1
|
Manganelli M, Testai E, Tazart Z, Scardala S, Codd GA. Co-Occurrence of Taste and Odor Compounds and Cyanotoxins in Cyanobacterial Blooms: Emerging Risks to Human Health? Microorganisms 2023; 11:microorganisms11040872. [PMID: 37110295 PMCID: PMC10146173 DOI: 10.3390/microorganisms11040872] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Cyanobacteria commonly form large blooms in waterbodies; they can produce cyanotoxins, with toxic effects on humans and animals, and volatile compounds, causing bad tastes and odors (T&O) at naturally occurring low concentrations. Notwithstanding the large amount of literature on either cyanotoxins or T&O, no review has focused on them at the same time. The present review critically evaluates the recent literature on cyanotoxins and T&O compounds (geosmin, 2-methylisoborneol, β-ionone and β-cyclocitral) to identify research gaps on harmful exposure of humans and animals to both metabolite classes. T&O and cyanotoxins production can be due to the same or common to different cyanobacterial species/strains, with the additional possibility of T&O production by non-cyanobacterial species. The few environmental studies on the co-occurrence of these two groups of metabolites are not sufficient to understand if and how they can co-vary, or influence each other, perhaps stimulating cyanotoxin production. Therefore, T&Os cannot reliably serve as early warning surrogates for cyanotoxins. The scarce data on T&O toxicity seem to indicate a low health risk (but the inhalation of β-cyclocitral deserves more study). However, no data are available on the effects of combined exposure to mixtures of cyanotoxins and T&O compounds and to combinations of T&O compounds; therefore, whether the co-occurrence of cyanotoxins and T&O compounds is a health issue remains an open question.
Collapse
Affiliation(s)
- Maura Manganelli
- Istituto Superiore di Sanità, Department of Environment and Health, viale Regina Elena, 299, 00162 Rome, Italy; (E.T.); (S.S.)
- Correspondence:
| | - Emanuela Testai
- Istituto Superiore di Sanità, Department of Environment and Health, viale Regina Elena, 299, 00162 Rome, Italy; (E.T.); (S.S.)
| | - Zakaria Tazart
- Department of Food Sciences and Nutrition, University of Malta, 2080 Msida, Malta;
| | - Simona Scardala
- Istituto Superiore di Sanità, Department of Environment and Health, viale Regina Elena, 299, 00162 Rome, Italy; (E.T.); (S.S.)
| | - Geoffrey A. Codd
- School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK;
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
2
|
Zhu J, Stuetz RM, Hamilton L, Power K, Crosbie ND, Tamburic B. Management of biogenic taste and odour: From source water, through treatment processes and distribution systems, to consumers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116225. [PMID: 36115245 DOI: 10.1016/j.jenvman.2022.116225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Biogenic taste and odour (T&O) have become a global concern for water utilities, due to the increasing frequency of algal blooms and other microbial events arising from the combined effects of climate change and eutrophication. Microbially-produced T&O compounds impact source waters, drinking water treatment plants, and drinking water distribution systems. It is important to manage across the entire biogenic T&O pathway to identify key risk factors and devise strategies that will safeguard the quality of drinking water in a changing world, since the presence of T&O impacts consumer confidence in drinking water safety. This study provides a critical review of current knowledge on T&O-causing microbes and compounds for proactive management, including the identification of abiotic risk factors in source waters, a discussion on the effectiveness of existing T&O barriers in drinking water treatment plants, an analysis of risk factors for biofilm growth in water distribution systems, and an assessment of the impacts of T&O on consumers. The fate of biogenic T&O in drinking water systems is tracked from microbial production pathways, through the release of intracellular T&O by cell lysis, to the treatment of microbial cells and dissolved T&O. Based on current knowledge, five impactful research and management directions across the T&O pathway are recommended.
