1
|
Hao Z, Li X, Zhang R, Zhang L. Stimuli‐Responsive Hydrogels for Antibacterial Applications. Adv Healthc Mater 2024:e2400513. [PMID: 38723248 DOI: 10.1002/adhm.202400513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/06/2024] [Indexed: 05/21/2024]
Abstract
Hydrogels have emerged as promising candidates for biomedical applications, especially in the field of antibacterial therapeutics, due to their unique structural properties, highly tunable physicochemical properties, and excellent biocompatibility. The integration of stimuli-responsive functions into antibacterial hydrogels holds the potential to enhance their antibacterial properties and therapeutic efficacy, dynamically responding to different external or internal stimuli, such as pH, temperature, enzymes, and light. Therefore, this review describes the applications of hydrogel dressings responsive to different stimuli in antibacterial therapy. The collaborative interaction between stimuli-responsive hydrogels and antibacterial materials is discussed. This synergistic approach, in contrast to conventional antibacterial materials, not only amplifies the antibacterial effect but also alleviates adverse side effects and diminishes the incidence of multiple infections and drug resistance. The review provides a comprehensive overview of the current challenges and outlines future research directions for stimuli-responsive antibacterial hydrogels. It underscores the imperative for ongoing interdisciplinary research aimed at unraveling the mechanisms of wound healing. This understanding is crucial for optimizing the design and implementation of stimuli-responsive antibacterial hydrogels. Ultimately, this review aims to offer scientific guidance for the development and practical clinical application of stimuli-responsive antibacterial hydrogel dressings.
Collapse
Affiliation(s)
- Zhe Hao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, P. R. China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Libing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
2
|
Ji Z, Deng W, Chen D, Liu Z, Shen Y, Dai J, Zhou H, Zhang M, Xu H, Dai B. Recent understanding of the mechanisms of the biological activities of hesperidin and hesperetin and their therapeutic effects on diseases. Heliyon 2024; 10:e26862. [PMID: 38486739 PMCID: PMC10937595 DOI: 10.1016/j.heliyon.2024.e26862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
Flavonoids are natural phytochemicals that have therapeutic effects and act in the prevention of several pathologies. These phytochemicals can be found in lemon, sweet orange, bitter orange, clementine. Hesperidin and hesperetin are citrus flavonoids from the flavanones subclass that have anti-inflammatory, antioxidant, antitumor and antibacterial potential. Preclinical studies and clinical trials demonstrated therapeutical effects of hesperidin and its aglycone hesperetin in various diseases, such as bone diseases, cardiovascular diseases, neurological diseases, respiratory diseases, digestive diseases, urinary tract diseases. This review provides a comprehensive overview of the biological activities of hesperidin and hesperetin, their therapeutic potential in various diseases and their associated molecular mechanisms. This article also discusses future considerations for the clinical applications of hesperidin and hesperetin.
Collapse
Affiliation(s)
| | | | - Dong Chen
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Zhidong Liu
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Yucheng Shen
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Jiuming Dai
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Hai Zhou
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Miao Zhang
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Hucheng Xu
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Bin Dai
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| |
Collapse
|
3
|
Chen L, Zheng B, Xu Y, Sun C, Wu W, Xie X, Zhu Y, Cai W, Lin S, Luo Y, Shi C. Nano hydrogel-based oxygen-releasing stem cell transplantation system for treating diabetic foot. J Nanobiotechnology 2023; 21:202. [PMID: 37370102 DOI: 10.1186/s12951-023-01925-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/10/2023] [Indexed: 06/29/2023] Open
Abstract
The employment of stem cells and hydrogel is widespread in contemporary clinical approaches to treating diabetic foot ulcers. However, the hypoxic conditions in the surrounding lesion tissue lead to a low stem cell survival rate following transplantation. This research introduces a novel hydrogel with superior oxygen permeability and biocompatibility, serving as a vehicle for developing a stem cell transplantation system incorporating oxygen-releasing microspheres and cardiosphere-derived stem cells (CDCs). By optimizing the peroxidase fixation quantity on the microsphere surface and the oxygen-releasing microsphere content within the transplantation system, intracellular oxygen levels were assessed using electron paramagnetic resonance (EPR) under simulated low-oxygen conditions in vitro. The expression of vascularization and repair-related indexes were evaluated via RT-PCR and ELISA. The microspheres were found to continuously release oxygen for three weeks within the transplantation system, promoting growth factor expression to maintain intracellular oxygen levels and support the survival and proliferation of CDCs. Moreover, the effect of this stem cell transplantation system on wound healing in a diabetic foot mice model was examined through an in vivo animal experiment. The oxygen-releasing microspheres within the transplantation system preserved the intracellular oxygen levels of CDCs in the hypoxic environment of injured tissues. By inhibiting the expression of inflammatory factors and stimulating the upregulation of pertinent growth factors, it improved the vascularization of ulcer tissue on the mice's back and expedited the healing of the wound site. Overall, the stem cell transplantation system in this study, based on hydrogels containing CDCs and oxygen-releasing microspheres, offers a promising strategy for the clinical implementation of localized stem cell delivery to improve diabetic foot wound healing.
