1
|
Chhillar A, Jaiswal A. Hyaluronic Acid-Based Self-Healing Hydrogels for Diabetic Wound Healing. Adv Healthc Mater 2024:e2404255. [PMID: 39722163 DOI: 10.1002/adhm.202404255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Indexed: 12/28/2024]
Abstract
Diabetic wounds, particularly diabetic foot ulcers (DFUs), are significant threats to human well-being due to their impaired healing from poor circulation and high blood sugar, increased risk of infection and potential for severe complications like amputation, all compounded by peripheral neuropathy and chronic inflammation. Most therapies and dressings for DFUs focus on one symptom at a time, however, multifunctional smart self-healing hydrogels can withstand multifactorial motional diabetic wounds. Motional wounds are easy-to-split wounds that experience tension, compression, and movement caused by stress now and then. Hyaluronic acid (HA) based self-healing hydrogels stand out among other biomaterials due to their ability to cover irregular wound surfaces, maintain a moist environment, repair themselves when ruptured, and exhibit excellent biocompatibility. These self-healing hydrogels can repair damages caused by movement and recover the functional properties during healing. These hydrogels can also act as therapeutic delivery vehicles and tissue regeneration systems. This review demonstrates the potential of HA-based self-healing hydrogels for diabetic wound healing. Due to its self-healing capabilities, these hydrogels offer a customized therapeutic approach for motional diabetic wounds. The review also critically examines the challenges and future directions for HA-based self-healing hydrogels in diabetic wound healing.
Collapse
Affiliation(s)
- Anish Chhillar
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
2
|
Kots AY, Bian K. Regulation and Pharmacology of the Cyclic GMP and Nitric Oxide Pathway in Embryonic and Adult Stem Cells. Cells 2024; 13:2008. [PMID: 39682756 DOI: 10.3390/cells13232008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
This review summarizes recent advances in understanding the role of the nitric oxide (NO) and cyclic GMP (cGMP) pathway in stem cells. The levels of expression of various components of the pathway are changed during the differentiation of pluripotent embryonic stem cells. In undifferentiated stem cells, NO regulates self-renewal and survival predominantly through cGMP-independent mechanisms. Natriuretic peptides influence the growth of undifferentiated stem cells by activating particulate isoforms of guanylyl cyclases in a cGMP-mediated manner. The differentiation, recruitment, survival, migration, and homing of partially differentiated precursor cells of various types are sensitive to regulation by endogenous levels of NO and natriuretic peptides produced by stem cells, within surrounding tissues, and by the application of various pharmacological agents known to influence the cGMP pathway. Numerous drugs and formulations target various components of the cGMP pathway to influence the therapeutic efficacy of stem cell-based therapies. Thus, pharmacological manipulation of the cGMP pathway in stem cells can be potentially used to develop novel strategies in regenerative medicine.
Collapse
Affiliation(s)
- Alexander Y Kots
- Veteran Affairs Palo Alto Health Care System, US Department of Veteran Affairs, Palo Alto, CA 90304, USA
| | - Ka Bian
- Veteran Affairs Palo Alto Health Care System, US Department of Veteran Affairs, Palo Alto, CA 90304, USA
| |
Collapse
|
3
|
da Silva J, de Almeida EA, Karoleski GE, Koloshe E, Peron AP, Job AE, Leimann FV, Shirai MA, da Silva Gonzalez R. Synthesis of a Bioactive Nitric Oxide-Releasing Polymer from S-Nitrosated Starch. ACS OMEGA 2024; 9:41268-41278. [PMID: 39398142 PMCID: PMC11465258 DOI: 10.1021/acsomega.4c03255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
The incorporation of nitric oxide (NO) into polymeric matrices minimizes degradation and facilitates controlled release. This optimization increases the field of application of NO, in dressings, food protective films, and implant devices, among others. This work presents an economical and easy way to manufacture bioactive nitric oxide-releasing polymer (BioNOR-P) and evaluates its bactericidal and antioxidant activity (AA), mechanical behavior, cytotoxicity, and genotoxicity, seeking future use in different applications. The BioNOR-P film was obtained by a casting method, forming a homogeneous, transparent film with good mechanical properties. The release of NO in an aqueous medium showed the film's ability to release NO slowly, at a rate of 0.58 nmol/g-1 min-1. Furthermore, the noncytotoxicity and antioxidant activity observed by NO release from BioNOR-P, as well as the ability to inhibit bacterial growth, may aid in the development of a NO-released polymer with different areas of application.
Collapse
Affiliation(s)
- Jéssica
Fernanda da Silva
- Food
Engineering Course, Federal Technological
University of Paraná (UTFPR), Campo Mourão Campus, Campo Mourão 87301-899, Paraná, Brazil
| | - Edson Araujo de Almeida
- Post-graduation
Program of Chemistry, State University of
Maringá (UEM), Maringá 87020-900, Paraná, Brazil
| | - Geovana Ellen Karoleski
- Chemical
Engineering Course, Federal Technological
University of Paraná, Campo
Mourão 87301-899, Paraná, Brazil
| | - Everton Koloshe
- Chemical
Course, Federal Technological University
of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| | - Ana Paula Peron
- Department
of Biodiversity and Nature Conservation, Federal Technological University of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| | - Aldo Eloizo Job
- Department
of Physics, State University Paulista “Julio
de Mesquita Filho”, Campus, Presidente Prudente 19060-900, São Paulo, Brazil
| | - Fernanda Vitória Leimann
- Postgraduate
Program in Food Technology, Federal Technological
University of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| | - Marianne Ayumi Shirai
- Postgraduate
Program in Food Technology, Federal Technological
University of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| | - Regiane da Silva Gonzalez
- Postgraduate
Program in Food Technology, Federal Technological
University of Paraná, Campo Mourão 87301-899, Paraná, Brazil
- Department
of Chemistry, Federal Technological University
of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| |
Collapse
|
4
|
Mas-Roselló J, Tenor H, Szabo T, Naef R, Sieber S, Gademann K. Bifunctional Sildenafil Diazeniumdiolates Acting as Phosphodiesterase 5 Inhibitors and Nitric Oxide Donors- Towards Wound Healing. Chembiochem 2024; 25:e202300801. [PMID: 38430555 DOI: 10.1002/cbic.202300801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/04/2024]
Abstract
Inefficient wound healing poses a global health challenge with a lack of efficient treatments. Wound healing issues often correlate with low endogenous nitric oxide (NO) levels. While exogenous delivery with NO-releasing compounds represents a promising therapeutic strategy, controlling the release of the highly reactive NO remains challenging. Phosphodiesterase 5 (PDE5) inhibitors, like sildenafil, have also been shown to promote wound healing. This study explores hybrid compounds, combining NO-releasing diazeniumdiolates with a sildenafil-derived PDE5 inhibitor. One compound demonstrated a favorable NO-release profile, triggered by an esterase (prodrug), and displayed in vitro nanomolar inhibition potency against PDE5 and thrombin-induced platelet aggregation. Both factors are known to promote blood flow and oxygenation. Thus, our findings unveil promising prospects for effective wound healing treatments.
Collapse
Affiliation(s)
- Josep Mas-Roselló
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Hermann Tenor
- Topadur Pharma AG, Grabenstrasse 11A, 8952, Schlieren, Switzerland
| | - Timea Szabo
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Reto Naef
- Topadur Pharma AG, Grabenstrasse 11A, 8952, Schlieren, Switzerland
| | - Simon Sieber
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| |
Collapse
|
5
|
Bright LME, Wu Y, Brisbois EJ, Handa H. Advances in Nitric Oxide-Releasing Hydrogels for Biomedical Applications. Curr Opin Colloid Interface Sci 2023; 66:101704. [PMID: 37694274 PMCID: PMC10489397 DOI: 10.1016/j.cocis.2023.101704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Hydrogels provide a plethora of advantages to biomedical treatments due to their highly hydrophilic nature and tissue-like mechanical properties. Additionally, the numerous and widespread endogenous roles of nitric oxide have led to an eruption in research developing biomimetic solutions to the many challenges the biomedical world faces. Though many design factors and fabrication details must be considered, utilizing hydrogels as nitric oxide delivery vehicles provides promising materials in several applications. Such applications include cardiovascular therapy, vasodilation and angiogenesis, antimicrobial treatments, wound dressings, and stem cell research. Herein, a recent update on the progress of NO-releasing hydrogels is presented in depth. In addition, considerations for the design and fabrication of hydrogels and specific biomedical applications of nitric oxide-releasing hydrogels are discussed.
