant differences (p > 0.05) between groups. In vivo study revealed that bone defects filled with HAP pointed out moderate chronic inflammatory cells with slight proliferation of blood vessels after 7 and 15 days. Chronic inflammatory infiltrate was absent after 30 days of HAP exposure. There was also a decrease in the amount of biomaterial, being followed by newly formed bone tissue. All experimental groups also demonstrated strong RUNX-2 immoexpression in the granulation tissue as well as in cells in close contact with biomaterial. The number of osteoblasts inside the defect area was lower in the HAP group when compared to control group after 7 days post-implantation. Similarly, the osteoblast surface as well as the percentage of bone surface was higher in control group when compared with HAP group after 7 days post-implantation. Taken together, HAP from fish waste is a promising possibility that should be explored more carefully by tissue-engineering or biotechnology.
Collapse
Affiliation(s)
| | - Hirochi Yamamura
- Department of Biosciences, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| | | | - Pedro Luiz Muniz Ruiz
- Department of Biosciences, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| | | | | | - Daniel Araki Ribeiro
- Department of Biosciences, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil.
| | - Renata Neves Granito
- Department of Biosciences, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| |
Collapse
|
20
|
Pranskunas M, Simoliunas E, Alksne M, Kaupinis A, Juodzbalys G. Periosteum-Derived Mesenchymal Stem Cells Secretome - Cell-Free Strategy for Endogenous Bone Regeneration: Proteomic Analysis in Vitro. EJOURNAL OF ORAL MAXILLOFACIAL RESEARCH 2021; 12:e2. [PMID: 34377379 PMCID: PMC8326881 DOI: 10.5037/jomr.2021.12202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/22/2021] [Indexed: 12/29/2022]
Abstract
Objectives Millions of people worldwide are affected by diseases or injuries which lead to bone/tooth loss and defects. While such clinical situations are daily practice in most of the hospitals, the widely used treatment methods still have disadvantages. Therefore, this field of medicine is actively searching new tissue regeneration techniques, one of which could be stem cell secretome. Thus, the purpose of this research study was to perform the detail proteomic analysis of periosteum-derived mesenchymal stem cells secretome in order to evaluate if it is capable to induce osteo-regenerative process. Material and Methods Periosteum-derived mesenchymal stem cells (PMSCs) were extracted from adult male New Zealand White rabbits. Cells were characterised by evaluating their differentiation potential. After characterisation PMSCs secretomes were collected and their proteomic analysis was performed. Results PMSCs were extracted from adult male New Zealand White rabbits. In order to characterise the extracted PMSCs, they were differentiated in the directions which mainly describes MSC multipotency - osteogenic, myogenic and adipogenic. A total of 146 proteins were detected. After characterisation PMSCs secretomes were collected and their proteomic analysis was performed. The resulting protein composition indicates the ability to promote bone regeneration to fully mature bone. Conclusions Bioactive molecules detected in periosteum-derived mesenchymal stem cells secretome initiates the processes required for the formation of a fully functional bone.