Collapse
Affiliation(s)
- Liangmiao Chen
- Department of Endocrinology, The Third Affiliated Hospital of Wenzhou Medical University, 325200, Wenzhou, Zhejiang, China
| | - Bingru Zheng
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, 325200, Wenzhou, Zhejiang, China
| | - Yizhou Xu
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, 325200, Wenzhou, Zhejiang, China
| | - Changzheng Sun
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, Zhejiang, China
| | - Wanrui Wu
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, 325200, Wenzhou, Zhejiang, China
| | - Xiangpang Xie
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, 325200, Wenzhou, Zhejiang, China
| | - Yu Zhu
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, 325200, Wenzhou, Zhejiang, China
| | - Wei Cai
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, 325200, Wenzhou, Zhejiang, China
| | - Suifang Lin
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, 325200, Wenzhou, Zhejiang, China
| | - Ya Luo
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, 325200, Wenzhou, Zhejiang, China.
| | - Changsheng Shi
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, 325200, Wenzhou, Zhejiang, China.
| |
Collapse
|
4
|
Kargozar S, Hooshmand S, Hosseini SA, Gorgani S, Kermani F, Baino F. Antioxidant Effects of Bioactive Glasses (BGs) and Their Significance in Tissue Engineering Strategies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196642. [PMID: 36235178 PMCID: PMC9573515 DOI: 10.3390/molecules27196642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022]
Abstract
Elevated levels of oxidative stress are usually observed following injuries, leading to impaired tissue repair due to oxidation-related chronic inflammation. Several attempts have been made to manage this unfavorable situation, and the use of biomaterials with antioxidant activity is showing great promise in tissue engineering and regenerative medicine approaches. Bioactive glasses (BGs) are a versatile group of inorganic substances that exhibit an outstanding regenerative capacity for both hard and soft damaged tissues. The chemical composition of BGs provides a great opportunity for imparting specific biological activities to them. On this point, BGs may easily become antioxidant substances through simple physicochemical modifications. For example, particular antioxidant elements (mostly cerium (Ce)) can be added to the basic composition of the glasses. On the other hand, grafting natural antioxidant substances (e.g., polyphenols) on the BG surface is feasible for making antioxidant substitutes with promising results in vitro. Mesoporous BGs (MBGs) were demonstrated to have unique merits compared with melt-derived BGs since they make it possible to load antioxidants and deliver them to the desired locations. However, there are actually limited in vivo experimental studies on the capability of modified BGs for scavenging free radicals (e.g., reactive oxygen species (ROS)). Therefore, more research is required to determine the actual potential of BGs in decreasing oxidative stress and subsequently improving tissue repair and regeneration. The present work aims to highlight the potential of different types of BGs in modulating oxidative stress and subsequently improving tissue healing.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Correspondence: S.K: (S.K.); (F.B.)
| | - Sara Hooshmand
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| | - Seyede Atefe Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Sara Gorgani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Farzad Kermani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Correspondence: S.K: (S.K.); (F.B.)
| |
Collapse
|
5
|
Imperatrice M, Cuijpers I, Troost FJ, Sthijns MMJPE. Hesperidin Functions as an Ergogenic Aid by Increasing Endothelial Function and Decreasing Exercise-Induced Oxidative Stress and Inflammation, Thereby Contributing to Improved Exercise Performance. Nutrients 2022; 14:nu14142955. [PMID: 35889917 PMCID: PMC9316530 DOI: 10.3390/nu14142955] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
The regulation of blood flow to peripheral muscles is crucial for proper skeletal muscle functioning and exercise performance. During exercise, increased mitochondrial oxidative phosphorylation leads to increased electron leakage and consequently induces an increase in ROS formation, contributing to DNA, lipid, and protein damage. Moreover, exercise may increase blood- and intramuscular inflammatory factors leading to a deterioration in endurance performance. The aim of this review is to investigate the potential mechanisms through which the polyphenol hesperidin could lead to enhanced exercise performance, namely improved endothelial function, reduced exercise-induced oxidative stress, and inflammation. We selected in vivo RCTs, animal studies, and in vitro studies in which hesperidin, its aglycone form hesperetin, hesperetin-metabolites, or orange juice are supplemented at any dosage and where the parameters related to endothelial function, oxidative stress, and/or inflammation have been measured. The results collected in this review show that hesperidin improves endothelial function (via increased NO availability), inhibits ROS production, decreases production and plasma levels of pro-inflammatory markers, and improves anaerobic exercise outcomes (e.g., power, speed, energy). For elite and recreational athletes, hesperidin could be used as an ergogenic aid to enhance muscle recovery between training sessions, optimize oxygen and nutrient supplies to the muscles, and improve anaerobic performance.