Collapse
Affiliation(s)
- Lori M. Estes Bright
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Yi Wu
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Elizabeth J. Brisbois
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Hitesh Handa
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| |
Collapse
|
6
|
Navale GR, Singh S, Ghosh K. NO donors as the wonder molecules with therapeutic potential: Recent trends and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Sivaraj D, Noishiki C, Kosaric N, Kiwanuka H, Kussie HC, Henn D, Fischer KS, Trotsyuk AA, Greco AH, Kuehlmann BA, Quintero F, Leeolou MC, Granoski MB, Hostler AC, Hahn WW, Januszyk M, Murad F, Chen K, Gurtner GC. Nitric oxide-releasing gel accelerates healing in a diabetic murine splinted excisional wound model. Front Med (Lausanne) 2023; 10:1060758. [PMID: 36999070 PMCID: PMC10045479 DOI: 10.3389/fmed.2023.1060758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
IntroductionAccording to the American Diabetes Association (ADA), 9–12 million patients suffer from chronic ulceration each year, costing the healthcare system over USD $25 billion annually. There is a significant unmet need for new and efficacious therapies to accelerate closure of non-healing wounds. Nitric Oxide (NO) levels typically increase rapidly after skin injury in the inflammatory phase and gradually diminish as wound healing progresses. The effect of increased NO concentration on promoting re-epithelization and wound closure has yet to be described in the context of diabetic wound healing.MethodsIn this study, we investigated the effects of local administration of an NO-releasing gel on excisional wound healing in diabetic mice. The excisional wounds of each mouse received either NO-releasing gel or a control phosphate-buffered saline (PBS)-releasing gel treatment twice daily until complete wound closure.ResultsTopical administration of NO-gel significantly accelerated the rate of wound healing as compared with PBS-gel-treated mice during the later stages of healing. The treatment also promoted a more regenerative ECM architecture resulting in shorter, less dense, and more randomly aligned collagen fibers within the healed scars, similar to that of unwounded skin. Wound healing promoting factors fibronectin, TGF-β1, CD31, and VEGF were significantly elevated in NO vs. PBS-gel-treated wounds.DiscussionThe results of this work may have important clinical implications for the management of patients with non-healing wounds.
Collapse
Affiliation(s)
- Dharshan Sivaraj
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Surgery, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Chikage Noishiki
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Nina Kosaric
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Harriet Kiwanuka
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Hudson C. Kussie
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Surgery, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Dominic Henn
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Katharina S. Fischer
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Surgery, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Artem A. Trotsyuk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Surgery, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Autumn H. Greco
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Britta A. Kuehlmann
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Center for Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Regensburg and Caritas Hospital St. Josef, Regensburg, Germany
| | - Filiberto Quintero
- Department of Surgery, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Melissa C. Leeolou
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Maia B. Granoski
- Department of Surgery, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Andrew C. Hostler
- Department of Surgery, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - William W. Hahn
- Department of Surgery, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Michael Januszyk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Ferid Murad
- Department of Biochemistry and Molecular Biology, School of Medicine, George Washington University, Washington, DC, United States
| | - Kellen Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Surgery, College of Medicine, University of Arizona, Tucson, AZ, United States
- Kellen Chen,
| | - Geoffrey C. Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Surgery, College of Medicine, University of Arizona, Tucson, AZ, United States
- *Correspondence: Geoffrey C. Gurtner,
| |
Collapse
|
8
|
Ming H, Zhang K, Ge S, Shi Y, Du C, Guo X, Zhang L. A Mini Review of S-Nitrosoglutathione Loaded Nano/Micro-Formulation Strategies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:224. [PMID: 36677977 PMCID: PMC9863240 DOI: 10.3390/nano13020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
As a potential therapeutic agent, the clinical application of S-nitrosoglutathione (GSNO) is limited because of its instability. Therefore, different formulations have been developed to protect GSNO from degradation, delivery and the release of GSNO at a physiological concentration in the active position. Due to the high water-solubility and small molecular-size of GSNO, the biggest challenges in the encapsulation step are low encapsulation efficiency and burst release. This review summarizes the different nano/micro-formulation strategies of a GSNO related delivery system to provide references for subsequent researchers interested in GSNO encapsulation.
Collapse
Affiliation(s)
- Hui Ming
- State Key Laboratory of Heavy Oil Processing, College of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Kunpeng Zhang
- State Key Laboratory of Heavy Oil Processing, College of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Shengbo Ge
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Shi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunan Du
- Faculty of Chemical Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying 257000, China
| | - Xuqiang Guo
- State Key Laboratory of Heavy Oil Processing, College of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Libo Zhang
- State Key Laboratory of Heavy Oil Processing, College of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| |
Collapse
|
9
|
Seabra AB, Pieretti JC, de Melo Santana B, Horue M, Tortella GR, Castro GR. Pharmacological applications of nitric oxide-releasing biomaterials in human skin. Int J Pharm 2022; 630:122465. [PMID: 36476664 DOI: 10.1016/j.ijpharm.2022.122465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is an important endogenous molecule that plays several roles in biological systems. NO is synthesized in human skin by three isoforms of nitric oxide synthase (NOS) and, depending on the produced NO concentration, it can actuate in wound healing, dermal vasodilation, or skin defense against different pathogens, for example. Besides being endogenously produced, NO-based pharmacological formulations have been developed for dermatological applications targeting diverse pathologies such as bacterial infection, wound healing, leishmaniasis, and even esthetic issues such as acne and skin aging. Recent strategies focus mainly on developing smart NO-releasing nanomaterials/biomaterials, as they enable a sustained and targeted NO release, promoting an improved therapeutic effect. This review aims to overview and discuss the main mechanisms of NO in human skin, the recent progress in the field of dermatological formulations containing NO, and their application in several skin diseases, highlighting promising advances and future perspectives in the field.
Collapse
Affiliation(s)
- Amedea B Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil.
| | - Joana C Pieretti
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Bianca de Melo Santana
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Manuel Horue
- Laboratorio de Nanobiomateriales, CINDEFI - Facultad de Ciencias Exactas, Universidad Nacional de La Plata- CONICET (CCT La Plata), Argentina
| | - Gonzalo R Tortella
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile; Centro de Excelencia en Investigación Biotecnologica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Guillermo R Castro
- Nanobiotechnology Area, Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC). Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG) - CONICET. Maipú 1065, S2000 Rosario, Santa Fe, Argentina; Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil.
| |
Collapse
|
10
|
Tavares G, Alves P, Simões P. Recent Advances in Hydrogel-Mediated Nitric Oxide Delivery Systems Targeted for Wound Healing Applications. Pharmaceutics 2022; 14:pharmaceutics14071377. [PMID: 35890273 PMCID: PMC9315818 DOI: 10.3390/pharmaceutics14071377] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Despite the noticeable evolution in wound treatment over the centuries, a functional material that promotes correct and swift wound healing is important, considering the relative weight of chronic wounds in healthcare. Difficult to heal in a fashionable time, chronic wounds are more prone to infections and complications thereof. Nitric oxide (NO) has been explored for wound healing applications due to its appealing properties, which in the wound healing context include vasodilation, angiogenesis promotion, cell proliferation, and antimicrobial activity. NO delivery is facilitated by molecules that release NO when prompted, whose stability is ensured using carriers. Hydrogels, popular materials for wound dressings, have been studied as scaffolds for NO storage and delivery, showing promising results such as enhanced wound healing, controlled and sustained NO release, and bactericidal properties. Systems reported so far regarding NO delivery by hydrogels are reviewed.
Collapse
|
11
|
Pinto RV, Carvalho S, Antunes F, Pires J, Pinto ML. Emerging Nitric Oxide and Hydrogen Sulfide Releasing Carriers for Skin Wound Healing Therapy. ChemMedChem 2021; 17:e202100429. [PMID: 34714595 DOI: 10.1002/cmdc.202100429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/26/2021] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2 S) have been recognized as important signalling molecules involved in multiple physiological functions, including wound healing. Their exogenous delivery has been established as a new route for therapies, being the topical application the nearest to commercialization. Nevertheless, the gaseous nature of these therapeutic agents and their toxicity at high levels imply additional challenges in the design of effective delivery systems, including the tailoring of their morphology and surface chemistry to get controllable release kinetics and suitable lifetimes. This review highlights the increasing interest in the use of these gases in wound healing applications by presenting the various potential strategies in which NO and/or H2 S are the main therapeutic agents, with focus on their conceptual design, release behaviour and therapeutic performance. These strategies comprise the application of several types of nanoparticles, polymers, porous materials, and composites as new releasing carriers of NO and H2 S, with characteristics that will facilitate the application of these molecules in the clinical practice.
Collapse
Affiliation(s)
- Rosana V Pinto
- CERENA-Centro de Recursos Naturais e Ambiente, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal.,CQE-Ciências-Centro de Química Estrutural, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 16, 1749-016, Lisboa, Portugal
| | - Sílvia Carvalho
- CERENA-Centro de Recursos Naturais e Ambiente, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal.,CQE-Ciências-Centro de Química Estrutural, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 16, 1749-016, Lisboa, Portugal
| | - Fernando Antunes
- CQE-Ciências-Centro de Química Estrutural, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 16, 1749-016, Lisboa, Portugal
| | - João Pires
- CQE-Ciências-Centro de Química Estrutural, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 16, 1749-016, Lisboa, Portugal
| | - Moisés L Pinto
- CERENA-Centro de Recursos Naturais e Ambiente, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal
| |
Collapse
|
12
|
Abstract
Hydrogels, due to their excellent biochemical and mechnical property, have shown attractive advantages in the field of wound dressings. However, a comprehensive review of the functional hydrogel as a wound dressing is still lacking. This work first summarizes the skin wound healing process and relates evaluation parameters and then reviews the advanced functions of hydrogel dressings such as antimicrobial property, adhesion and hemostasis, anti-inflammatory and anti-oxidation, substance delivery, self-healing, stimulus response, conductivity, and the recently emerged wound monitoring feature, and the strategies adopted to achieve these functions are all classified and discussed. Furthermore, applications of hydrogel wound dressing for the treatment of different types of wounds such as incisional wound and the excisional wound are summarized. Chronic wounds are also mentioned, and the focus of attention on infected wounds, burn wounds, and diabetic wounds is discussed. Finally, the future directions of hydrogel wound dressings for wound healing are further proposed.