Collapse
Affiliation(s)
- Mindaugas Pranskunas
- Department of Oral and Maxillofacial Surgery, Faculty of Odontology, Medical Academy, Lithuanian University of Health Sciences, KaunasLithuania.,32:Baltic dental clinic, VilniusLithuania.,These authors contributed equally to this work
| | - Egidijus Simoliunas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, VilniusLithuania.,These authors contributed equally to this work
| | - Milda Alksne
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, VilniusLithuania.,These authors contributed equally to this work
| | - Algirdas Kaupinis
- Proteomics Centre, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 VilniusLithuania
| | - Gintaras Juodzbalys
- Department of Oral and Maxillofacial Surgery, Faculty of Odontology, Medical Academy, Lithuanian University of Health Sciences, KaunasLithuania.,These authors contributed equally to this work
| |
Collapse
|
21
|
Grigorita O, Omer L, Juodzbalys G. Complications and Management of Patients with Inherited Bleeding Disorders During Dental Extractions: a Systematic Literature Review. EJOURNAL OF ORAL MAXILLOFACIAL RESEARCH 2021; 12:e1. [PMID: 34377378 PMCID: PMC8326879 DOI: 10.5037/jomr.2021.12201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022]
Abstract
Objectives The systematic literature review aims to assess patients' dental extraction with inherited bleeding disorders, to understand the type, dosage, and modality of administration of the haemostatic agents for safe intra- and postoperational results. Material and Methods The search was undertaken in MEDLINE (PubMed) databases and Cochrane library for articles published in English from 1 January, 2010 till 31 October, 2020. Before the full-text articles were considered, titles and abstracts were screened. Results A total of 78 articles were screened, from which 3 met the necessary criteria and were used for the review. Minor complications, such as postoperative bleedings from the socket and epistaxis, were observed, but they were resolved with proper medical care. No major fatal complications were reported. Generally, all the articles provided evidence of successful extractions with correct treatment plans made by haematologists and surgeons. Conclusions Available clinical trials demonstrate that local and systemic haemostatic therapies in combination are effective in preventing bleeding during dental extractions in patients with coagulopathies.
Collapse
Affiliation(s)
- Olga Grigorita
- Department of Oral and Maxillofacial Surgery, Lithuanian University of Health SciencesLithuania
| | - Loran Omer
- Department of Oral and Maxillofacial Surgery, Lithuanian University of Health SciencesLithuania
| | | |
Collapse
|
22
|
Signaling Pathway and Transcriptional Regulation in Osteoblasts during Bone Healing: Direct Involvement of Hydroxyapatite as a Biomaterial. Pharmaceuticals (Basel) 2021; 14:ph14070615. [PMID: 34206843 PMCID: PMC8308723 DOI: 10.3390/ph14070615] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Bone defects and periodontal disease are pathological conditions that may become neglected diseases if not treated properly. Hydroxyapatite (HA), along with tricalcium phosphate and bioglass ceramic, is a biomaterial widely applied to orthopedic and dental uses. The in vivo performance of HA is determined by the interaction between HA particles with bone cells, particularly the bone mineralizing cells osteoblasts. It has been reported that HA-induced osteoblastic differentiation by increasing the expression of osteogenic transcription factors. However, the pathway involved and the events that occur in the cell membrane have not been well understood and remain controversial. Advances in gene editing and the discovery of pharmacologic inhibitors assist researchers to better understand osteoblastic differentiation. This review summarizes the involvement of extracellular signal-regulated kinase (ERK), p38, Wnt, and bone morphogenetic protein 2 (BMP2) in osteoblastic cellular regulation induced by HA. These advances enhance the current understanding of the molecular mechanism of HA as a biomaterial. Moreover, they provide a better strategy for the design of HA to be utilized in bone engineering.
Collapse
|
23
|
Pranskunas M, Šimoliūnas E, Alksne M, Martin V, Gomes PS, Puisys A, Kaupinis A, Juodzbalys G. Assessment of the Bone Healing Process Mediated by Periosteum-Derived Mesenchymal Stem Cells' Secretome and a Xenogenic Bioceramic-An In Vivo Study in the Rabbit Critical Size Calvarial Defect Model. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3512. [PMID: 34202509 PMCID: PMC8269548 DOI: 10.3390/ma14133512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022]
Abstract
The mesenchymal stem cell (MSC) secretome has been considered an innovative therapeutic biological approach, able to modulate cellular crosstalk and functionality for enhanced tissue repair and regeneration. This study aims to evaluate the functionality of the secretome isolated from periosteum-derived MSCs, from either basal or osteogenic-induced conditions, in the healing of a critical size calvarial bone defect in the rabbit model. A bioceramic xenograft was used as the vehicle for secretome delivery, and the biological response to the established biocomposite system was assessed by clinical, histological, histomorphometric, and microtomographic analysis. A comparative analysis revealed that the osteogenic-induced secretome presented an increased diversity of proteins, with emphasis on those related to osteogenesis. Microtomographic and histological morphometric analysis revealed that bioceramic xenografts implanted with secretomes enhanced the new bone formation process, with the osteogenic-induced secretome inducing the highest bone tissue formation. The application of the MSC secretome, particularly from osteogenic-induced populations, may be regarded as an effective therapeutic approach to enhance bone tissue healing and regeneration.