Collapse
Affiliation(s)
- Maria Imperatrice
- BioActor BV, Gaetano Martinolaan 50, 6229 GS Maastricht, The Netherlands
- Correspondence: (M.I.); (I.C.)
| | - Iris Cuijpers
- Food Innovation and Health, Department of Human Biology, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.J.T.); (M.M.J.P.E.S.)
- Correspondence: (M.I.); (I.C.)
| | - Freddy J. Troost
- Food Innovation and Health, Department of Human Biology, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.J.T.); (M.M.J.P.E.S.)
| | - Mireille M. J. P. E. Sthijns
- Food Innovation and Health, Department of Human Biology, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.J.T.); (M.M.J.P.E.S.)
| |
Collapse
|
6
|
Reis J, Ramos A. In Sickness and in Health: The Oxygen Reactive Species and the Bone. Front Bioeng Biotechnol 2021; 9:745911. [PMID: 34888300 PMCID: PMC8650620 DOI: 10.3389/fbioe.2021.745911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
Oxidative stress plays a central role in physiological and pathological bone conditions. Its role in signalment and control of bone cell population differentiation, activity, and fate is increasingly recognized. The possibilities of its use and manipulation with therapeutic goals are virtually unending. However, how redox balance interplays with the response to mechanical stimuli is yet to be fully understood. The present work summarizes current knowledge on these aspects, in an integrative and broad introductory perspective.
Collapse
Affiliation(s)
- Joana Reis
- Agronomic and Veterinary Sciences, School of Agriculture, Polytechnic Institute of Viana Do Castelo, Ponte de Lima, Portugal
| | - António Ramos
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
7
|
Zocchi ML, Facchin F, Pagani A, Bonino C, Sbarbati A, Conti G, Vindigni V, Bassetto F. New perspectives in regenerative medicine and surgery: the bioactive composite therapies (BACTs). EUROPEAN JOURNAL OF PLASTIC SURGERY 2021; 45:1-25. [PMID: 34728900 PMCID: PMC8554210 DOI: 10.1007/s00238-021-01874-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022]
Abstract
Regenerative medicine and surgery is a rapidly expanding branch of translational research in tissue engineering, cellular and molecular biology. To date, the methods to improve cell intake, survival, and isolation need to comply with a complex and still unclear regulatory frame, becoming everyday more restrictive and often limiting the effectiveness and outcome of the therapeutic choices. Thus, the authors developed a novel 360° regenerative strategy based on the synergic action of several new components called the bioactive composite therapies (BACTs) to improve grafted cells intake, and survival in total compliance with the legal and ethical limits of the current regulatory frame. The rationale at the origin of this new technology is based on the evidence that cells need supportive substrate to survive in vitro and this observation, applying the concept of translational medicine, is true also in vivo. Bioactive composite mixtures (BACMs) are tailor-made bioactive mixtures containing several bioactive components that support cells' survival and induce a regenerative response in vivo by stimulating the recipient site to act as an in situ real bioreactor. Many different tissues have been used in the past for the isolation of cells, molecules, and growth factors, but the adipose tissue and its stromal vascular fraction (SVF) remains the most valuable, abundant, safe, and reliable source of regenerative components and particularly of adipose-derived stems cells (ADSCs). The role of plastic surgeons as the historical experts in all the most advanced techniques for harvesting, manipulating, and grafting adipose tissue is fundamental in this constant process of expansion of regenerative procedures. In this article, we analyze the main causes of cell death and the strategies for preventing it, and we present all the technical steps for preparing the main components of BACMs and the different mixing modalities to obtain the most efficient regenerative action on different clinical and pathological conditions. The second section of this work is dedicated to the logical and sequential evolution from simple bioactive composite grafts (BACGs) that distinguished our initial approach to regenerative medicine, to BACTs where many other fundamental technical steps are analyzed and integrated for supporting and enhancing the most efficient regenerative activity. Level of Evidence: Not gradable.