Collapse
Affiliation(s)
- Yongping Liang
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiahui He
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baolin Guo
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
13
|
Santos MI, da Silva LCE, Bomediano MP, Catori DM, Gonçalves MC, de Oliveira MG. 3D printed nitric oxide-releasing poly(acrylic acid)/F127/cellulose nanocrystal hydrogels. SOFT MATTER 2021; 17:6352-6361. [PMID: 34086028 DOI: 10.1039/d1sm00163a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogels have been used as matrices for the topical delivery of nitric oxide (NO) for achieving vasodilation, wound healing and analgesic actions. More recently, supramolecular hydrogels comprised of poly(acrylic acid) (PAA) and micellar Pluronic F127 (F127), prepared by thermal reaction, emerged as a suitable matrix for the incorporation of hydrophilic NO donors, such as S-nitrosoglutathione (GSNO). Herein, we describe an innovative method for the three-dimensional (3D) printing of cellulose nanocrystal (CNC)-containing and semi-interpenetrating PAA/F127 hydrogels by PAA photopolymerization via digital light processing (DLP), in the absence of organic solvents. Scanning electron microscopy showed that, differently from typical porous PAA-based hydrogels, the 3D printed PAA/F127/CNC hydrogels have dense morphology. By using transmission electron microscopy we confirmed for the first time the presence of F127 micelles in the printable resin, and their preservation after the photopolymerization process. The F127 micelles conferred compressive recoverability to the 3D printed PAA/F127/CNC hydrogels, widening their potential applications as soft biomaterials. PAA/F127/CNC hydrogels charged with GSNO are shown to release NO spontaneously upon hydration at initial rates that depend on the GSNO charge and are higher in the presence of CNC. As local NO release may exert cell proliferation action, 3D printed PAA/F127/CNC/GSNO hydrogels may serve as a versatile soft biomaterial for local NO delivery in regenerative medicine and other biomedical applications.
Collapse
Affiliation(s)
- Murilo I Santos
- Institute of Chemistry, University of Campinas, UNICAMP, 13083-970 Campinas, Brazil.
| | - Laura C E da Silva
- Institute of Chemistry, University of Campinas, UNICAMP, 13083-970 Campinas, Brazil.
| | - Mateus P Bomediano
- Institute of Chemistry, University of Campinas, UNICAMP, 13083-970 Campinas, Brazil.
| | - Daniele M Catori
- Institute of Chemistry, University of Campinas, UNICAMP, 13083-970 Campinas, Brazil.
| | - Maria C Gonçalves
- Institute of Chemistry, University of Campinas, UNICAMP, 13083-970 Campinas, Brazil.
| | - Marcelo G de Oliveira
- Institute of Chemistry, University of Campinas, UNICAMP, 13083-970 Campinas, Brazil.
| |
Collapse
|
14
|
Haidari H, Bright R, Strudwick XL, Garg S, Vasilev K, Cowin AJ, Kopecki Z. Multifunctional ultrasmall AgNP hydrogel accelerates healing of S. aureus infected wounds. Acta Biomater 2021; 128:420-434. [PMID: 33857695 DOI: 10.1016/j.actbio.2021.04.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
The increasing emergence of antibiotic resistance coupled with the limited effectiveness of current treatments highlights the need for the development of new treatment modalities. Silver nanoparticles (AgNPs) are a promising alternative with broad-spectrum antibacterial activity. However, the clinical translation of AgNPs have been hampered primarily due to the delivery of unsafe levels of silver ions (Ag+) resulting in cellular toxicity and their susceptibility to aggregation resulting in loss of efficacy. Here, we describe a safe and effective, thermo-responsive AgNP hydrogel that provides antibacterial effects in conjunction with wound promoting properties. Using a murine model of wound infection, we demonstrate that the applied AgNP hydrogel to the wound (12 µg silver) not only provides superior bactericidal activity but also reduces inflammation leading to accelerated wound closure when compared to industry-standard silver sulfadiazine (302 µg silver). The AgNP hydrogel-treatment significantly accelerated wound closure at day 4 post-infection (56 closure) compared to both blank hydrogel or Ag SD (74% and 91% closure respectively) with a concurrent increase in PCNA-positive proliferating cells corresponding with a significant 32% improvement in wound re-epithelization compared to the blank hydrogel. Treatment of infected wounds with AgNP hydrogel also decreased neutrophil infiltration, increased anti-inflammatory Ym-1 positive M2 macrophages, and reduced the number of caspase-1 positive apoptotic cells. Therefore, this novel multifunctional AgNP thermo-responsive hydrogel is potentially a safe and effective treatment at much lower concentration for the treatment of wound infections. STATEMENT OF SIGNIFICANCE: In this study, we describe the development of a multifunctional thermo-responsive hydrogel of ultrasmall silver nanoparticles (AgNPs) for controlled and optimized delivery of silver to infected wounds. The in vivo biological effects of the developed hydrogel showed significant S. aureus elimination from infected mouse wounds compared to a commercial antibacterial formulation. The developed AgNP hydrogel optimally regulates inflammatory responses to promote wound healing as indicated by increased cell proliferation and wound re-epithelization. Additionally, AgNP hydrogel shows significant potential in regulating neutrophil infiltration while increasing levels of anti-inflammatory M2 macrophages and reduces the number of apoptotic cells. Therefore, the multifunctional properties of the developed AgNP thermo-responsive hydrogel offers great clinical potential to control bacterial infections and promote wound healing.
Collapse
|
15
|
Gutierrez Cisneros C, Bloemen V, Mignon A. Synthetic, Natural, and Semisynthetic Polymer Carriers for Controlled Nitric Oxide Release in Dermal Applications: A Review. Polymers (Basel) 2021; 13:760. [PMID: 33671032 PMCID: PMC7957520 DOI: 10.3390/polym13050760] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO•) is a free radical gas, produced in the human body to regulate physiological processes, such as inflammatory and immune responses. It is required for skin health; therefore, a lack of NO• is known to cause or worsen skin conditions related to three biomedical applications- infection treatment, injury healing, and blood circulation. Therefore, research on its topical release has been increasing for the last two decades. The storage and delivery of nitric oxide in physiological conditions to compensate for its deficiency is achieved through pharmacological compounds called NO-donors. These are further incorporated into scaffolds to enhance therapeutic treatment. A wide range of polymeric scaffolds has been developed and tested for this purpose. Hence, this review aims to give a detailed overview of the natural, synthetic, and semisynthetic polymeric matrices that have been evaluated for antimicrobial, wound healing, and circulatory dermal applications. These matrices have already set a solid foundation in nitric oxide release and their future perspective is headed toward an enhanced controlled release by novel functionalized semisynthetic polymer carriers and co-delivery synergetic platforms. Finally, further clinical tests on patients with the targeted condition will hopefully enable the eventual commercialization of these systems.
Collapse
Affiliation(s)
- Carolina Gutierrez Cisneros
- Surface and Interface Engineered Materials, Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; (C.G.C.); (V.B.)
| | - Veerle Bloemen
- Surface and Interface Engineered Materials, Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; (C.G.C.); (V.B.)
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Arn Mignon
- Surface and Interface Engineered Materials, Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; (C.G.C.); (V.B.)
| |
Collapse
|
16
|
Oliver S, Pham TTP, Li Y, Xu FJ, Boyer C. More than skin deep: using polymers to facilitate topical delivery of nitric oxide. Biomater Sci 2021; 9:391-405. [PMID: 32856653 DOI: 10.1039/d0bm01197e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Skin, the largest organ in the human body, provides several important functions, including providing protection from mechanical impacts, micro-organisms, radiation and chemicals; regulation of body temperature; the sensations of touch and temperature; and the synthesis of several substances including vitamin D, melanin, and keratin. Common dermatological disorders (CDDs) include inflammatory or immune-mediated skin diseases, skin infection, skin cancer, and wounds. In the treatment of skin disorders, topical administration has advantages over other routes of administration, and polymers are widely used as vehicles to facilitate the delivery of topical therapeutic agents, serving as matrices to keep therapeutic agents in contact with the skin. Nitric oxide (NO), a cellular signalling molecule, has attracted significant interest in treating a broad spectrum of diseases, including various skin disorders. However, there are a number of challenges in effectively delivering NO. It must be delivered in a controlled manner at sufficient concentrations to be efficacious and the delivery system must be stable during storage. The use of polymer-based systems to deliver NO topically can be an effective strategy to overcome these challenges. There are three main approaches for incorporating NO with polymers in topical delivery systems: (i) physical incorporation of NO donors into polymer bases; (ii) covalent attachment of NO donors to polymers; and (iii) encapsulation of NO donors in polymer-based particles. The latter two approaches provide the greatest control over NO release and have been used by numerous researchers in treating CDDs, including chronic wounds and skin cancer.