Collapse
Affiliation(s)
- Mindaugas Pranskunas
- Department of Oral and Maxillofacial Surgery, Faculty of Odontology, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
- 32:Balti Dental Clinic, LT-09235 Vilnius, Lithuania
| | - Egidijus Šimoliūnas
- Life Sciences Center, Department of Biological Models, Institute of Biochemistry, Vilnius University, LT-10257 Vilnius, Lithuania; (E.Š.); (M.A.)
| | - Milda Alksne
- Life Sciences Center, Department of Biological Models, Institute of Biochemistry, Vilnius University, LT-10257 Vilnius, Lithuania; (E.Š.); (M.A.)
| | - Victor Martin
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, U. Porto, 4200-393 Porto, Portugal; (V.M.); (P.S.G.)
- LAQV/REQUIMTE—U. Porto, 4200-393 Porto, Portugal
| | - Pedro Sousa Gomes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, U. Porto, 4200-393 Porto, Portugal; (V.M.); (P.S.G.)
- LAQV/REQUIMTE—U. Porto, 4200-393 Porto, Portugal
| | - Algirdas Puisys
- Vilnius Implantology Center, LT-03162 Vilnius, Lithuania;
- Vilnius Research Group, LT-02233 Vilnius, Lithuania
| | - Algirdas Kaupinis
- Proteomics Centre, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania;
| | - Gintaras Juodzbalys
- Department of Oral and Maxillofacial Surgery, Faculty of Odontology, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| |
Collapse
|
24
|
Ko SW, Lee JY, Rezk AI, Park CH, Kim CS. In-situ cellulose-framework templates mediated monodispersed silver nanoparticles via facile UV-light photocatalytic activity for anti-microbial functionalization. Carbohydr Polym 2021; 269:118255. [PMID: 34294292 DOI: 10.1016/j.carbpol.2021.118255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/08/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022]
Abstract
Cellulose is well known as a biocompatible material or natural reducing material. In this study, As an eco-friendly and facile method, we prepared monodispersed silver nanoparticles (AgNPs) in cellulose-framework through photocatalytic reaction. and we fabricated electrospun fiber scaffolds with excellent antibacterial properties and biocompatibility. UV-irradiation causes the electrical change of the cellulose-framework, thereby converting Ag ions into Ag particles. We applied a three-electrode system to confirm the phenomenon. Through STEM and EDS, it was found that the synthesized AgNPs were monodisperse in the nanofibers, and antibacterial activity was confirmed using gram-negative and gram-positive bacteria. In addition, it was suggested that the gradual release of simvastatin contained in the nanofibers and excellent mineralization would be easy to apply to bone regeneration. Therefore, the manufactured composite electrospun fiber mat can be used not only in biomedical fields but also in various applications that need to prevent the accumulation of microorganisms.
