1
|
Engineering a Multilayered Skin Substitute with Keratinocytes, Fibroblasts, Adipose-Derived Stem Cells, and Adipocytes. Methods Mol Biol 2019; 1993:149-157. [PMID: 31148085 DOI: 10.1007/978-1-4939-9473-1_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A variety of skin substitutes that restore epidermal and dermal structures are currently available on the market. While the main focus in research and clinical application lies in dermal and epidermal substitutes, the development of a subcutaneous replacement, the hypodermis, is often neglected. This chapter describes the use of fibrin sealant as a hydrogel scaffold to generate a three-dimensional skin substitute. For the hypodermal layer adipose-derived stem cells (ASCs) and mature adipocytes are seeded within a fibrin hydrogel. On top, another fibrin clot with incorporated fibroblasts is placed for the construction of the dermal layer. Keratinocytes are added on top of the two-layered construct to form the epidermal layer. The three-layered construct is cultivated for up to 3 weeks with keratinocytes being exposed to air according to the air-liquid interface cultivation model.
Collapse
|
2
|
Schürmann M, Brotzmann V, Bütow M, Greiner J, Höving A, Kaltschmidt C, Kaltschmidt B, Sudhoff H. Identification of a Novel High Yielding Source of Multipotent Adult Human Neural Crest-Derived Stem Cells. Stem Cell Rev Rep 2018; 14:277-285. [PMID: 29243108 DOI: 10.1007/s12015-017-9797-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Due to their extraordinarily broad differentiation potential and persistence during adulthood, adult neural crest-derived stem cells (NCSCs) are highly promising candidates for clinical applications, particularly when facing the challenging treatment of neurodegenerative diseases or complex craniofacial injuries. Successful application of human NCSCs in regenerative medicine and pharmaceutical research mainly relies on the availability of sufficient amounts of tissue for cell isolation procedures. Facing this challenge, we here describe for the first time a novel population of NCSCs within the middle turbinate of the human nasal cavity. From a surgical point of view, high amounts of tissue are routinely and easily removed during nasal biopsies. Investigating the presence of putative stem cells in obtained middle turbinate tissue by immunohistochemistry, we observed Nestin+/p75NTR+/S100+/α smooth muscle actin (αSMA)- cells, which we successfully isolated and cultivated in vitro. Cultivated middle turbinate stem cells (MTSCs) kept their expression of neural crest and stemness markers Nestin, p75 NTR and S100 and showed the capability of sphere formation and clonal growth, indicating their stem cell character. Application of directed in vitro differentiation assays resulted in successful differentiation of MTSCs into osteogenic and neuronal cell types. Regarding the high amount of tissue obtained during surgery as well as their broad differentiation capability, MTSCs seem to be a highly promising novel neural crest stem cell population for applications in cell replacement therapy and pharmacological research.
Collapse
Affiliation(s)
- Matthias Schürmann
- Department of Otolaryngology, Head and Neck Surgery, Klinikum Bielefeld, Teutoburger Straße 50, 33604, Bielefeld, Germany
| | - Viktoria Brotzmann
- Department of Otolaryngology, Head and Neck Surgery, Klinikum Bielefeld, Teutoburger Straße 50, 33604, Bielefeld, Germany
| | - Marlena Bütow
- Department of Otolaryngology, Head and Neck Surgery, Klinikum Bielefeld, Teutoburger Straße 50, 33604, Bielefeld, Germany
| | - Johannes Greiner
- Department of Cell Biology, University of Bielefeld, 33615, Bielefeld, Germany
| | - Anna Höving
- Department of Cell Biology, University of Bielefeld, 33615, Bielefeld, Germany
| | | | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, 33615, Bielefeld, Germany
- AG Molecular Neurobiology, University of Bielefeld, 33615, Bielefeld, Germany
| | - Holger Sudhoff
- Department of Otolaryngology, Head and Neck Surgery, Klinikum Bielefeld, Teutoburger Straße 50, 33604, Bielefeld, Germany.