Collapse
Affiliation(s)
- Susan Oliver
- Australian Centre for NanoMedicine (ACN) and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, Australia 2052.
| | - Thi Thu Phuong Pham
- Australian Centre for NanoMedicine (ACN) and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, Australia 2052.
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Cyrille Boyer
- Australian Centre for NanoMedicine (ACN) and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, Australia 2052.
| |
Collapse
|
17
|
Ghalei S, Mondal A, Hopkins S, Singha P, Devine R, Handa H. Silk Nanoparticles: A Natural Polymeric Platform for Nitric Oxide Delivery in Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53615-53623. [PMID: 33205962 DOI: 10.1021/acsami.0c13813] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, the preparation and characterization of nitric oxide (NO) releasing silk fibroin nanoparticles (SF NPs) are described for the first time. S-Nitroso-N-acetylpenicillamine (SNAP)-loaded SF NPs (SNAP-SF NPs) were prepared via an antisolvent/self-assembling method by adding a SNAP/ethanol solution to an aqueous SF solution and freeze-thawing. The prepared SNAP-SF NPs had a diameter ranging from 300 to 400 nm and an overall negative charge of -28.76 ± 0.73 mV. Among the different SNAP/SF ratios tested, the highest encapsulation efficiency (18.3 ± 1.3%) and loading capacity (9.1 ± 0.6%) values were attributed to the 1:1 ratio. The deconvolution of the amide I band in the FTIR spectra of SF NPs and SNAP-SF NPs showed an increase in the β-sheet content for SNAP-SF NPs, confirming the hydrophobic interactions between SNAP and silk macromolecules. SNAP-SF NPs released up to 1.31 ± 0.02 × 10-10 mol min-1 mg-1 NO over a 24 h period. Moreover, SNAP-SF NPs showed concentration-dependent antibacterial effects against methicillin-resistant Staphylococcus aureus and Escherichia coli. Furthermore, they did not elicit any marked cytotoxicity against 3T3 mouse fibroblast cells at concentrations equal to or below 2 mg/mL. Overall, these results demonstrated that SNAP-SF NPs have great potential to be used as a NO delivery platform for biomedical applications such as tissue engineering and wound healing, where synergistic properties of SF and NO are desired.
Collapse
Affiliation(s)
- Sama Ghalei
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Arnab Mondal
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Sean Hopkins
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Priyadarshini Singha
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Ryan Devine
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
18
|
Hopkins SP, Pant J, Goudie MJ, Nguyen DT, Handa H. Electrospun Bioabsorbable Fibers Containing S-Nitrosoglutathione for Tissue Engineering Applications. ACS APPLIED BIO MATERIALS 2020; 3:7677-7686. [PMID: 35019507 DOI: 10.1021/acsabm.0c00862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Blended and coaxial fibers comprising polycaprolactone and gelatin, containing the endogenous nitric oxide (NO) donor S-nitrosoglutathione (GSNO), were electrospun. Both types of fibers had their NO release profiles tested under physiological conditions to examine their potential applications as biomedical scaffolds. The coaxial fibers exhibited a prolonged and consistent release of NO over the course of 4 d from the core-encapsulated GSNO, while the blended fibers had a large initial release and leaching of GSNO that was exhausted over a shorter period of time. Bacterial testing of both fiber scaffolds was conducted over a 24 h period against Staphylococcus aureus (S. aureus) and demonstrated a 3-log reduction in bacterial viability. In addition, no cytotoxic response was reported when the material was tested on mouse fibroblast cells in vitro. These fibrous matrices were also shown to support cell growth, attachment, and overall activity of fibroblasts when exposed to NO, especially when GSNO was encapsulated within coaxial fibers. From an application point of view, these NO-releasing fibers offer great potential in tissue engineering and biomedical applications because of the crucial role of NO in regulating a variety of biological processes in humans such as angiogenesis, tissue remodeling, and eliminating foreign pathogens.
Collapse
Affiliation(s)
- Sean P Hopkins
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Jitendra Pant
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Marcus J Goudie
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Dieu Thao Nguyen
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| |
Collapse
|
19
|
Pieretti JC, Junho CVC, Carneiro-Ramos MS, Seabra AB. H 2S- and NO-releasing gasotransmitter platform: A crosstalk signaling pathway in the treatment of acute kidney injury. Pharmacol Res 2020; 161:105121. [PMID: 32798649 PMCID: PMC7426260 DOI: 10.1016/j.phrs.2020.105121] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is a syndrome affecting most patients hospitalized due to kidney disease; it accounts for 15 % of patients hospitalized in intensive care units worldwide. AKI is mainly caused by ischemia and reperfusion (IR) injury, which temporarily obstructs the blood flow, increases inflammation processes and induces oxidative stress. AKI treatments available nowadays present notable disadvantages, mostly for patients with other comorbidities. Thus, it is important to investigate different approaches to help minimizing side effects such as the ones observed in patients subjected to the aforementioned treatments. Therefore, the aim of the current review is to highlight the potential of two endogenous gasotransmitters - hydrogen sulfide (H2S) and nitric oxide (NO) - and their crosstalk in AKI treatment. Both H2S and NO are endogenous signalling molecules involved in several physiological and pathophysiological processes, such as the ones taking place in the renal system. Overall, these molecules act by decreasing inflammation, controlling reactive oxygen species (ROS) concentrations, activating/inactivating pro-inflammatory cytokines, as well as promoting vasodilation and decreasing apoptosis, hypertrophy and autophagy. Since these gasotransmitters are found in gaseous state at environmental conditions, they can be directly applied by inhalation, or in combination with H2S and NO donors, which are compounds capable of releasing these molecules at biological conditions, thus enabling higher stability and slow release of NO and H2S. Moreover, the combination between these donor compounds and nanomaterials has the potential to enable targeted treatments, reduce side effects and increase the potential of H2S and NO. Finally, it is essential highlighting challenges to, and perspectives in, pharmacological applications of H2S and NO to treat AKI, mainly in combination with nanoparticulated delivery platforms.
Collapse
Affiliation(s)
- Joana Claudio Pieretti
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | | | | | - Amedea Barozzi Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil.
| |
Collapse
|
20
|
Urzedo AL, Gonçalves MC, Nascimento MH, Lombello CB, Nakazato G, Seabra AB. Multifunctional alginate nanoparticles containing nitric oxide donor and silver nanoparticles for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110933. [DOI: 10.1016/j.msec.2020.110933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/23/2020] [Accepted: 04/04/2020] [Indexed: 01/12/2023]
|
21
|
Giglio LP, Picheth GF, Løvschall KB, Zelikin AN, de Oliveira MG. S-nitrosothiol-terminated poly(vinyl alcohol): Nitric oxide release and skin blood flow response. Nitric Oxide 2020; 98:41-49. [DOI: 10.1016/j.niox.2020.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
|
22
|
Urzedo AL, Gonçalves MC, Nascimento MHM, Lombello CB, Nakazato G, Seabra AB. Cytotoxicity and Antibacterial Activity of Alginate Hydrogel Containing Nitric Oxide Donor and Silver Nanoparticles for Topical Applications. ACS Biomater Sci Eng 2020; 6:2117-2134. [DOI: 10.1021/acsbiomaterials.9b01685] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alessandro L. Urzedo
- Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), CEP 09210-580, Santo André, São Paulo, Brazil
| | - Marcelly C. Gonçalves
- Department of Microbiology, Universidade Estadual de Londrina (UEL), Campus Universitário, CEP 86055-990, Londrina, Paraná, Brazil
| | - Mônica H. M. Nascimento
- Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), CEP 09210-580, Santo André, São Paulo, Brazil
| | - Christiane B. Lombello
- Center for Engineering, Modeling and Applied Social Sciences, Universidade Federal do ABC (UFABC), CEP 09210-580, Santo André, São Paulo, Brazil
| | - Gerson Nakazato
- Department of Microbiology, Universidade Estadual de Londrina (UEL), Campus Universitário, CEP 86055-990, Londrina, Paraná, Brazil
| | - Amedea B. Seabra
- Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), CEP 09210-580, Santo André, São Paulo, Brazil
| |
Collapse
|
23
|
In vitro and in vivo evaluation of a novel nitric oxide-releasing ointment for the treatment of methicillin-resistant Staphylococcus aureus-infected wounds. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00472-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Lee J, Hlaing SP, Cao J, Hasan N, Ahn HJ, Song KW, Yoo JW. In Situ Hydrogel-Forming/Nitric Oxide-Releasing Wound Dressing for Enhanced Antibacterial Activity and Healing in Mice with Infected Wounds. Pharmaceutics 2019; 11:pharmaceutics11100496. [PMID: 31569746 PMCID: PMC6836051 DOI: 10.3390/pharmaceutics11100496] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/29/2022] Open
Abstract
The eradication of bacteria from wound sites and promotion of healing are essential for treating infected wounds. Nitric oxide (NO) is desirable for these purposes due to its ability to accelerate wound healing and its broad-spectrum antibacterial effects. We developed an in situ hydrogel-forming/NO-releasing powder dressing (NO/GP), which is a powder during storage and forms a hydrogel when applied to wounds, as a novel NO-releasing formulation to treat infected wounds. An NO/GP fine powder (51.5 μm) was fabricated by blending and micronizing S-nitrosoglutathione (GSNO), alginate, pectin, and polyethylene glycol (PEG). NO/GP remained stable for more than four months when stored at 4 or 37 °C. When applied to wounds, NO/GP absorbed wound fluid and immediately converted to a hydrogel. Additionally, wound fluid triggered a NO release from NO/GP for more than 18 h. The rheological properties of hydrogel-transformed NO/GP indicated that NO/GP possesses similar adhesive properties to marketed products (Vaseline). NO/GP resulted in a 6-log reduction in colony forming units (CFUs) of methicillin resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa, which are representative drug-resistant gram-positive and -negative bacteria, respectively. The promotion of wound healing by NO/GP was demonstrated in mice with full-thickness wounds challenged with MRSA and P. aeruginosa. Thus, NO/GP is a promising formulation for the treatment of infected wounds.