Collapse
Affiliation(s)
- Sung Won Ko
- Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea
| | - Ji Yeon Lee
- Department of Mechanical Design Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea
| | - Abdelrahman I Rezk
- Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju, Republic of Korea; Eco-Friendly Machine Parts Design Research Center, Jeonbuk National University, Jeonju, Republic of Korea.
| | - Cheol Sang Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju, Republic of Korea; Eco-Friendly Machine Parts Design Research Center, Jeonbuk National University, Jeonju, Republic of Korea.
| |
Collapse
|
25
|
Wang F, Nakata H, Sun X, Maung WM, Sato M, Kon K, Ozeki K, Ikumi R, Kasugai S, Kuroda S. A novel hydroxyapatite fiber material for the regeneration of critical-sized rabbit calvaria defects. Dent Mater J 2021; 40:964-971. [PMID: 33883351 DOI: 10.4012/dmj.2020-327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hydroxyapatite (HA) [Ca10 (PO4)6 (OH)2] has a high degree of chemical similarity with the mineral composition of animal bone. Hydroxyapatite fiber scaffold (HAF) is a biological material with a highly interconnected porous structure. We aimed to study the physical and biological characteristics of HAF and compare the osteogenic effects of HAF, natural osteogenic materials (NOM), and carbonate apatite (CO3Ap-DP) in the parietal defects of a rabbit's skull. X-ray analysis and histological assessment showed that HAF followed a trend of early initial osteogenesis and bone trabecular structure formation, especially at the cortical bone portion.Compared to the other two materials, HAF was more absorptive. Results indicated that HAF had the same osteoconductive and new bone formation properties as NOM and CO3Ap-DP. These findings will provide options for future material development and novel protocols for use in surgeries, ultimately leading to better patient outcomes.
Collapse
Affiliation(s)
- Fangshuo Wang
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University
| | - Hidemi Nakata
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University
| | - Xiaolong Sun
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University
| | - Wai Myo Maung
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University
| | - Masashi Sato
- Department of Oral and Maxillofacial Surgery, Tokyo Medical and Dental University
| | - Kazuhiro Kon
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University
| | - Kazuhide Ozeki
- Major in Mechanical Systems Engineering, Graduate School of Science and Engineering, Ibaraki University
| | - Reo Ikumi
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University
| | - Shohei Kasugai
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University
| | - Shinji Kuroda
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University
| |
Collapse
|
26
|
Salihu R, Abd Razak SI, Ahmad Zawawi N, Rafiq Abdul Kadir M, Izzah Ismail N, Jusoh N, Riduan Mohamad M, Hasraf Mat Nayan N. Citric acid: A green cross-linker of biomaterials for biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110271] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Nanosheets-incorporated bio-composites containing natural and synthetic polymers/ceramics for bone tissue engineering. Int J Biol Macromol 2020; 164:1960-1972. [DOI: 10.1016/j.ijbiomac.2020.08.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022]
|
28
|
Pietraszek A, Ledwójcik G, Lewandowska-Łańcucka J, Horak W, Lach R, Łatkiewicz A, Karewicz A. Bioactive hydrogel scaffolds reinforced with alkaline-phosphatase containing halloysite nanotubes for bone repair applications. Int J Biol Macromol 2020; 163:1187-1195. [DOI: 10.1016/j.ijbiomac.2020.07.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
|
29
|
Zheng T, Huang Y, Zhang X, Cai Q, Deng X, Yang X. Mimicking the electrophysiological microenvironment of bone tissue using electroactive materials to promote its regeneration. J Mater Chem B 2020; 8:10221-10256. [PMID: 33084727 DOI: 10.1039/d0tb01601b] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The process of bone tissue repair and regeneration is complex and requires a variety of physiological signals, including biochemical, electrical and mechanical signals, which collaborate to ensure functional recovery. The inherent piezoelectric properties of bone tissues can convert mechanical stimulation into electrical effects, which play significant roles in bone maturation, remodeling and reconstruction. Electroactive materials, including conductive materials, piezoelectric materials and electret materials, can simulate the physiological and electrical microenvironment of bone tissue, thereby promoting bone regeneration and reconstruction. In this paper, the structures and performances of different types of electroactive materials and their applications in the field of bone repair and regeneration are reviewed, particularly by providing the results from in vivo evaluations using various animal models. Their advantages and disadvantages as bone repair materials are discussed, and the methods for tuning their performances are also described, with the aim of providing an up-to-date account of the proposed topics.