| |
Collapse
|
3
|
Heher P, Mühleder S, Mittermayr R, Redl H, Slezak P. Fibrin-based delivery strategies for acute and chronic wound healing. Adv Drug Deliv Rev 2018; 129:134-147. [PMID: 29247766 DOI: 10.1016/j.addr.2017.12.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/24/2017] [Accepted: 12/09/2017] [Indexed: 12/17/2022]
Abstract
Fibrin, a natural hydrogel, is the end product of the physiological blood coagulation cascade and naturally involved in wound healing. Beyond its role in hemostasis, it acts as a local reservoir for growth factors and as a provisional matrix for invading cells that drive the regenerative process. Its unique intrinsic features do not only promote wound healing directly via modulation of cell behavior but it can also be fine-tuned to evolve into a delivery system for sustained release of therapeutic biomolecules, cells and gene vectors. To further augment tissue regeneration potential, current strategies exploit and modify the chemical and physical characteristics of fibrin to employ combined incorporation of several factors and their timed release. In this work we show advanced therapeutic approaches employing fibrin matrices in wound healing and cover the many possibilities fibrin offers to the field of regenerative medicine.
Collapse
|
4
|
Gurruchaga H, Saenz Del Burgo L, Garate A, Delgado D, Sanchez P, Orive G, Ciriza J, Sanchez M, Pedraz JL. Cryopreservation of Human Mesenchymal Stem Cells in an Allogeneic Bioscaffold based on Platelet Rich Plasma and Synovial Fluid. Sci Rep 2017; 7:15733. [PMID: 29146943 PMCID: PMC5691190 DOI: 10.1038/s41598-017-16134-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/08/2017] [Indexed: 01/17/2023] Open
Abstract
Transplantation of mesenchymal stem cells (MSCs) has emerged as an alternative strategy to treat knee osteoarthritis. In this context, MSCs derived from synovial fluid could provide higher chondrogenic and cartilage regeneration, presenting synovial fluid as an appropriate MSCs source. An allogeneic and biomimetic bioscaffold composed of Platelet Rich Plasma and synovial fluid that preserve and mimics the natural environment of MSCs isolated from knee has also been developed. We have optimized the cryopreservation of knee-isolated MSCs embedded within the aforementioned biomimetic scaffold, in order to create a reserve of young autologous embedded knee MSCs for future clinical applications. We have tested several cryoprotectant solutions combining dimethyl sulfoxide (DMSO), sucrose and human serum and quantifying the viability and functionality of the embedded MSCs after thawing. MSCs embedded in bioscaffolds cryopreserved with DMSO 10% or the combination of DMSO 10% and Sucrose 0,2 M displayed the best cell viabilities maintaining the multilineage differentiation potential of MSCs after thawing. In conclusion, embedded young MSCs within allogeneic biomimetic bioscaffold can be cryopreserved with the cryoprotectant solutions described in this work, allowing their future clinical use in patients with cartilage defects.
Collapse
Affiliation(s)
- Haritz Gurruchaga
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Laura Saenz Del Burgo
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Ane Garate
- Advanced Biological Therapy Unit-UTBA, Hospital Vithas San Jose, C/Beato Tomás de Zumarraga 10, 01008, Vitoria-Gasteiz, Spain
| | - Diego Delgado
- Advanced Biological Therapy Unit-UTBA, Hospital Vithas San Jose, C/Beato Tomás de Zumarraga 10, 01008, Vitoria-Gasteiz, Spain
| | - Pello Sanchez
- Advanced Biological Therapy Unit-UTBA, Hospital Vithas San Jose, C/Beato Tomás de Zumarraga 10, 01008, Vitoria-Gasteiz, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Jesús Ciriza
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain. .,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain.
| | - Mikel Sanchez
- Arthroscopic Surgery Unit, Hospital Vithas San Jose, C/Beato Tomás de Zumarraga 10, 01008, Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain. .,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain.