Collapse
Affiliation(s)
- Michele L Zocchi
- Plastic and Reconstructive Surgery Unit, University of Padua, Padua, Italy.,Remix Institute for Regenerative Surgery, Turin, Italy
| | - Federico Facchin
- Plastic and Reconstructive Surgery Unit, University of Padua, Padua, Italy
| | - Andrea Pagani
- Department of Plastic and Hand Surgery, Technical University of Munich, Munich, Germany
| | - Claudia Bonino
- Department of Rheumatology and Immune Diseases, Humanitas Gradenigo Hospital, Turin, Italy
| | - Andrea Sbarbati
- Institute of Human Anatomy, University of Verona, Verona, Italy
| | - Giamaica Conti
- Institute of Human Anatomy, University of Verona, Verona, Italy
| | - Vincenzo Vindigni
- Plastic and Reconstructive Surgery Unit, University of Padua, Padua, Italy
| | - Franco Bassetto
- Plastic and Reconstructive Surgery Unit, University of Padua, Padua, Italy
| |
Collapse
|
8
|
Wieland FC, Sthijns MMJPE, Geuens T, van Blitterswijk CA, LaPointe VLS. The Role of Pancreatic Alpha Cells and Endothelial Cells in the Reduction of Oxidative Stress in Pseudoislets. Front Bioeng Biotechnol 2021; 9:729057. [PMID: 34568302 PMCID: PMC8458707 DOI: 10.3389/fbioe.2021.729057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/19/2021] [Indexed: 12/28/2022] Open
Abstract
Pancreatic beta cells have inadequate levels of antioxidant enzymes, and the damage induced by oxidative stress poses a challenge for their use in a therapy for patients with type 1 diabetes. It is known that the interaction of the pancreatic endocrine cells with support cells can improve their survival and lead to less vulnerability to oxidative stress. Here we investigated alpha (alpha TC-1), beta (INS1E) and endothelial (HUVEC) cells assembled into aggregates known as pseudoislets as a model of the pancreatic islets of Langerhans. We hypothesised that the coculture of alpha, beta and endothelial cells would be protective against oxidative stress. First, we showed that adding endothelial cells decreased the percentage of oxidative stress-positive cells. We then asked if the number of endothelial cells or the size (number of cells) of the pseudoislet could increase the protection against oxidative stress. However, no additional benefit was observed by those changes. On the other hand, we identified a potential supportive effect of the alpha cells in reducing oxidative stress in beta and endothelial cells. We were able to link this to the incretin glucagon-like peptide-1 (GLP-1) by showing that the absence of alpha cells in the pseudoislet caused increased oxidative stress, but the addition of GLP-1 could restore this. Together, these results provide important insights into the roles of alpha and endothelial cells in protecting against oxidative stress.
Collapse
Affiliation(s)
- Fredrik C Wieland
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Mireille M J P E Sthijns
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands.,Centre for Healthy Eating and Food Innovation, Maastricht University, Maastricht, Netherlands
| | - Thomas Geuens
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Clemens A van Blitterswijk
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Vanessa L S LaPointe
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
9
|
Zocchi ML. Regenerative assisted microsurgery (RAM) and regenerative assisted supermicrosurgery (RASM): the future of microsurgery? EUROPEAN JOURNAL OF PLASTIC SURGERY 2021; 44:389-391. [PMID: 33867686 PMCID: PMC8043839 DOI: 10.1007/s00238-021-01812-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Michele L Zocchi
- Plastic and Reconstructive Surgery Unit, University of Padua, Via Giustiniani 2, 35128 Padua, Italy.,Remix Regeneration Institute, Turin, Italy
| |
Collapse
|
10
|
Rashidbenam Z, Jasman MH, Tan GH, Goh EH, Fam XI, Ho CCK, Zainuddin ZM, Rajan R, Rani RA, Nor FM, Shuhaili MA, Kosai NR, Imran FH, Ng MH. Fabrication of Adipose-Derived Stem Cell-Based Self-Assembled Scaffold under Hypoxia and Mechanical Stimulation for Urethral Tissue Engineering. Int J Mol Sci 2021; 22:ijms22073350. [PMID: 33805910 PMCID: PMC8036589 DOI: 10.3390/ijms22073350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Long urethral strictures are often treated with autologous genital skin and buccal mucosa grafts; however, risk of hair ingrowth and donor site morbidity, restrict their application. To overcome this, we introduced a tissue-engineered human urethra comprising adipose-derived stem cell (ASC)-based self-assembled scaffold, human urothelial cells (UCs) and smooth muscle cells (SMCs). ASCs were cultured with ascorbic acid to stimulate extracellular matrix (ECM) production. The scaffold (ECM) was stained with collagen type-I antibody and the thickness was measured under a confocal microscope. Results showed that the thickest scaffold (28.06 ± 0.59 μm) was achieved with 3 × 104 cells/cm2 seeding density, 100 μg/mL ascorbic acid concentration under hypoxic and dynamic culture condition. The biocompatibility assessment showed that UCs and SMCs seeded on the scaffold could proliferate and maintain the expression of their markers (CK7, CK20, UPIa, and UPII) and (α-SMA, MHC and Smootheline), respectively, after 14 days of in vitro culture. ECM gene expression analysis showed that the ASC and dermal fibroblast-based scaffolds (control) were comparable. The ASC-based scaffold can be handled and removed from the plate. This suggests that multiple layers of scaffold can be stacked to form the urothelium (seeded with UCs), submucosal layer (ASCs only), and smooth muscle layer (seeded with SMCs) and has the potential to be developed into a fully functional human urethra for urethral reconstructive surgeries.