Collapse
Affiliation(s)
- Tianyi Zheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Yiqian Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
30
|
Cun X, Hosta-Rigau L. Topography: A Biophysical Approach to Direct the Fate of Mesenchymal Stem Cells in Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2070. [PMID: 33092104 PMCID: PMC7590059 DOI: 10.3390/nano10102070] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022]
Abstract
Tissue engineering is a promising strategy to treat tissue and organ loss or damage caused by injury or disease. During the past two decades, mesenchymal stem cells (MSCs) have attracted a tremendous amount of interest in tissue engineering due to their multipotency and self-renewal ability. MSCs are also the most multipotent stem cells in the human adult body. However, the application of MSCs in tissue engineering is relatively limited because it is difficult to guide their differentiation toward a specific cell lineage by using traditional biochemical factors. Besides biochemical factors, the differentiation of MSCs also influenced by biophysical cues. To this end, much effort has been devoted to directing the cell lineage decisions of MSCs through adjusting the biophysical properties of biomaterials. The surface topography of the biomaterial-based scaffold can modulate the proliferation and differentiation of MSCs. Presently, the development of micro- and nano-fabrication techniques has made it possible to control the surface topography of the scaffold precisely. In this review, we highlight and discuss how the main topographical features (i.e., roughness, patterns, and porosity) are an efficient approach to control the fate of MSCs and the application of topography in tissue engineering.
Collapse
Affiliation(s)
| | - Leticia Hosta-Rigau
- DTU Health Tech, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark;
| |
Collapse
|
31
|
Pieper CM, da Rosa WLO, Lund RG, da Silva AF, Piva E, Salas MMS, Maron GK, Bomio MRD, Motta FV, Carreño NLV. Biofilms of cellulose and hydroxyapatite composites: Alternative synthesis process. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520951838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A new biofilm of cellulose coated with hydroxyapatite particles have been prepared using a simple, fast and low temperature process based on a microwave-assisted hydrothermal synthesis. The cellulose used as matrix of the biocomposite was extracted from banana stems residues. The hydroxyapatite coating was performed using calcium nitrate tetrahydrate, phosphoric acid, and 1,2-ethylenediamine dispersed in a cellulose/water solution, with posterior microwave-assisted hydrothermal synthesis, for 5 min at 140°C. The chemical, structural, thermal, and morphological properties of the composites were investigated by X-ray diffraction, infrared spectroscopy, thermogravimetry and field emission scanning electron microscopy. Results showed that the methodology was effective to produce high quality composites, with good thermal stability. Cell viability tests indicated that the cellulose/Hap films were not cytotoxic.
Collapse
Affiliation(s)
- Cari M Pieper
- Department of Restorative Dentistry, Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Wellington LO da Rosa
- Department of Restorative Dentistry, Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Rafael G Lund
- Department of Restorative Dentistry, Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Adriana F da Silva
- Department of Restorative Dentistry, Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Evandro Piva
- Department of Restorative Dentistry, Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Mabel MS Salas
- Department of Restorative Dentistry, Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil
- Graduate Program in Dentistry, Federal University of Juiz de Fora, Governador Valadares, MG, Brazil
| | - Guilherme K Maron
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Mauricio RD Bomio
- LSQM, Laboratory of Chemical Synthesis of Materials, Department of Materials Engineering, Federal University of Rio Grande do Norte, UFRN, Natal, RN, Brazil
| | - Fabiana V Motta
- LSQM, Laboratory of Chemical Synthesis of Materials, Department of Materials Engineering, Federal University of Rio Grande do Norte, UFRN, Natal, RN, Brazil
| | - Neftali LV Carreño
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
32
|
Abstract
Tissue engineering promotes tissue regeneration through biomaterials that have excellent properties and have the potential to replace tissues. Many studies show that bacterial cellulose (BC) might ensure tissue regeneration and substitution, being used for the bioengineering of hard, cartilaginous and soft tissues. Bacterial cellulose is extensively used as wound dressing material and results show that BC is a promising tissue scaffold (bone, cardiovascular, urinary tissue). It can be combined with polymeric and non-polymeric compounds to acquire antimicrobial, cell-adhesion and proliferation properties. To ensure proper tissue regeneration, the material has to be: biocompatible, with minimum tissue reaction and biodegradability; bio-absorbable, to promote tissue development, cellular interaction and grow; resistant to support the weight of the newly formed tissue. Its versatile structure, physical and biochemical properties can be adjusted by adapting the bacteria culturing conditions. The main biomedical applications seem to be as hard (bone, dental), fibrocartilaginous (meniscal) and soft tissue (skin, cardiovascular, urinary) substituents. This paper reviews the current state of knowledge, challenges and future applications of BC and its biomedical potential in veterinary medicine. It was focused on the main uses in regeneration and scaffold tissue replacement and, although BC showed promising results, there is a lack of successful results of BC use in clinical practice. Most studies were performed only at experimental level and further research is needed for BC to enter clinical veterinary practice.