| |
Collapse
|
5
|
Hyaluronic acid-fibrin interpenetrating double network hydrogel prepared in situ by orthogonal disulfide cross-linking reaction for biomedical applications. Acta Biomater 2016; 38:23-32. [PMID: 27134013 DOI: 10.1016/j.actbio.2016.04.041] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/22/2016] [Accepted: 04/27/2016] [Indexed: 11/24/2022]
Abstract
UNLABELLED To strengthen the mechanical properties of a fibrin gel and improve its applicability as a scaffold for tissue engineering (TE) applications, a strategy for the in situ preparation of the interpenetrating network (IPN) of fibrin and hyaluronic acid (HA) was developed on the basis of simultaneous and orthogonal fibrinogenesis and disulfide cross-linking. The synthetic pathway included the preparation of mutually reactive HA derivatives bearing thiol and 2-dithiopyridyl groups. Combining thiol-derivatized HA with thrombin and 2-dithiopyridyl-modified HA with fibrinogen and then mixing the obtained liquid formulations afforded IPNs with fibrin-resembling fibrillar architectures at different ratios between fibrin and HA networks. The formation of two networks was confirmed by conducting reference experiments with the compositions lacking one of the four components. The composition of 2% (w/v) fibrin and 1% (w/v) HA showed the highest storage modulus (G'), as compared with the single network counterparts. The degradation of fibrin in IPN hydrogels was slower than that in pure fibrin gels both during incubation of the hydrogels in a fibrin-cleaving nattokinase solution and during the culturing of cells after their encapsulation in the hydrogels. Together with the persistence of HA network, it permitted longer cell culturing time in the IPN. Moreover, the proliferation and spreading of MG63 cells that express the hyaluronan receptor CD44 in IPN hydrogel was increased, as compared with its single network analogues. These results are promising for tunable ECM-based materials for TE and regenerative medicine. STATEMENT OF SIGNIFICANCE The present work is devoted to in situ fabrication of injectable extracellular matrix hydrogels through simultaneous generation of networks of fibrin and hyaluronic acid (HA) that interpenetrate each other. This is accomplished by combination of enzymatic fibrin cross-linking with orthogonal disulphide cross-linking of HA. High hydrophilicity of HA prevents compaction of the fibrin network, while fibrin provides an adhesive environment for in situ encapsulated cells. The interpenetrating network hydrogel shows an increased stiffness along with a lower degradation rate of fibrin in comparison to the single fibrin network. As a result, the cells have sufficient time for the remodelling of the scaffold. This new approach can be applied for modular construction of in vitro tissue models and tissue engineering scaffolds in vivo.
Collapse
|
6
|
Rodríguez AP, Felice B, Sánchez MA, Tsujigiwa H, Felice CJ, Nagatsuka H. In Vivo evaluation of adipogenic induction in fibrous and honeycomb-structured atelocollagen scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:125-30. [DOI: 10.1016/j.msec.2016.02.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/07/2016] [Accepted: 02/19/2016] [Indexed: 10/22/2022]
|
7
|
|
8
|
Generation of a Fibrin Based Three-Layered Skin Substitute. BIOMED RESEARCH INTERNATIONAL 2015; 2015:170427. [PMID: 26236715 PMCID: PMC4508374 DOI: 10.1155/2015/170427] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/22/2014] [Indexed: 12/28/2022]
Abstract
A variety of skin substitutes that restore epidermal and dermal structures are currently available on the market. However, the main focus in research and clinical application lies on dermal and epidermal substitutes whereas the development of a subcutaneous replacement (hypodermis) is often disregarded. In this study we used fibrin sealant as hydrogel scaffold to generate a three-layered skin substitute. For the hypodermal layer adipose-derived stem cells (ASCs) and mature adipocytes were embedded in the fibrin hydrogel and were combined with another fibrin clot with fibroblasts for the construction of the dermal layer. Keratinocytes were added on top of the two-layered construct to form the epidermal layer. The three-layered construct was cultivated for up to 3 weeks. Our results show that ASCs and fibroblasts were viable, proliferated normally, and showed physiological morphology in the skin substitute. ASCs were able to differentiate into mature adipocytes during the course of four weeks and showed morphological resemblance to native adipose tissue. On the surface keratinocytes formed an epithelial-like layer. For the first time we were able to generate a three-layered skin substitute based on a fibrin hydrogel not only serving as a dermal and epidermal substitute but also including the hypodermis.