Collapse
Affiliation(s)
- Zahra Rashidbenam
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre, 12th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Mohd Hafidzul Jasman
- Clinical Skills Learning and Simulation Unit, Department of Medical Education, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Guan Hee Tan
- Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (G.H.T.); (E.H.G.); (X.I.F.); (Z.M.Z.)
| | - Eng Hong Goh
- Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (G.H.T.); (E.H.G.); (X.I.F.); (Z.M.Z.)
| | - Xeng Inn Fam
- Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (G.H.T.); (E.H.G.); (X.I.F.); (Z.M.Z.)
| | - Christopher Chee Kong Ho
- School of Medicine, Taylor’s University, No. 1 Jalan Taylor’s, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia;
| | - Zulkifli Md Zainuddin
- Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (G.H.T.); (E.H.G.); (X.I.F.); (Z.M.Z.)
| | - Reynu Rajan
- Minimally Invasive Upper Gastrointestinal and Bariatric Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (R.R.); (M.A.S.); (N.R.K.)
| | - Rizal Abdul Rani
- Arthoplasty Unit, Department of Orthopaedics and Traumatology Surgery, Universiti Kebangsaan Malaysia Medical Centre, 9th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Fatimah Mohd Nor
- Plastic and Reconstructive Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, Clinical Block, 8th Floor, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (F.M.N.); (F.H.I.)
| | - Mohamad Aznan Shuhaili
- Minimally Invasive Upper Gastrointestinal and Bariatric Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (R.R.); (M.A.S.); (N.R.K.)
| | - Nik Ritza Kosai
- Minimally Invasive Upper Gastrointestinal and Bariatric Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (R.R.); (M.A.S.); (N.R.K.)
| | - Farrah Hani Imran
- Plastic and Reconstructive Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, Clinical Block, 8th Floor, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (F.M.N.); (F.H.I.)
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre, 12th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
- Correspondence: ; Tel.: +6012-313-9179
| |
Collapse
|
11
|
Paredes LC, Luz RBDS, Tozzi ON, de Carvalho LÂSJ, Calado SLDM, Padovani BN, Fénero CIM, do Amaral MA, de Assis HCDS, Câmara NOS, Braga TT. Distinct macrophage phenotypes and redox environment during the fin fold regenerative process in zebrafish. Scand J Immunol 2021; 94:e13026. [PMID: 33565093 DOI: 10.1111/sji.13026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022]
Abstract
In contrast to mammals, zebrafish (Danio rerio) has the ability to regenerate injured sites such as different tissues present in the fin. It is known that cells of the innate immune system play essential roles in regeneration; however, some aspects of the molecular mechanisms by which these cells orchestrate regeneration remain unknown. This study aimed to evaluate the infiltration dynamics of neutrophils and macrophages in the regenerative process of fin fold in regard to the influence of the redox environment and oxidative pathways. Fin fold amputation was performed on transgenic larvae for macrophage-expressed gene 1 (mpeg1), lysozyme (lyz), myeloperoxidase (mpo) and tumour necrosis factor alpha (TNFα) at 3 days post-fertilization, followed by confocal microscopy imaging and measurement of the activities of oxidant and antioxidant enzymes. We observed initially an increase in the number of neutrophils (lyz:DsRed+/mpx:GFP+) and then macrophages (mpeg1+) in the injury site followed by a decrease in neutrophils at 7 days post-amputation (dpa). Moreover, macrophages switch from a pro-inflammatory to an anti-inflammatory profile throughout the process, while the activity of superoxide dismutase (SOD) increased at 1 dpa and catalase (CAT) at 5 dpa. Higher levels of lipid peroxidation were also detected during regeneration. Despite oxidative stress, there is, therefore, an antioxidant response throughout the regeneration of the caudal fin. The present work can contribute to future studies on the development of cell therapies, achieving greater effectiveness in the treatment of diseases related to the formation of fibrotic tissue.
Collapse
Affiliation(s)
| | | | | | | | | | - Bárbara Nunes Padovani
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, Brazil
| | | | - Mariana Abrantes do Amaral
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, Brazil
| | | | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, Brazil.,Nephrology Division, Federal University of São Paulo, São Paulo, Brazil
| | - Tarcio Teodoro Braga
- Department of Pathology, Federal University of Parana, Curitiba, Brazil.,Graduate Program in Biosciences and Biotechnology, Instituto Carlos Chagas, Fiocruz-Parana, Curitiba, Brazil
| |
Collapse
|
12
|
Marrazzo P, O’Leary C. Repositioning Natural Antioxidants for Therapeutic Applications in Tissue Engineering. Bioengineering (Basel) 2020; 7:E104. [PMID: 32887327 PMCID: PMC7552777 DOI: 10.3390/bioengineering7030104] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
Although a large panel of natural antioxidants demonstrate a protective effect in preventing cellular oxidative stress, their low bioavailability limits therapeutic activity at the targeted injury site. The importance to deliver drug or cells into oxidative microenvironments can be realized with the development of biocompatible redox-modulating materials. The incorporation of antioxidant compounds within implanted biomaterials should be able to retain the antioxidant activity, while also allowing graft survival and tissue recovery. This review summarizes the recent literature reporting the combined role of natural antioxidants with biomaterials. Our review highlights how such functionalization is a promising strategy in tissue engineering to improve the engraftment and promote tissue healing or regeneration.