Collapse
|
33
|
Witzler M, Büchner D, Shoushrah SH, Babczyk P, Baranova J, Witzleben S, Tobiasch E, Schulze M. Polysaccharide-Based Systems for Targeted Stem Cell Differentiation and Bone Regeneration. Biomolecules 2019; 9:E840. [PMID: 31817802 PMCID: PMC6995597 DOI: 10.3390/biom9120840] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
Bone tissue engineering is an ever-changing, rapidly evolving, and highly interdisciplinary field of study, where scientists try to mimic natural bone structure as closely as possible in order to facilitate bone healing. New insights from cell biology, specifically from mesenchymal stem cell differentiation and signaling, lead to new approaches in bone regeneration. Novel scaffold and drug release materials based on polysaccharides gain increasing attention due to their wide availability and good biocompatibility to be used as hydrogels and/or hybrid components for drug release and tissue engineering. This article reviews the current state of the art, recent developments, and future perspectives in polysaccharide-based systems used for bone regeneration.
Collapse
Affiliation(s)
- Markus Witzler
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (M.W.); (D.B.); (S.H.S.); (P.B.); (S.W.); (E.T.)
| | - Dominik Büchner
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (M.W.); (D.B.); (S.H.S.); (P.B.); (S.W.); (E.T.)
| | - Sarah Hani Shoushrah
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (M.W.); (D.B.); (S.H.S.); (P.B.); (S.W.); (E.T.)
| | - Patrick Babczyk
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (M.W.); (D.B.); (S.H.S.); (P.B.); (S.W.); (E.T.)
| | - Juliana Baranova
- Laboratory of Neurosciences, Department of Biochemistry, Institute of Chemistry–USP, University of São Paulo, Avenida Professor Lineu Prestes 748, Vila Universitaria, São Paulo, SP 05508-000, Brazil;
| | - Steffen Witzleben
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (M.W.); (D.B.); (S.H.S.); (P.B.); (S.W.); (E.T.)
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (M.W.); (D.B.); (S.H.S.); (P.B.); (S.W.); (E.T.)
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (M.W.); (D.B.); (S.H.S.); (P.B.); (S.W.); (E.T.)