Collapse
|
9
|
Hruschka V, Saeed A, Slezak P, Cheikh Al Ghanami R, Feichtinger GA, Alexander C, Redl H, Shakesheff K, Wolbank S. Evaluation of a thermoresponsive polycaprolactone scaffold for in vitro three-dimensional stem cell differentiation. Tissue Eng Part A 2014; 21:310-9. [PMID: 25167885 DOI: 10.1089/ten.tea.2013.0710] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering (TE) strategies aim at imitating the natural process of regeneration by using bioresorbable scaffolds that support cellular attachment, migration, proliferation, and differentiation. Based on the idea of combining a fully degradable polymer [poly(ɛ-caprolactone)] with a thermoresponsive polymer (polyethylene glycol methacrylate), a scaffold was developed, which liquefies below 20°C and solidifies at 37°C. In this study, this scaffold was evaluated for its ability to support C2C12 cells and human adipose-derived stem cells (ASCs) to generate an expandable three-dimensional (3D) construct for soft or bone TE. As a first step, biomaterial seeding was optimized and cellular attachment, survival, distribution, and persistence within the 3D material were characterized. C2C12 cells were differentiated toward the osteogenic as well as myogenic lineage, while ASCs were cultured in control, adipogenic, or osteogenic differentiation media. Differentiation was examined using quantitative real-time PCR for the expression of osteogenic, myogenic, and adipogenic markers and by enzyme activity and immunoassays. Both cell types attached and were found evenly distributed within the material. C2C12 cells and ASCs demonstrated the potential to differentiate in all tested lineages under 2D conditions. Under 3D osteogenic conditions for C2C12 cells, only osteocalcin expression (fold induction: 16.3±0.2) and alkaline phosphatase (ALP) activity (p<0.001) were increased compared with the control C2C12 cells. Three-dimensional osteogenic differentiation of ASC was limited and donor dependent. Only one donor showed an increase in the osteogenic markers osteocalcin (p=0.027) and osteopontin (p=0.038). In contrast, differentiation toward the myogenic or adipogenic lineage showed expression of specific markers in 3D, at least at the level of the 2D culture. In 3D culture, strong induction of myogenin (p<0.001) as well as myoD (p<0.001) was found in C2C12 cells. The adipogenic differentiation of one donor showed greater expression of peroxisome proliferative-activated receptor gamma (PPARγ) (p=0.004), fatty acid binding protein 4 (FABP4) (p=0.008), and adiponectin (p=0.045) in 3D compared with 2D culture. Leptin levels in the supernatant of the ASC cultures were elevated in the 3D cultures in both donors at day 14 and 21. In conclusion, the thermoresponsive scaffold was found suitable for 3D in vitro differentiation toward soft tissue.
Collapse
Affiliation(s)
- Veronika Hruschka
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , AUVA Research Centre, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rothemund S, Aigner TB, Iturmendi A, Rigau M, Husár B, Hildner F, Oberbauer E, Prambauer M, Olawale G, Forstner R, Liska R, Schröder KR, Brüggemann O, Teasdale I. Degradable Glycine-Based Photo-Polymerizable Polyphosphazenes for Use as Scaffolds for Tissue Regeneration. Macromol Biosci 2014; 15:351-63. [DOI: 10.1002/mabi.201400390] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/29/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Sandra Rothemund
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Welser Straße 42 Leonding A-4060 Austria
| | - Tamara B. Aigner
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Welser Straße 42 Leonding A-4060 Austria
- Transfercenter für Kunststofftechnik (TCKT) GmbH; Franz-Fritsch-Strasse 11 A-4600 Wels Austria
| | - Aitziber Iturmendi
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Welser Straße 42 Leonding A-4060 Austria
- Transfercenter für Kunststofftechnik (TCKT) GmbH; Franz-Fritsch-Strasse 11 A-4600 Wels Austria
| | - Maria Rigau
- Red Cross Blood Transfusion Service of Upper Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration; Krankenhausstraße 7 A-4017 Linz Austria
| | - Branislav Husár
- Institute of Applied Synthetic Chemistry; Vienna University of Technology; Getreidemarkt 9/163 A-1060 Vienna Austria
| | - Florian Hildner
- Red Cross Blood Transfusion Service of Upper Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration; Krankenhausstraße 7 A-4017 Linz Austria
| | - Eleni Oberbauer
- Red Cross Blood Transfusion Service of Upper Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration; Krankenhausstraße 7 A-4017 Linz Austria
| | - Martina Prambauer
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Welser Straße 42 Leonding A-4060 Austria