Collapse
Affiliation(s)
- Juho Lee
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Shwe Phyu Hlaing
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Jiafu Cao
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Nurhasni Hasan
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Hye-Jin Ahn
- Department of Organic Material Science and Engineering, Pusan National University, Busan 46241, Korea.
| | - Ki-Won Song
- Department of Organic Material Science and Engineering, Pusan National University, Busan 46241, Korea.
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
25
|
Dalisson B, Barralet J. Bioinorganics and Wound Healing. Adv Healthc Mater 2019; 8:e1900764. [PMID: 31402608 DOI: 10.1002/adhm.201900764] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Wound dressings and the healing enhancement (increasing healing speed and quality) are two components of wound care that lead to a proper healing. Wound care today consists mostly of providing an optimal environment by removing waste and necrotic tissues from a wound, preventing infections, and keeping the wounds adequately moist. This is however often not enough to re-establish the healing process in chronic wounds; with the local disruption of vascularization, the local environment is lacking oxygen, nutrients, and has a modified ionic and molecular concentration which limits the healing process. This disruption may affect cellular ionic pumps, energy production, chemotaxis, etc., and will affect the healing process. Biomaterials for wound healing range from simple absorbents to sophisticated bioactive delivery vehicles. Often placing a material in or on a wound can change multiple parameters such as pH, ionic concentration, and osmolarity, and it can be challenging to pinpoint key mechanism of action. This article reviews the literature of several inorganic ions and molecules and their potential effects on the different wound healing phases and their use in new wound dressings.
Collapse
Affiliation(s)
| | - Jake Barralet
- Faculty of DentistryMcGill University Montreal H3A 1G1 QC Canada
- Division of OrthopaedicsDepartment of SurgeryFaculty of MedicineMcGill University Montreal H4A 0A9 QC Canada
| |
Collapse
|
26
|
Influence of Pluronic F127 microenvironments on the photochemical nitric oxide release from S-nitrosoglutathione. J Colloid Interface Sci 2019; 544:217-229. [DOI: 10.1016/j.jcis.2019.02.087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 12/21/2022]
|
27
|
de Souza GFP, Denadai JP, Picheth GF, de Oliveira MG. Long-term decomposition of aqueous S-nitrosoglutathione and S-nitroso-N-acetylcysteine: Influence of concentration, temperature, pH and light. Nitric Oxide 2019; 84:30-37. [PMID: 30630056 DOI: 10.1016/j.niox.2019.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/17/2018] [Accepted: 01/04/2019] [Indexed: 02/03/2023]
Abstract
Primary S-nitrosothiols (RSNOs) have received significant attention for their ability to modulate NO signaling in many physiological and pathophysiological processes. Such actions and their potential pharmaceutical uses demand a better knowledge of their stability in aqueous solutions. Herein, we investigated the effects of concentration, temperature, pH, room light and metal ions on the long-term kinetic behavior of two representative primary RSNOs, S-nitrosoglutathione (GSNO) and S-nitroso-N-acetylcysteine (SNAC). The thermal decomposition of GSNO and SNAC were shown to be affected by the auto-catalytic action of the thiyl radicals. At 25 °C in the dark and protected from the catalytic action of metal ions, GSNO and SNAC solutions 1 mM showed half-lives of 49 and 76 days, and apparent activation energies of 84 ± 14 and 90 ± 6 kJ mol-1, respectively. Both GSNO and SNAC exhibited increased stability in the pH range 5-7. At high pH the decomposition pathway of GSNO involves the formation of an intermediate (GS-NO22-), which decomposes generating GSH and nitrite. GSNO solutions displayed lower sensitivity to the catalytic action of metal ions than SNAC and the exposure to room light led to a 5-fold increase in the initial rates of decomposition of both RSNOs. In all comparisons, SNAC solutions showed higher stability than GSNO solutions. These findings provide strategic information about the stability of GSNO and SNAC and may open new perspectives for their use as experimental or therapeutic NO donors.
Collapse
Affiliation(s)
| | | | - Guilherme F Picheth
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | | |
Collapse
|
28
|
Rolim WR, Pieretti JC, Renó DLS, Lima BA, Nascimento MHM, Ambrosio FN, Lombello CB, Brocchi M, de Souza ACS, Seabra AB. Antimicrobial Activity and Cytotoxicity to Tumor Cells of Nitric Oxide Donor and Silver Nanoparticles Containing PVA/PEG Films for Topical Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6589-6604. [PMID: 30653288 DOI: 10.1021/acsami.8b19021] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Because of their antibacterial activity, silver nanoparticles (AgNPs) have been explored in biomedical applications. Similarly, nitric oxide (NO) is an important endogenous free radical with an antimicrobial effect and toxicity toward cancer cells that plays pivotal roles in several processes. In this work, biogenic AgNPs were prepared using green tea extract and the principles of green chemistry, and the NO donor S-nitrosoglutathione (GSNO) was prepared by the nitrosation of glutathione. To enhance the potentialities of GSNO and AgNPs in biomedical applications, the NO donor and metallic nanoparticles were individually or simultaneously incorporated into polymeric solid films of poly(vinyl alcohol) (PVA) and poly(ethylene glycol) (PEG). The resulting solid nanocomposites were characterized by several techniques, and the diffusion profiles of GSNO and AgNPs were investigated. The results demonstrated the formation of homogeneous PVA/PEG solid films containing GSNO and nanoscale AgNPs that are distributed in the polymeric matrix. PVA/PEG films containing AgNPs demonstrated a potent antibacterial effect against Gram-positive and Gram-negative bacterial strains. GSNO-containing PVA/PEG films demonstrated toxicity toward human cervical carcinoma and human prostate cancer cell lines. Interestingly, the incorporation of AgNPs in PVA/PEG/GSNO films had a superior effect on the decrease of cell viability of both cancer cell lines, compared with cells treated with films containing GSNO or AgNPs individually. To our best knowledge, this is the first report to describe the preparation of PVA/PEG solid films containing GSNO and/or biogenically synthesized AgNPs. These polymeric films might find important biomedical applications as a solid material with antimicrobial and antitumorigenic properties.
Collapse
Affiliation(s)
| | | | | | - Bruna A Lima
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology , University of Campinas (UNICAMP) , Campinas , São Paulo 13083-862 , Brazil
| | | | | | | | - Marcelo Brocchi
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology , University of Campinas (UNICAMP) , Campinas , São Paulo 13083-862 , Brazil
| | | | | |
Collapse
|
29
|
Ramadass SK, Nazir LS, Thangam R, Perumal RK, Manjubala I, Madhan B, Seetharaman S. Type I collagen peptides and nitric oxide releasing electrospun silk fibroin scaffold: A multifunctional approach for the treatment of ischemic chronic wounds. Colloids Surf B Biointerfaces 2018; 175:636-643. [PMID: 30583219 DOI: 10.1016/j.colsurfb.2018.12.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022]
Abstract
Biomimetic nanofibrous scaffolds targeting multiple dysfunctional processes provide a multi-pronged strategy to restore functions and regenerate the damaged tissue. This study investigates a strategy of combining a regenerative component, Type I collagen Peptide (CP), along with a nitric oxide donor, S-Nitrosoglutathione (GSNO), in the form of nanofibrous scaffold to address the non-healing diabetic ulcer. Silk Fibroin-Polyvinyl alcohol (SF-PVA) nanofibrous scaffold is used as a carrier for delivering functional moieties. The developed nanofibrous electrospun mats (SF-PVA, CP-SF-PVA, and CP-GSNO-SF-PVA) showed continuous, bead-less and randomly oriented fibers with highly porous morphology. The in vitro biocompatibility was assessed by MTT assay, DAPI-Rhodamine 123 and FITC-Phalloidin imaging studies. CP-GSNO-SF-PVA nanofibrous scaffold showed a high degree of cell attachment, spreading of F-actin with viable cell morphology and appreciable inter-cellular connection. Thus the study showed that the proliferation of fibroblast cells are mainly facilitated by the presence of collagen peptide in the nanofibrous matrix. Griess assay demonstrated immediate release of NO for a day from the developed multifunctional scaffold. These results demonstrate the in vitro efficacy of CP-GSNO and indicate the opportunity of CP-GSNO-SF-PVA nanofibrous scaffold for the treatment of ischemic non-healing ulcers.