Collapse
Affiliation(s)
- Pasquale Marrazzo
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d’Augusto 237, 47921 Rimini (RN), Italy
| | - Cian O’Leary
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen’s Green, 2 D02 Dublin, Ireland;
- Science Foundation Ireland Advanced Materials and Bioengineering (AMBER) Centre, RCSI, 2 D02 Dublin, Ireland
| |
Collapse
|
13
|
Hosseini M, Mozafari M. Cerium Oxide Nanoparticles: Recent Advances in Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3072. [PMID: 32660042 PMCID: PMC7411590 DOI: 10.3390/ma13143072] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
Submicron biomaterials have recently been found with a wide range of applications for biomedical purposes, mostly due to a considerable decrement in size and an increment in surface area. There have been several attempts to use innovative nanoscale biomaterials for tissue repair and tissue regeneration. One of the most significant metal oxide nanoparticles (NPs), with numerous potential uses in future medicine, is engineered cerium oxide (CeO2) nanoparticles (CeONPs), also known as nanoceria. Although many advancements have been reported so far, nanotoxicological studies suggest that the nanomaterial's characteristics lie behind its potential toxicity. Particularly, physicochemical properties can explain the positive and negative interactions between CeONPs and biosystems at molecular levels. This review represents recent advances of CeONPs in biomedical engineering, with a special focus on tissue engineering and regenerative medicine. In addition, a summary report of the toxicity evidence on CeONPs with a view toward their biomedical applications and physicochemical properties is presented. Considering the critical role of nanoengineering in the manipulation and optimization of CeONPs, it is expected that this class of nanoengineered biomaterials plays a promising role in the future of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 1591634311, Iran;
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran
| |
Collapse
|
14
|
Taheem DK, Jell G, Gentleman E. Hypoxia Inducible Factor-1α in Osteochondral Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:105-115. [PMID: 31774026 PMCID: PMC7166133 DOI: 10.1089/ten.teb.2019.0283] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022]
Abstract
Damage to osteochondral (OC) tissues can lead to pain, loss of motility, and progress to osteoarthritis. Tissue engineering approaches offer the possibility of replacing damaged tissues and restoring joint function; however, replicating the spatial and functional heterogeneity of native OC tissue remains a pressing challenge. Chondrocytes in healthy cartilage exist in relatively low-oxygen conditions, while osteoblasts in the underlying bone experience higher oxygen pressures. Such oxygen gradients also exist in the limb bud, where they influence OC tissue development. The cellular response to these spatial variations in oxygen pressure, which is mediated by the hypoxia inducible factor (HIF) pathway, plays a central role in regulating osteo- and chondrogenesis by directing progenitor cell differentiation and promoting and maintaining appropriate extracellular matrix production. Understanding the role of the HIF pathway in OC tissue development may enable new approaches to engineer OC tissue. In this review, we discuss strategies to spatially and temporarily regulate the HIF pathway in progenitor cells to create functional OC tissue for regenerative therapies. Impact statement Strategies to engineer osteochondral (OC) tissue are limited by the complex and varying microenvironmental conditions in native bone and cartilage. Indeed, native cartilage experiences low-oxygen conditions, while the underlying bone is relatively normoxic. The cellular response to these low-oxygen conditions, which is mediated through the hypoxia inducible factor (HIF) pathway, is known to promote and maintain the chondrocyte phenotype. By using tissue engineering scaffolds to spatially and temporally harness the HIF pathway, it may be possible to improve OC tissue engineering strategies for the regeneration of damaged cartilage and its underlying subchondral bone.