- Transfercenter für Kunststofftechnik (TCKT) GmbH; Franz-Fritsch-Strasse 11 A-4600 Wels Austria
| | - Gbenga Olawale
- BioMed-zet Life Science GmbH; Industriezeile 36 A-4020 Linz Austria
| | - Reinhard Forstner
- Transfercenter für Kunststofftechnik (TCKT) GmbH; Franz-Fritsch-Strasse 11 A-4600 Wels Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry; Vienna University of Technology; Getreidemarkt 9/163 A-1060 Vienna Austria
| | | | - Oliver Brüggemann
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Welser Straße 42 Leonding A-4060 Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Welser Straße 42 Leonding A-4060 Austria
| |
Collapse
|
11
|
Rohringer S, Hofbauer P, Schneider KH, Husa AM, Feichtinger G, Peterbauer-Scherb A, Redl H, Holnthoner W. Mechanisms of vasculogenesis in 3D fibrin matrices mediated by the interaction of adipose-derived stem cells and endothelial cells. Angiogenesis 2014; 17:921-33. [PMID: 25086616 DOI: 10.1007/s10456-014-9439-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/19/2014] [Indexed: 12/22/2022]
Abstract
Vascularization of tissue-engineered constructs is essential to provide sufficient nutrient supply and hemostasis after implantation into target sites. Co-cultures of adipose-derived stem cells (ASC) with outgrowth endothelial cells (OEC) in fibrin gels were shown to provide an effective possibility to induce vasculogenesis in vitro. However, the mechanisms of the interaction between these two cell types remain unclear so far. The aim of this study was to evaluate differences of direct and indirect stimulation of ASC-induced vasculogenesis, the influence of ASC on network stabilization and molecular mechanisms involved in vascular structure formation. Endothelial cells (EC) were embedded in fibrin gels either containing non-coated or ASC-coated microcarrier beads as well as ASC alone. Moreover, EC-seeded constructs incubated with ASC-conditioned medium were used in addition to constructs with ASC seeded on top. Vascular network formation was visualized by green fluorescent protein expressing cells or immunostaining for CD31 and quantified. RT-qPCR of cells derived from co-cultures in fibrin was performed to evaluate changes in the expression of EC marker genes during the first week of culture. Moreover, angiogenesis-related protein levels were measured by performing angiogenesis proteome profiler arrays. The results demonstrate that proximity of endothelial cells and ASC is required for network formation and ASC stabilize EC networks by developing pericyte characteristics. We further showed that ASC induce controlled vessel growth by secreting pro-angiogenic and regulatory proteins. This study reveals angiogenic protein profiles involved in EC/ASC interactions in fibrin matrices and confirms the usability of OEC/ASC co-cultures for autologous vascular tissue engineering.
Collapse
Affiliation(s)
- Sabrina Rohringer
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, 1200, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wolbank S, Pichler V, Ferguson JC, Meinl A, van Griensven M, Goppelt A, Redl H. Non-invasive in vivo tracking of fibrin degradation by fluorescence imaging. J Tissue Eng Regen Med 2014; 9:973-6. [PMID: 25044309 DOI: 10.1002/term.1941] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/25/2014] [Accepted: 05/27/2014] [Indexed: 01/25/2023]
Abstract
Fibrin-based sealants consist of natural coagulation factors involved in the final phase of blood coagulation, during which fibrinogen is enzymatically converted by thrombin to form a solid-phase fibrin clot. For applications in tissue regeneration, a controlled process of matrix degradation within a certain period of time is essential for optimal wound healing. Hence, it is desirable to follow the kinetics of fibrinolysis at the application site. Non-invasive molecular imaging systems enable real-time tracking of processes in the living animal. In this study, a non-invasive fluorescence based imaging system was applied to follow and quantify site-specific degradation of fibrin sealant. To enable non-invasive tracking of fibrin in vivo, fibrin-matrix was labelled by incorporation of a fluorophore-conjugated fibrinogen component. Protein degradation and release of fluorescence were, in a first step, correlated in vitro. In vivo, fluorophore-labelled fibrin was subcutaneously implanted in mice and followed throughout the experiment using a multispectral imaging system. For the fluorescent fibrin, degradation correlated with the release of fluorescence from the clots in vitro. In vivo it was possible to follow and quantify implanted fibrin clots throughout the experiment, demonstrating degradation kinetics of approximately 16 days in the subcutaneous compartment, which was further confirmed by histological evaluation of the application site.