Collapse
Affiliation(s)
- Satiesh Kumar Ramadass
- Faculty of Pharmacy, Sri Ramachandra Medical Centre and Research Institute, Chennai, Tamil Nadu, India
| | - Lone Saquib Nazir
- Department of Biomedical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ramar Thangam
- CSIR - Central Leather Research Institute, Chennai, Tamil Nadu, India
| | | | - I Manjubala
- Department of Biomedical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Balaraman Madhan
- CSIR - Central Leather Research Institute, Chennai, Tamil Nadu, India.
| | | |
Collapse
|
30
|
Poly-ε-caprolactone/polysulfhydrylated polyester blend: A platform for topical and degradable nitric oxide-releasing materials. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
31
|
S-Nitrosoglutathione loaded poly(lactic-co-glycolic acid) microparticles for prolonged nitric oxide release and enhanced healing of methicillin-resistant Staphylococcus aureus-infected wounds. Eur J Pharm Biopharm 2018; 132:94-102. [PMID: 30223029 DOI: 10.1016/j.ejpb.2018.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 11/22/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds have become a significant clinical issue worldwide. Recently, nitric oxide (NO) has emerged as a potent antibacterial agent against MRSA infections and a wound-healing enhancer. Nevertheless, clinical applications of NO have been largely restricted by its gaseous state and short half-life. In this study, our aim was to develop S-nitrosoglutathione (GSNO, an endogenous NO donor)-loaded poly(lactic-co-glycolic acid) [PLGA] microparticles (GSNO-MPs) that release NO over a prolonged period, to accelerate the healing of MRSA-infected wounds with less frequent dosing. GSNO was successfully encapsulated into PLGA microparticles by a solid-in-oil-in-water emulsion solvent evaporation method. Scanning electron microscopy and X-ray diffraction analyses confirmed the successful fabrication of GSNO-MPs. The latter released NO in a prolonged manner over 7 days and exerted a remarkable antibacterial activity against MRSA in a concentration- and time-dependent manner. Moreover, GSNO-MPs had good antibacterial efficacy and were found to accelerate wound healing in a mouse model of MRSA-infected wounds. Therefore, NO-releasing MPs devised in this study may be a promising option for the treatment of cutaneous wounds infected by drug-resistant bacteria such as MRSA.
Collapse
|
32
|
Op 't Veld RC, van den Boomen OI, Lundvig DMS, Bronkhorst EM, Kouwer PHJ, Jansen JA, Middelkoop E, Von den Hoff JW, Rowan AE, Wagener FADTG. Thermosensitive biomimetic polyisocyanopeptide hydrogels may facilitate wound repair. Biomaterials 2018; 181:392-401. [PMID: 30103178 DOI: 10.1016/j.biomaterials.2018.07.038] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023]
Abstract
Changing wound dressings inflicts pain and may disrupt wound repair. Novel synthetic thermosensitive hydrogels based on polyisocyanopeptide (PIC) offer a solution. These gels are liquid below 16 °C and form gels beyond room temperature. The architecture and mechanical properties of PIC gels closely resemble collagen and fibrin, and include the characteristic stiffening response at high strains. Considering the reversible thermo-responsive behavior, we postulate that PIC gels are easy to apply and remove, and facilitate healing without eliciting foreign body responses or excessive inflammation. Biocompatibility may be higher in RGD-peptide-functionalized PIC gels due to enhanced cell binding capabilities. Full-thickness dorsal skin wounds in mice were compared to wounds treated with PIC gel and PIC-RGD gel for 3 and 7 days. No foreign body reactions and similar wound closure rates were found in all groups. The level of macrophages, myofibroblasts, epithelial migration, collagen expression, and blood vessels did not significantly differ from controls. Surprisingly, granulocyte populations in the wound decreased significantly in the PIC gel-treated groups, likely because foreign bacteria could not penetrate the gel. RGD-peptides did not further improve any effect observed for PIC. The absence of adverse effects, ease of application, and the possibilities for bio-functionalization make the biomimetic PIC hydrogels suitable for development into wound dressings.
Collapse
Affiliation(s)
- Roel C Op 't Veld
- Department of Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands; Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Onno I van den Boomen
- Department of Molecular Materials, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Ditte M S Lundvig
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Ewald M Bronkhorst
- Department of Cariology and Preventive Dentistry, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Paul H J Kouwer
- Department of Molecular Materials, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - John A Jansen
- Department of Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Esther Middelkoop
- Association of Dutch Burn Centres, Martini Hospital, Groningen, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences, VU University Medical Centre, Amsterdam, The Netherlands
| | - Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Alan E Rowan
- Department of Molecular Materials, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Frank A D T G Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands.
| |
Collapse
|
33
|
Champeau M, Póvoa V, Militão L, Cabrini FM, Picheth GF, Meneau F, Jara CP, de Araujo EP, de Oliveira MG. Supramolecular poly(acrylic acid)/F127 hydrogel with hydration-controlled nitric oxide release for enhancing wound healing. Acta Biomater 2018; 74:312-325. [PMID: 29777958 DOI: 10.1016/j.actbio.2018.05.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/07/2018] [Accepted: 05/15/2018] [Indexed: 01/20/2023]
Abstract
Topical nitric oxide (NO) delivery has been shown to accelerate wound healing. However, delivering NO to wounds at appropriate rates and doses requires new biomaterial-based strategies. Here, we describe the development of supramolecular interpolymer complex hydrogels comprising PEO-PPO-PEO (F127) micelles embedded in a poly(acrylic acid) (PAA) matrix, with S-nitrosoglutathione (GSNO) molecules dissolved in the hydrophilic domain. We show that PAA:F127/GSNO hydrogels start releasing NO upon hydration at rates controlled by their rates of water absorption. SAXS measurements indicate that the supramolecular structure of the hydrogels retains long-range order domains of F127 micelles. The PAA/F1227 hydrogels displayed dense morphologies and reduced rates of hydration. The NO release rates remain constant over the first 200 min, are directly correlated with the hydration rates of the PAA:F127/GSNO hydrogels, and can be modulated in the range of 40 nmol/g h to 1.5 μmol/g h by changing the PAA:F127 mass ratio. Long-term NO-release profiles over 5 days are governed by the first-order exponential decay of GSNO, with half-lives in the range of 0.5-3.4 days. A preliminary in vivo study on full-thickness excisional wounds in mice showed that topical NO release from the PAA:F127/GSNO hydrogels is triggered by exudate absorption and leads to increased angiogenesis and collagen fiber organization, as well as TGF-β, IGF-1, SDF-1, and IL-10 gene expressions in the cicatricial tissue. In summary, these results suggest that hydration-controlled NO release from topical PAA:F127/GSNO hydrogels is a potential strategy for enhancing wound healing. STATEMENT OF SIGNIFICANCE The topical delivery of nitric oxide (NO) to wounds may provide significant beneficial results and represent a promising strategy to treat chronic wounds. However, wound dressings capable of releasing NO after application and allowing the modulation of NO release rates, demand new platforms. Here, we describe a novel strategy to overcome these challenges, based on the use of supramolecular poly(acrylic acid) (PAA):F127 hydrogels charged with the NO donor S-nitrosoglutathione (GSNO) from whereby the NO release can be triggered by exudate absorption and delivered to the wound at rates controlled by the PAA:F127 mass ratio. Preliminary in vivo results offer a proof of concept for this strategy by demonstrating increased angiogenesis; collagen fibers organization; and TGF-β, IGF-1, SDF-1, and IL-10 gene expressions in the cicatricial tissue after topical treatment with a PAA:F127/GSNO hydrogel.