Collapse
Affiliation(s)
- Jin Zhu
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Richard M Stuetz
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | | | - Kaye Power
- Sydney Water Corporation, Parramatta, NSW, 2150, Australia
| | - Nicholas D Crosbie
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Kensington, NSW, 2052, Australia; Melbourne Water Corporation, Docklands, VIC, 3008, Australia
| | - Bojan Tamburic
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Kensington, NSW, 2052, Australia.
| |
Collapse
|
3
|
Scarlett KR, Kim S, Lovin LM, Chatterjee S, Scott JT, Brooks BW. Global scanning of cylindrospermopsin: Critical review and analysis of aquatic occurrence, bioaccumulation, toxicity and health hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139807. [PMID: 32585507 PMCID: PMC8204307 DOI: 10.1016/j.scitotenv.2020.139807] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 05/03/2023]
Abstract
Cylindrospermopsin (CYN), a cyanotoxin produced by harmful algal blooms, has been reported worldwide; however, there remains limited understanding of its potential risks to surface water quality. In the present study, we critically reviewed available literature regarding the global occurrence, bioaccumulation, and toxicity of CYN in aquatic systems with a particular focus on freshwater. We subsequently developed environmental exposure distributions (EEDs) for CYN in surface waters and performed probabilistic environmental hazard assessments (PEHAs) using guideline values (GVs). PEHAs were performed by geographic region, type of aquatic system, and matrix. CYN occurrence was prevalent in North America, Europe, and Asia/Pacific, with lakes being the most common system. Many global whole water EEDs exceeded guideline values (GV) previously developed for drinking water (e.g., 0.5 μg L-1) and recreational water (e.g., 1 μg L-1). GV exceedances were higher in the Asia/Pacific region, and in rivers and reservoirs. Rivers in the Asia/Pacific region exceeded the lowest drinking water GV 73.2% of the time. However, lack of standardized protocols used for analyses was alarming, which warrants improvement in future studies. In addition, bioaccumulation of CYN has been reported in mollusks, crustaceans, and fish, but such exposure information remains limited. Though several publications have reported aquatic toxicity of CYN, there is limited chronic aquatic toxicity data, especially for higher trophic level organisms. Most aquatic toxicity studies have not employed standardized experimental designs, failed to analytically verify treatment levels, and did not report purity of CYN used for experiments; therefore, existing data are insufficient to derive water quality guidelines. Considering such elevated exceedances of CYN in global surface waters and limited aquatic bioaccumulation and toxicity data, further aquatic monitoring, environmental fate and mechanistic toxicology studies are warranted to robustly assess and manage water quality risks to public health and the environment.
Collapse
Affiliation(s)
- Kendall R Scarlett
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA
| | - Sujin Kim
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA
| | - Lea M Lovin
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - J Thad Scott
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
4
|
Wood SA, Kelly L, Bouma-Gregson K, Humbert JF, Laughinghouse HD, Lazorchak J, McAllister T, McQueen A, Pokrzywinski K, Puddick J, Quiblier C, Reitz LA, Ryan K, Vadeboncoeur Y, Zastepa A, Davis TW. Toxic benthic freshwater cyanobacterial proliferations: Challenges and solutions for enhancing knowledge and improving monitoring and mitigation. FRESHWATER BIOLOGY 2020; 65:1824-1842. [PMID: 34970014 PMCID: PMC8715960 DOI: 10.1111/fwb.13532] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/05/2020] [Indexed: 05/05/2023]
Abstract
1. This review summarises knowledge on the ecology, toxin production, and impacts of toxic freshwater benthic cyanobacterial proliferations. It documents monitoring, management, and sampling strategies, and explores mitigation options. 2. Toxic proliferations of freshwater benthic cyanobacteria (taxa that grow attached to substrates) occur in streams, rivers, lakes, and thermal and meltwater ponds, and have been reported in 19 countries. Anatoxin- and microcystin-containing mats are most commonly reported (eight and 10 countries, respectively). 3. Studies exploring factors that promote toxic benthic cyanobacterial proliferations are limited to a few species and habitats. There is a hierarchy of importance in environmental and biological factors that regulate proliferations with variables such as flow (rivers), fine sediment deposition, nutrients, associated microbes, and grazing identified as key drivers. Regulating factors differ among colonisation, expansion, and dispersal phases. 4. New -omics-based approaches are providing novel insights into the physiological attributes of benthic cyanobacteria and the role of associated microorganisms in facilitating their proliferation. 5. Proliferations are commonly comprised of both toxic and non-toxic strains, and the relative proportion of these is the key factor contributing to the overall toxin content of each mat. 6. While these events are becoming more commonly reported globally, we currently lack standardised approaches to detect, monitor, and manage this emerging health issue. To solve these critical gaps, global collaborations are needed to facilitate the rapid transfer of knowledge and promote the development of standardised techniques that can be applied to diverse habitats and species, and ultimately lead to improved management.