Collapse
Affiliation(s)
- Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Centre, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| | - Valentin Pichler
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Centre, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| | - James Crawford Ferguson
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Centre, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| | - Alexandra Meinl
- Austrian Cluster for Tissue Regeneration, Austria.,Bernhard Gottlieb University School of Dentistry, Vienna, Austria
| | - Martijn van Griensven
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Centre, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| | | | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Centre, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| |
Collapse
|
13
|
In toto differentiation of human amniotic membrane towards the Schwann cell lineage. Cell Tissue Bank 2013; 15:227-39. [PMID: 24166477 DOI: 10.1007/s10561-013-9401-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/01/2013] [Indexed: 12/24/2022]
Abstract
Human amniotic membrane (hAM) is a tissue containing cells with proven stem cell properties. In its decellularized form it has been successfully applied as nerve conduit biomaterial to improve peripheral nerve regeneration in injury models. We hypothesize that viable hAM without prior cell isolation can be differentiated towards the Schwann cell lineage to generate a possible alternative to commonly applied tissue engineering materials for nerve regeneration. For in vitro Schwann cell differentiation, biopsies of hAM of 8 mm diameter were incubated with a sequential order of neuronal induction and growth factors for 21 days and characterized for cellular viability and the typical glial markers glial fibrillary acidic protein (GFAP), S100β, p75 and neurotrophic tyrosine kinase receptor (NTRK) using immunohistology. The secretion of the neurotrophic factors brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF) was quantified by ELISA. The hAM maintained high viability, especially under differentiation conditions (90.2 % ± 41.6 day 14; 80.0 % ± 44.5 day 21 compared to day 0). Both, BDNF and GDNF secretion was up-regulated upon differentiation. The fresh membrane stained positive for GFAP and p75 and NTRK, which was strongly increased after culture in differentiation conditions. Especially the epithelial layer within the membrane exhibited a change in morphology upon differentiation forming a multi-layered epithelium with intense accumulations of the marker proteins. However, S100β was expressed at equal levels and equal distribution in fresh and cultured hAM conditions. Viable hAM may be a promising alternative to present formulations used for peripheral nerve regeneration.
Collapse
|
14
|
Hruschka V, Meinl A, Saeed A, Cheikh Al Ghanami R, Redl H, Shakesheff K, Wolbank S. Gelatin embedding for the preparation of thermoreversible or delicate scaffolds for histological analysis. Biomed Mater 2013; 8:041001. [PMID: 23735592 DOI: 10.1088/1748-6041/8/4/041001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thermoreversible hydrogels for tissue engineering (TE) purposes have gained increased attention in recent years as they can be combined with cells and drugs and directly injected into the body. Following the fate of transplanted cells in situ is essential in characterizing their distribution and survival, as well as the expression of specific markers or cell-matrix interactions. Existing histological embedding methods, such as paraffin wax embedding, can mechanically damage some biomaterials during processing. In this study, we describe a broadly applicable preparation protocol that allows the handling of delicate, thermoreversible scaffolds for histological sectioning. The gelatin solution permits the embedding of samples at 37 °C, which suits the solid phase of most TE scaffolds. A thermoreversible scaffold of polycaprolactone microparticles, combined with poly(polyethylene glycol methacrylate ethyl ether) and containing human adipose-derived stem cells, was prepared for histology by an initial gelatin embedding step in addition to the standard cryosectioning and paraffin processing protocols. Sections were evaluated by hematoxylin eosin staining and immunostaining for human vimentin. The gelatin embedding retained the scaffold particles and permitted the complete transfer of the construct. After rapid cooling, the solid gelatin blocks could be cryosectioned and paraffin infiltrated. In contrast to direct cryosectioning or paraffin infiltration, the extended protocol preserved the scaffold structure as well as the relevant cell epitopes, which subsequently allowed for immunostaining of human cells within the material. The gelatin embedding method proposed is a generalizable alternative to standard preparations for histological examination of a variety of delicate samples.
Collapse
Affiliation(s)
- Veronika Hruschka
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Centre, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
15
|
Beyond fat grafting: what adipose tissue can teach us about the molecular mechanisms of human aging. Ann Plast Surg 2013; 69:489-92. [PMID: 22964682 DOI: 10.1097/sap.0b013e31824c0e43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The concept of aging and the mechanisms responsible for soft tissue aging have become progressively more important as the world's population ages and demands a higher quality of life. Although molecular mechanisms of aging have been evaluated in model organisms, specific genomic, genetic, and epigenetic modifications that can be translated to normal human tissue aging have yet to be identified. We propose that adipose tissue is an excellent model with which to investigate molecular aging pathways. The goal of this study is to demonstrate that primary human adipose tissue can serve as a model of human aging, and further, can be used to detect differences in genomic transcriptional profiling between cell types in adipose tissue as well as between youthful and older age groups. METHODS Subcutaneous adipose tissue was excised during cosmetic procedures from healthy patients. Adipocytes and stromal vascular fractions from the anterior abdomen were isolated from 3 young (26-39 years) and 3 old (52-64 years) patients and analyzed for genome-wide transcriptional differences between varying ages and cell types using the Affymetrix GeneChip Human Gene Chip 1.0ST. RESULTS Genes specific to adipocytes were more highly expressed in adipocytes than in stromal vascular fractions, validating that adipose tissue should be examined in a cell-specific manner. An increase in overall gene expression was observed among patients in the older age group, consistent with senescence-related chromatin dysregulation. Principal components analysis revealed no clear delineation between age groups and a clear separation by cell type. Analysis of variance revealed cell type as the most significant variable in transcriptional differences, whereas age-related differences were a distant second. Gene Ontology categories of the most significantly modified genes included RNA splicing and mRNA metabolism, plasma membrane, and mitochondrial metabolism. CONCLUSIONS Primary adipose tissue is an effective model for the study of the molecular mechanisms of human aging. Our findings are consistent with the hypothesis that epigenetic modifications play a more important role than transcriptional modifications in early human adipose tissue aging. Our future studies will examine the contribution of specific epigenetic markers to human adipose tissue aging and promise to advance approaches in regenerative medicine, and the prevention and treatment of aging.