Collapse
|
34
|
Pelegrino MT, De Araujo Lima B, Do Nascimento MHM, Lombello CB, Brocchi M, Seabra AB. Biocompatible and Antibacterial Nitric Oxide-Releasing Pluronic F-127/Chitosan Hydrogel for Topical Applications. Polymers (Basel) 2018; 10:E452. [PMID: 30966487 PMCID: PMC6415216 DOI: 10.3390/polym10040452] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/08/2018] [Accepted: 04/16/2018] [Indexed: 01/08/2023] Open
Abstract
Nitric oxide (NO) is involved in physiological processes, including vasodilatation, wound healing and antibacterial activities. As NO is a free radical, designing drugs to generate therapeutic amounts of NO in controlled spatial and time manners is still a challenge. In this study, the NO donor S-nitrosoglutathione (GSNO) was incorporated into the thermoresponsive Pluronic F-127 (PL)-chitosan (CS) hydrogel, with an easy and economically feasible methodology. CS is a polysaccharide with known antimicrobial properties. Scanning electron microscopy, rheology and differential scanning calorimetry techniques were used for hydrogel characterization. The results demonstrated that the hydrogel has a smooth surface, thermoresponsive behavior and good mechanical stability. The kinetics of NO release and GSNO diffusion from GSNO-containing PL/CS hydrogel demonstrated a sustained NO/GSNO release, in concentrations suitable for biomedical applications. The GSNO-PL/CS hydrogel demonstrated a concentration-dependent toxicity to Vero cells, and antimicrobial activity to Pseudomonas aeruginosa (minimum inhibitory concentration and minimum bactericidal concentration values of 0.5 µg·mL-1 of hydrogel, which corresponds to 1 mmol·L-1 of GSNO). Interestingly, the concentration range in which the NO-releasing hydrogel demonstrated an antibacterial effect was not found to be toxic to the Vero mammalian cell. Thus, the GSNO-PL/CS hydrogel is a suitable biomaterial for topical NO delivery applications.
Collapse
Affiliation(s)
- Milena T Pelegrino
- Center for Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP, CEP 09210-580, Brazil.
- Nanomedicine Research Unit (NANOMED), Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP 09210-580, Brazil.
| | - Bruna De Araujo Lima
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil.
| | - Mônica H M Do Nascimento
- Nanomedicine Research Unit (NANOMED), Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP 09210-580, Brazil.
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil.
| | - Christiane B Lombello
- Center for Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP, CEP 09210-580, Brazil.
- Center for Engineering, Modeling and Applied Social Science, Universidade Federal do ABC, Alameda da Universidade sem numero, São Bernardo do Campo, SP, CEP 09606-045, Brazil.
| | - Marcelo Brocchi
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil.
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP, CEP 09210-580, Brazil.
- Nanomedicine Research Unit (NANOMED), Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP 09210-580, Brazil.
| |
Collapse
|
35
|
Chatraie M, Torkaman G, Khani M, Salehi H, Shokri B. In vivo study of non-invasive effects of non-thermal plasma in pressure ulcer treatment. Sci Rep 2018; 8:5621. [PMID: 29618775 PMCID: PMC5884810 DOI: 10.1038/s41598-018-24049-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/26/2018] [Indexed: 12/18/2022] Open
Abstract
According to high incidence and prevalence of pressure ulcers worldwide, the purpose of this study is using of non-thermal atmospheric plasma as a novel therapy for pressure ulcers. Cold plasma was produced by applying a high-voltage (5 kV) and high-frequency (25 kHz), to helium gas. Under general anesthesia and sterile conditions, two circular magnets were used to create pressure ulcers on the dorsal skin of adult rats. The wounds were divided randomly into control and plasma-treated groups. Animals in the plasma-treated group received plasma radiation for 5 days, each day 3 times and every time 60 s. Mechanical assays were performed to determine plasma effects on the mechanical strength of the repaired tissue. The results showed that mechanical strength of repaired wound in the plasma-treated group was significantly higher than that in the control group (p < 0.05). In addition, evidence from histological studies indicates a significantly accelerated wound re-epithelialization in comparison with the control group; angiogenesis and fibrosis (collagen synthesis) were also significantly increased and the inflammation phase of wound healing was shorter in the plasma-treated group. The plasma treatment also resulted in significant wound contraction and acceleration of wound healing. The findings of present study indicate the effects of cold plasma on pressure ulcer treatment.
Collapse
Affiliation(s)
- Maedeh Chatraie
- Laser applications in medical sciences research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Laser - Plasma Research Institute, Shahid Beheshti University, G.C., P.O. Box, 19839-6941, Tehran, Iran
| | - Giti Torkaman
- Physical Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammadreza Khani
- Laser - Plasma Research Institute, Shahid Beheshti University, G.C., P.O. Box, 19839-6941, Tehran, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Shokri
- Laser - Plasma Research Institute, Shahid Beheshti University, G.C., P.O. Box, 19839-6941, Tehran, Iran.
- Physics Department of Shahid Beheshti University, G.C., P.O. Box, 19839-6941, Tehran, Iran.
| |
Collapse
|
36
|
Pelegrino MT, de Araújo DR, Seabra AB. S-nitrosoglutathione-containing chitosan nanoparticles dispersed in Pluronic F-127 hydrogel: Potential uses in topical applications. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.10.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
37
|
Lourenço SDM, de Oliveira MG. Topical photochemical nitric oxide release from porous poly(vinyl alcohol) membrane for visible light modulation of dermal vasodilation. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Pelegrino MT, Weller RB, Chen X, Bernardes JS, Seabra AB. Chitosan nanoparticles for nitric oxide delivery in human skin. MEDCHEMCOMM 2017; 8:713-719. [PMID: 30108789 PMCID: PMC6072359 DOI: 10.1039/c6md00502k] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022]
Abstract
The use of nanoparticle-based transdermal delivery systems is a promising approach to efficiently carry and deliver therapeutic agents for dermal and systemic administration. Nitric oxide (NO) is a key molecule that plays important roles in human skin such as the control of skin homeostasis, skin defense, control of dermal blood flow, and wound healing. In addition, human skin contains stores of NO derivatives that can be mobilized and release free NO upon UV irradiation with beneficial cardiovascular effects, for instance the control of blood pressure. In this work, the NO donor precursor glutathione (GSH) was encapsulated (encapsulation efficiency of 99.60%) into ultra-small chitosan nanoparticles (CS NPs) (hydrodynamic size of 30.65 ± 11.90 nm). GSH-CS NPs have a core-shell structure, as revealed by atomic force microscopy and X-ray photoelectron spectroscopy, in which GSH is protected in the nanoparticle core. Nitrosation of GSH by nitrous acid led to the formation of the NO donor S-nitrosogluthathione (GSNO) into CS NPs. The GSNO release from the CS NPs followed a Fickian diffusion described by the Higuchi mathematical model. Topical application of GSNO-CS NPs in intact human skin significantly increased the levels of NO and its derivatives in the epidermis, as assayed by confocal microscopy, and this effect was further enhanced by skin irradiation with UV light. Therefore, NO-releasing CS NPs are suitable materials for transdermal NO delivery to local and/or systemic therapies.
Collapse
Affiliation(s)
- M T Pelegrino
- Exact and Earth Sciences Departament , Universidade Federal de São Paulo , Rua São Nicolau, 210 , CEP 09913-030 , Diadema , SP , Brazil
- Center of Natural and Human Sciences , Universidade Federal do ABC , Av. dos Estados 5001 , CEP 09210-580 , Santo André , SP , Brazil . ; Tel: +55 11 4996 8374
| | - R B Weller
- Medical Research Council Centre for Inflammation Research , University of Edinburgh , Queen's Medical Research Institute , 47 Little France Crescent , Edinburgh , EH16 4TJ , UK
| | - X Chen
- Medical Research Council Centre for Inflammation Research , University of Edinburgh , Queen's Medical Research Institute , 47 Little France Crescent , Edinburgh , EH16 4TJ , UK
| | - J S Bernardes
- National Nanotechnology Laboratory (LNNano) , National Center for Energy and Materials (CNPEM) , Rua Giuseppe Máximo Scolfaro, 10.000 , CEP 13083-970 , Campinas , SP , Brazil
| | - A B Seabra
- Center of Natural and Human Sciences , Universidade Federal do ABC , Av. dos Estados 5001 , CEP 09210-580 , Santo André , SP , Brazil . ; Tel: +55 11 4996 8374
| |
Collapse
|
39
|
Marvasi M. Potential use and perspectives of nitric oxide donors in agriculture. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1065-1072. [PMID: 27786356 DOI: 10.1002/jsfa.8117] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/03/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
Nitric oxide (NO) has emerged in the last 30 years as a key molecule involved in many physiological processes in plants, animals and bacteria. Current research has shown that NO can be delivered via donor molecules. In such cases, the NO release rate is dependent on the chemical structure of the donor itself and on the chemical environment. Despite NO's powerful signaling effect in plants and animals, the application of NO donors in agriculture is currently not implemented and research remains mainly at the experimental level. Technological development in the field of NO donors is rapidly expanding in scope to include controlling seed germination, plant development, ripening and increasing shelf-life of produce. Potential applications in animal production have also been identified. This concise review focuses on the use of donors that have shown potential biotechnological applications in agriculture. Insights are provided into (i) the role of donors in plant production, (ii) the potential use of donors in animal production and (iii) future approaches to explore the use and applications of donors for the benefit of agriculture. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Massimiliano Marvasi