Collapse
Affiliation(s)
- Dheraj K. Taheem
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Gavin Jell
- Division of Surgery and Interventional Sciences, University College London, London, United Kingdom
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| |
Collapse
|
15
|
Niu H, Li C, Guan Y, Dang Y, Li X, Fan Z, Shen J, Ma L, Guan J. High oxygen preservation hydrogels to augment cell survival under hypoxic condition. Acta Biomater 2020; 105:56-67. [PMID: 31954189 PMCID: PMC7098391 DOI: 10.1016/j.actbio.2020.01.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/18/2019] [Accepted: 01/13/2020] [Indexed: 12/29/2022]
Abstract
Cell therapy is a promising approach for ischemic tissue regeneration. However, high death rate of delivered cells under low oxygen condition, and poor cell retention in tissues largely limit the therapeutic efficacy. Using cell carriers with high oxygen preservation has potential to improve cell survival. To increase cell retention, cell carriers that can quickly solidify at 37 °C so as to efficiently immobilize the carriers and cells in the tissues are necessary. Yet there lacks cell carriers with these combined properties. In this work, we have developed a family of high oxygen preservation and fast gelation hydrogels based on N-isopropylacrylamide (NIPAAm) copolymers. The hydrogels were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization of NIPAAm, acrylate-oligolactide (AOLA), 2-hydroxyethyl methacrylate (HEMA), and methacrylate-poly(ethylene glycol)-perfluorooctane (MAPEGPFC). The hydrogel solutions exhibited sol-gel temperatures around room temperature and were flowable and injectable at 4°C. They can quickly solidify (≤6 s) at 37°C to form flexible gels. These hydrogels lost 9.4~29.4% of their mass after incubation in Dulbecco's Phosphate-Buffered Saline (DPBS) for 4 weeks. The hydrogels exhibited a greater oxygen partial pressure than DPBS after being transferred from a 21% O2 condition to a 1% O2 condition. When bone marrow mesenchymal stem cells (MSCs) were encapsulated in the hydrogels and cultured under 1% O2, the cells survived and proliferated during the 14-day culture period. In contrast, the cells experienced extensive death in the control hydrogel that had low oxygen preservation capability. The hydrogels possessed excellent biocompatibility. The final degradation products did not provoke cell death even when the concentration was as high as 15 mg/ml, and the hydrogel implantation did not induce substantial inflammation. These hydrogels are promising as cell carriers for cell transplantation into ischemic tissues. STATEMENT OF SIGNIFICANCE: Stem cell therapy for ischemic tissues experiences low therapeutic efficacy largely due to poor cell survival under low oxygen condition. Using cell carriers with high oxygen preservation capability has potential to improve cell survival. In this work, we have developed a family of hydrogels with this property. These hydrogels promoted the encapsulated stem cell survival and growth under low oxygen condition.
Collapse
Affiliation(s)
- Hong Niu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Chao Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Ya Guan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yu Dang
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Xiaofei Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jie Shen
- Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, 631310, USA
| | - Liang Ma
- Division of Dermatology, Washington University School of Medicine, St. Louis, MO, 631310, USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
16
|
Albulescu R, Popa AC, Enciu AM, Albulescu L, Dudau M, Popescu ID, Mihai S, Codrici E, Pop S, Lupu AR, Stan GE, Manda G, Tanase C. Comprehensive In Vitro Testing of Calcium Phosphate-Based Bioceramics with Orthopedic and Dentistry Applications. MATERIALS 2019; 12:ma12223704. [PMID: 31717621 PMCID: PMC6888321 DOI: 10.3390/ma12223704] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
Recently, a large spectrum of biomaterials emerged, with emphasis on various pure, blended, or doped calcium phosphates (CaPs). Although basic cytocompatibility testing protocols are referred by International Organization for Standardization (ISO) 10993 (parts 1-22), rigorous in vitro testing using cutting-edge technologies should be carried out in order to fully understand the behavior of various biomaterials (whether in bulk or low-dimensional object form) and to better gauge their outcome when implanted. In this review, current molecular techniques are assessed for the in-depth characterization of angiogenic potential, osteogenic capability, and the modulation of oxidative stress and inflammation properties of CaPs and their cation- and/or anion-substituted derivatives. Using such techniques, mechanisms of action of these compounds can be deciphered, highlighting the signaling pathway activation, cross-talk, and modulation by microRNA expression, which in turn can safely pave the road toward a better filtering of the truly functional, application-ready innovative therapeutic bioceramic-based solutions.
Collapse
Affiliation(s)
- Radu Albulescu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Department Pharmaceutical Biotechnology, National Institute for Chemical-Pharmaceutical R&D, 031299, Bucharest, Romania
| | - Adrian-Claudiu Popa
- National Institute of Materials Physics, 077125 Magurele, Romania (G.E.S.)
- Army Centre for Medical Research, 010195 Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050047 Bucharest, Romania
| | - Lucian Albulescu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Maria Dudau
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050047 Bucharest, Romania
| | - Ionela Daniela Popescu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Simona Mihai
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Elena Codrici
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Sevinci Pop
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Andreea-Roxana Lupu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Cantacuzino National Medico-Military Institute for Research and Development, 050096 Bucharest, Romania
| | - George E. Stan
- National Institute of Materials Physics, 077125 Magurele, Romania (G.E.S.)