| |
Collapse
|
34
|
Li J, Liu X, Crook JM, Wallace GG. Electrical stimulation-induced osteogenesis of human adipose derived stem cells using a conductive graphene-cellulose scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110312. [PMID: 31761174 DOI: 10.1016/j.msec.2019.110312] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/20/2019] [Accepted: 10/12/2019] [Indexed: 12/29/2022]
Abstract
The versatile properties of graphene-based materials are enabling various tissue regeneration, towards meeting an ever increasing demand for replacement tissues due to injury through trauma and disease. In particular, an innate ability for graphene to promote osteogenic differentiation of stem cells, combined with the potential to enhance the biological activity of cells through electrical stimulation (ES) using graphene, supports its use for osteoinduction or reconstruction. In this paper, we describe a miniaturized graphene-cellulose (G-C) scaffold-based device that incorporates electroactive G-C 'paper' within a polystyrene chamber for concomitant cell culture and ES. The G-C electrodes possessed lower impedance and higher charge injection capacity than gold (Au) electrodes, with high stability. By coupling ES with previously reported properties of the G-C scaffolds, we have advanced the platform for improved adipose derived stem cell (ADSC) support and osteogenic differentiation. We anticipate using the G-C scaffold-based ES device for in vitro modelling of osteogenic induction, bone tissue engineering and in vivo bone regeneration towards new therapeutic strategies for bone injury and disease. Furthermore, the device could reasonably be used for ES and culture of other cell types and engineering other tissues.
Collapse
Affiliation(s)
- Jianfeng Li
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, NSW, 2500, Australia
| | - Xiao Liu
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, NSW, 2500, Australia.
| | - Jeremy M Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, NSW, 2500, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia; Department of Surgery, St Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, 3065, Australia.
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, NSW, 2500, Australia.
| |
Collapse
|
35
|
Chen X, Zhu L, Wen W, Lu L, Luo B, Zhou C. Biomimetic mineralisation of eggshell membrane featuring natural nanofiber network structure for improving its osteogenic activity. Colloids Surf B Biointerfaces 2019; 179:299-308. [DOI: 10.1016/j.colsurfb.2019.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 12/21/2022]
|
36
|
Abbasi N, Abdal-hay A, Hamlet S, Graham E, Ivanovski S. Effects of Gradient and Offset Architectures on the Mechanical and Biological Properties of 3-D Melt Electrowritten (MEW) Scaffolds. ACS Biomater Sci Eng 2019; 5:3448-3461. [DOI: 10.1021/acsbiomaterials.8b01456] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Abdalla Abdal-hay
- School of Dentistry, University of Queensland, Herston Campus, St Lucia, Queensland 4072, Australia
- Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena, 83523, Egypt
| | | | - Elizabeth Graham
- Central Analytical Research Facility, Queensland University of Technology, Gardens Point Campus, Brisbane City, Queensland 4000, Australia
| | - Saso Ivanovski
- School of Dentistry, University of Queensland, Herston Campus, St Lucia, Queensland 4072, Australia
| |
Collapse
|
37
|
Chen X, Fan H, Deng X, Wu L, Yi T, Gu L, Zhou C, Fan Y, Zhang X. Scaffold Structural Microenvironmental Cues to Guide Tissue Regeneration in Bone Tissue Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E960. [PMID: 30469378 PMCID: PMC6266401 DOI: 10.3390/nano8110960] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 02/07/2023]
Abstract
In the process of bone regeneration, new bone formation is largely affected by physico-chemical cues in the surrounding microenvironment. Tissue cells reside in a complex scaffold physiological microenvironment. The scaffold should provide certain circumstance full of structural cues to enhance multipotent mesenchymal stem cell (MSC) differentiation, osteoblast growth, extracellular matrix (ECM) deposition, and subsequent new bone formation. This article reviewed advances in fabrication technology that enable the creation of biomaterials with well-defined pore structure and surface topography, which can be sensed by host tissue cells (esp., stem cells) and subsequently determine cell fates during differentiation. Three important cues, including scaffold pore structure (i.e., porosity and pore size), grain size, and surface topography were studied. These findings improve our understanding of how the mechanism scaffold microenvironmental cues guide bone tissue regeneration.
Collapse
Affiliation(s)
- Xuening Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Hongyuan Fan
- Scholl of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Xiaowei Deng
- Department of Civil Engineering, The University of Hongkong, Pokfulam, Hongkong 999077, China.
| | - Lina Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Tao Yi
- Scholl of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Linxia Gu
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0526, USA.
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|