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, The Burroughs, London, NW4 4BT, UK
| |
Collapse
|
40
|
Khan M, Khan H, Singh I, Singh AK. Hypoxia inducible factor-1 alpha stabilization for regenerative therapy in traumatic brain injury. Neural Regen Res 2017; 12:696-701. [PMID: 28616019 PMCID: PMC5461600 DOI: 10.4103/1673-5374.206632] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mild traumatic brain injury (TBI), also called concussion, initiates sequelae leading to motor deficits, cognitive impairments and subtly compromised neurobehaviors. While the acute phase of TBI is associated with neuroinflammation and nitroxidative burst, the chronic phase shows a lack of stimulation of the neurorepair process and regeneration. The deficiency of nitric oxide (NO), the consequent disturbed NO metabolome, and imbalanced mechanisms of S-nitrosylation are implicated in blocking the mechanisms of neurorepair processes and functional recovery in the both phases. Hypoxia inducible factor-1 alpha (HIF-1α), a master regulator of hypoxia/ischemia, stimulates the process of neurorepair and thus aids in functional recovery after brain trauma. The activity of HIF-1α is regulated by NO via the mechanism of S-nitrosylation of HIF-1α. S-nitrosylation is dynamically regulated by NO metabolites such as S-nitrosoglutathione (GSNO) and peroxynitrite. GSNO stabilizes, and peroxynitrite destabilizes HIF-1α. Exogenously administered GSNO was found not only to stabilize HIF-1α and to induce HIF-1α-dependent genes but also to stimulate the regeneration process and to aid in functional recovery in TBI animals.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Hamza Khan
- College of Medicine, University of South Carolina, Columbia, SC, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.,Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
41
|
Lai WF, He ZD. Design and fabrication of hydrogel-based nanoparticulate systems for in vivo drug delivery. J Control Release 2016; 243:269-282. [DOI: 10.1016/j.jconrel.2016.10.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/12/2016] [Accepted: 10/12/2016] [Indexed: 12/27/2022]
|
42
|
The application of cold atmospheric plasma in medicine: The potential role of nitric oxide in plasma-induced effects. CLINICAL PLASMA MEDICINE 2016. [DOI: 10.1016/j.cpme.2016.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
43
|
Saidkhani V, Asadizaker M, Khodayar MJ, Latifi SM. The effect of nitric oxide releasing cream on healing pressure ulcers. IRANIAN JOURNAL OF NURSING AND MIDWIFERY RESEARCH 2016; 21:322-30. [PMID: 27186212 PMCID: PMC4857669 DOI: 10.4103/1735-9066.180389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/04/2015] [Indexed: 01/23/2023]
Abstract
BACKGROUND Pressure ulcer is one of the main concerns of nurses in medical centers around the world, which, if untreated, causes irreparable problems for patients. In recent years, nitric oxide (NO) has been proposed as an effective method for wound healing. This study was conducted to determine the effect of nitric oxide on pressure ulcer healing. MATERIALS AND METHODS In this clinical trial, 58 patients with pressure ulcer at hospitals affiliated to Ahvaz Jundishapur University of Medical Sciences were homogenized and later divided randomly into two groups of treatment (nitric oxide cream; n = 29) and control (placebo cream; n = 29). In this research, the data collection tool was the Pressure Ulcer Scale for Healing (PUSH). At the outset of the study (before using the cream), the patients' ulcers were examined weekly in terms of size, amount of exudates, and tissue type using the PUSH tool for 3 weeks. By integrating these three factors, wound healing was determined. Data were analyzed using SPSS. RESULTS Although no significant difference was found in terms of the mean of score size, the amount of exudates, and the tissue type between the two groups, the mean of total score (healing) between the two groups was statistically significant (P = 0.04). CONCLUSIONS Nitric oxide cream seems to accelerate wound healing. Therefore, considering its easy availability and cost-effectiveness, it can be used for treating pressure ulcers in the future.
Collapse
Affiliation(s)
- Vahid Saidkhani
- School of Nursing and Midwifery, Ahvaz Jundishapur University of Medical Sciences, Chronic Disease Care Research Center, Ahvaz, Iran
| | - Marziyeh Asadizaker
- Department of Medical Surgical, Chronic Disease Care Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Sayed Mahmoud Latifi
- Department of Biostatistics, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
44
|
Ganzarolli de Oliveira M. S-Nitrosothiols as Platforms for Topical Nitric Oxide Delivery. Basic Clin Pharmacol Toxicol 2016; 119 Suppl 3:49-56. [PMID: 27030007 DOI: 10.1111/bcpt.12588] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/16/2016] [Indexed: 01/07/2023]
Abstract
Nitric oxide (NO) is a small radical species involved in several fundamental physiological processes, including the control of vascular tone, the immune response and neuronal signalling. Endothelial dysfunction with the decreased NO bioavailability is the underlying cause of several diseases and has led to the development of a wide range of systemic NO donor compounds to lower the blood pressure and control hypertensive crises. However, several potential therapeutic actions of NO, not related to the cardiovascular system, demand exclusively local actions. Primary S-nitrosothiols (RSNOs) are endogenously found NO carriers and donors and have emerged as platforms for the localized delivery of NO in topical applications. Formulations for this purpose have evolved from low molecular weight RSNOs incorporated in polymeric films, hydrogels and viscous vehicles, to polymeric RSNOs where the SNO moiety is covalently bound to the polymer backbone. The biological actions displayed by these formulations include the increase in dermal vasodilation, the acceleration of wound healing, the killing of infectious microorganisms and an analgesic action against inflammatory pain. This MiniReview focuses on the state of the art of experimental topical formulations for NO delivery based on S-nitrosothiols and their potential therapeutic applications.
Collapse
|
45
|
Gutiérrez V, Seabra AB, Reguera RM, Khandare J, Calderón M. New approaches from nanomedicine for treating leishmaniasis. Chem Soc Rev 2016; 45:152-68. [DOI: 10.1039/c5cs00674k] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes the recent progress in nanomedicine for the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Víctor Gutiérrez
- Freie Universität Berlin
- Institute for Chemistry and Biochemistry
- 14195 Berlin
- Germany
| | - Amedea B. Seabra
- Exact and Earth Sciences Department
- Universidade Federal de São Paulo
- Diadema
- Brazil
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas
- Universidad de León
- León
- Spain
| | | | - Marcelo Calderón
- Freie Universität Berlin
- Institute for Chemistry and Biochemistry
- 14195 Berlin
- Germany
| |
Collapse
|
46
|
Shah SU, Socha M, Fries I, Gibaud S. Synthesis of S-nitrosoglutathione-alginate for prolonged delivery of nitric oxide in intestines. Drug Deliv 2015; 23:2927-2935. [DOI: 10.3109/10717544.2015.1122676] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Shefaat Ullah Shah
- EA 3452/CITHEFOR, Université De Lorraine, Nancy, France and
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail Khan (KPK), Pakistan
| | - Marie Socha
- EA 3452/CITHEFOR, Université De Lorraine, Nancy, France and
| | - Isabelle Fries
- EA 3452/CITHEFOR, Université De Lorraine, Nancy, France and
| | | |
Collapse
|
47
|
Combined nitric oxide-releasing poly(vinyl alcohol) film/F127 hydrogel for accelerating wound healing. Colloids Surf B Biointerfaces 2015; 130:182-91. [DOI: 10.1016/j.colsurfb.2015.04.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 02/07/2023]
|
48
|
Seabra AB, Kitice NA, Pelegrino MT, Lancheros CAC, Yamauchi LM, Pinge-Filho P, Yamada-Ogatta SF. Nitric oxide-releasing polymeric nanoparticles against Trypanosoma cruzi. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/1742-6596/617/1/012020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Shah SU, Martinho N, Socha M, Pinto Reis C, Gibaud S. Synthesis and characterization ofS-nitrosoglutathione-oligosaccharide-chitosan as a nitric oxide donor. Expert Opin Drug Deliv 2015; 12:1209-23. [DOI: 10.1517/17425247.2015.1028916] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
State of the art, challenges and perspectives in the design of nitric oxide-releasing polymeric nanomaterials for biomedical applications. Biotechnol Adv 2015; 33:1370-9. [PMID: 25636971 DOI: 10.1016/j.biotechadv.2015.01.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/20/2014] [Accepted: 01/04/2015] [Indexed: 12/23/2022]
Abstract
Recently, an increasing number of publications have demonstrated the importance of the small molecule nitric oxide (NO) in several physiological and pathophysiological processes. NO acts as a key modulator in cardiovascular, immunological, neurological, and respiratory systems, and deficiencies in the production of NO or its inactivation has been associated with several pathologic conditions, ranging from hypertension to sexual dysfunction. Although the clinical administration of NO is still a challenge owing to its transient chemical nature, the combination of NO and nanocarriers based on biocompatible polymeric scaffolds has emerged as an efficient approach to overcome the difficulties associated with the biomedical administration of NO. Indeed, significant progress has been achieved by designing NO-releasing polymeric nanomaterials able to promote the spatiotemporal generation of physiologically relevant amounts of NO in diverse pharmacological applications. In this review, we summarize the recent advances in the preparation of versatile NO-releasing nanocarriers based on polymeric nanoparticles, dendrimers and micelles. Despite the significant innovative progress achieved using nanomaterials to tailor NO release, certain drawbacks still need to be overcome to successfully translate these research innovations into clinical applications. In this regard, this review discusses the state of the art regarding the preparation of innovative NO-releasing polymeric nanomaterials, their impact in the biological field and the challenges that need to be overcome. We hope to inspire new research in this exciting area based on NO and nanotechnology.
Collapse
|