| | - Gina Manda
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Cajal Institute, Titu Maiorescu University, 004051 Bucharest, Romania
- Correspondence:
| |
Collapse
|
17
|
Ma C, Kuzma ML, Bai X, Yang J. Biomaterial-Based Metabolic Regulation in Regenerative Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900819. [PMID: 31592416 PMCID: PMC6774061 DOI: 10.1002/advs.201900819] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/26/2019] [Indexed: 05/22/2023]
Abstract
Recent advances in cell metabolism studies have deepened the appreciation of the role of metabolic regulation in influencing cell behavior during differentiation, angiogenesis, and immune response in the regenerative engineering scenarios. However, the understanding of whether the intracellular metabolic pathways could be influenced by material-derived cues remains limited, although it is now well appreciated that material cues modulate cell functions. Here, an overview of how the regulation of different aspect of cell metabolism, including energy homeostasis, oxygen homeostasis, and redox homeostasis could contribute to modulation of cell function is provided. Furthermore, recent evidence demonstrating how material cues, including the release of inherent metabolic factors (e.g., ions, regulatory metabolites, and oxygen), tuning of the biochemical cues (e.g., inherent antioxidant properties, cell adhesivity, and chemical composition of nanomaterials), and changing in biophysical cues (topography and surface stiffness), may impact cell metabolism toward modulated cell behavior are discussed. Based on the resurgence of interest in cell metabolism and metabolic regulation, further development of biomaterials enabling metabolic regulation toward dictating cell function is poised to have substantial implications for regenerative engineering.
Collapse
Affiliation(s)
- Chuying Ma
- Department of Biomedical EngineeringMaterials Research InstituteThe Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Michelle L. Kuzma
- Department of Biomedical EngineeringMaterials Research InstituteThe Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Xiaochun Bai
- Academy of OrthopedicsGuangdong ProvinceProvincial Key Laboratory of Bone and Joint Degenerative DiseasesThe Third Affiliated Hospital of Southern Medical UniversityGuangzhou510280China
- Department of Cell BiologyKey Laboratory of Mental Health of the Ministry of EducationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jian Yang
- Department of Biomedical EngineeringMaterials Research InstituteThe Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
18
|
Rademakers T, Horvath JM, van Blitterswijk CA, LaPointe VL. Oxygen and nutrient delivery in tissue engineering: Approaches to graft vascularization. J Tissue Eng Regen Med 2019; 13:1815-1829. [PMID: 31310055 PMCID: PMC6852121 DOI: 10.1002/term.2932] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/13/2019] [Accepted: 07/01/2019] [Indexed: 12/29/2022]
Abstract
The field of tissue engineering is making great strides in developing replacement tissue grafts for clinical use, marked by the rapid development of novel biomaterials, their improved integration with cells, better-directed growth and differentiation of cells, and improved three-dimensional tissue mass culturing. One major obstacle that remains, however, is the lack of graft vascularization, which in turn renders many grafts to fail upon clinical application. With that, graft vascularization has turned into one of the holy grails of tissue engineering, and for the majority of tissues, it will be imperative to achieve adequate vascularization if tissue graft implantation is to succeed. Many different approaches have been developed to induce or augment graft vascularization, both in vitro and in vivo. In this review, we highlight the importance of vascularization in tissue engineering and outline various approaches inspired by both biology and engineering to achieve and augment graft vascularization.
Collapse
Affiliation(s)
- Timo Rademakers
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| | - Judith M. Horvath
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| | - Clemens A. van Blitterswijk
- Complex Tissue Regeneration, MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| | - Vanessa L.S. LaPointe
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
19
|
Sthijns MMJPE, van Blitterswijk CA, LaPointe VLS. Redox regulation in regenerative medicine and tissue engineering: The paradox of oxygen. J Tissue Eng Regen Med 2018; 12:2013-2020. [PMID: 30044552 PMCID: PMC6221092 DOI: 10.1002/term.2730] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/07/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022]
Abstract
One of the biggest challenges in tissue engineering and regenerative medicine is to incorporate a functioning vasculature to overcome the consequences of a lack of oxygen and nutrients in the tissue construct. Otherwise, decreased oxygen tension leads to incomplete metabolism and the formation of the so‐called reactive oxygen species (ROS). Cells have many endogenous antioxidant systems to ensure a balance between ROS and antioxidants, but if this balance is disrupted by factors such as high levels of ROS due to long‐term hypoxia, there will be tissue damage and dysfunction. Current attempts to solve the oxygen problem in the field rarely take into account the importance of the redox balance and are instead centred on releasing or generating oxygen. The first problem with this approach is that although oxygen is necessary for life, it is paradoxically also a highly toxic molecule. Furthermore, although some oxygen‐generating biomaterials produce oxygen, they also generate hydrogen peroxide, a ROS, as an intermediate product. In this review, we discuss why it would be a superior strategy to supplement oxygen delivery with molecules to safeguard the important redox balance. Redox sensor proteins that can stimulate the anaerobic metabolism, angiogenesis, and enhancement of endogenous antioxidant systems are discussed as promising targets. We propose that redox regulating biomaterials have the potential to tackle some of the challenges related to angiogenesis and that the knowledge in this review will help scientists in tissue engineering and regenerative medicine realize this aim.
Collapse
Affiliation(s)
- Mireille M J P E Sthijns
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Clemens A van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Vanessa L S LaPointe
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|