Collapse
|
16
|
Chung E, Nam SY, Ricles LM, Emelianov SY, Suggs LJ. Evaluation of gold nanotracers to track adipose-derived stem cells in a PEGylated fibrin gel for dermal tissue engineering applications. Int J Nanomedicine 2013; 8:325-36. [PMID: 23345978 PMCID: PMC3551459 DOI: 10.2147/ijn.s36711] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Evaluating the regenerative capacity of a tissue-engineered device in a noninvasive and synchronous manner is critical to determining the mechanisms for success in clinical applications. In particular, directly tracking implanted cells in a three-dimensional (3D) scaffold is desirable in that it enables the monitoring of cellular activity in a specific and localized manner. The authors' group has previously demonstrated that the PEGylation of fibrin results in a 3D scaffold that supports morphologic and phenotypic changes in mesenchymal stem cells that may be advantageous in wound healing applications. Recently, the authors have evaluated adipose-derived stem cells (ASCs) as a mesenchymal cell source to regenerate skin and blood vessels due to their potential for proliferation, differentiation, and production of growth factors. However, tracking and monitoring ASCs in a 3D scaffold, such as a PEGylated fibrin gel, have not yet been fully investigated. In the current paper, nanoscale gold spheres (20 nm) as cell tracers for ASCs cultured in a PEGylated fibrin gel were evaluated. An advanced dual-imaging modality combining ultrasound and photoacoustic imaging was utilized to monitor rat ASCs over time. The ASCs took up gold nanotracers and could be detected up to day 16 with high sensitivity using photoacoustic imaging. There were no detrimental effects on ASC morphology, network formation, proliferation, and protein expression/secretion (ie, smooth muscle α-actin, vascular endothelial growth factor, matrix metalloproteinase-2, and matrix metalloproteinase-9) associated with gold nanotracers. Therefore, utilization of gold nanotracers can be an effective strategy to monitor the regenerative process of a stem cell source in a 3D gel for vascular and dermal tissue engineering applications.
Collapse
Affiliation(s)
- Eunna Chung
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
17
|
Holnthoner W, Hohenegger K, Husa AM, Muehleder S, Meinl A, Peterbauer-Scherb A, Redl H. Adipose-derived stem cells induce vascular tube formation of outgrowth endothelial cells in a fibrin matrix. J Tissue Eng Regen Med 2012; 9:127-36. [DOI: 10.1002/term.1620] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 07/09/2012] [Accepted: 08/25/2012] [Indexed: 01/12/2023]
Affiliation(s)
- Wolfgang Holnthoner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration; Vienna Austria
- Department of Biochemical Engineering; University of Applied Sciences Technikum Wien; Vienna Austria
| | - Karin Hohenegger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration; Vienna Austria
| | - Anna-Maria Husa
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration; Vienna Austria
- Department of Biochemical Engineering; University of Applied Sciences Technikum Wien; Vienna Austria
| | - Severin Muehleder
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration; Vienna Austria
- Department of Biochemical Engineering; University of Applied Sciences Technikum Wien; Vienna Austria
| | - Alexandra Meinl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration; Vienna Austria
- Medical University of Vienna; Bernhard Gottlieb University Clinic of Dentistry; Vienna Austria
| | | | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration; Vienna Austria
| |
Collapse
|