Collapse
Affiliation(s)
| | | | - Keith Bouma-Gregson
- Office of Information Management and Analysis, California State Water Resources Control Board, Sacramento, California, United States of America
| | | | - H Dail Laughinghouse
- Fort Lauderdale Research and Education Center, University of Florida, Florida, USA
| | - James Lazorchak
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Monitoring and Modeling, Cincinnati, Ohio, United States of America
| | - Tara McAllister
- Te Pūnaha Matatini Centre of Research Excellence for Complex Systems, University of Auckland, Auckland, New Zealand
| | - Andrew McQueen
- Environmental Risk Assessment Branch, US Army Corps of Engineers, Engineering Research & Development Center, Vicksburg, Mississippi, United States of America
| | - Katyee Pokrzywinski
- Environmental Risk Assessment Branch, US Army Corps of Engineers, Engineering Research & Development Center, Vicksburg, Mississippi, United States of America
| | | | | | - Laura A Reitz
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - Ken Ryan
- School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - Yvonne Vadeboncoeur
- Department of Biological Sciences, Wright State University, Ohio, United States of America
| | - Arthur Zastepa
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Ontario, Canada
| | - Timothy W Davis
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| |
Collapse
|
5
|
Sendall BC, McGregor GB. Cryptic diversity within the Scytonema complex: Characterization of the paralytic shellfish toxin producer Heterosyctonema crispum, and the establishment of the family Heteroscytonemataceae (Cyanobacteria/Nostocales). HARMFUL ALGAE 2018; 80:158-170. [PMID: 30502809 DOI: 10.1016/j.hal.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/15/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Strains of the freshwater filamentous, benthic cyanobacterium Scytonema crispum Agardh isolated from six sites in subtropical south-east Queensland were characterised using a combination of phenotypic and genetic traits. Morphologically, the strains were consistent with the description of Scytonemataceae sensu stricto, and the description of Scytonema crispum. However, phylogenetic analysis of the 16S rRNA gene, the 16S-23S rRNA operon, and the nifH gene revealed that these strains and three others from outside Australia formed a monophyletic clade distinct from Scytonema and other species in the Scytonemataceae. Collectively, this data suggests this group is sufficiently evolutionarily distinct to be placed in a new family, Heteroscytonemataceae fam. nov. Accordingly, the taxon previously known as S. crispum has been transferred to a new genus Heteroscytonema gen nov., as H. crispum. Some strains of H. crispum exhibited facultative production of paralytic shellfish toxins (PSTs). The concentration of PSTs produced by individual strains varied widely, from 2.7 μg g-1 to 171.3 μg g-1, and included C toxins, decarbamoyl saxitoxin (dcSTX), gonyautoxins (GTX2, GTX3 and GTX5), saxitoxin (STX) and uncharacterised PSTs. The majority of the Australian strains produced dcSTX as the dominant saxitoxin analogue, a significant finding given that dcSTX has approximately half the relative toxicity of STX. The PST profile varied within and between Australian strains of H. crispum and in strains collected from New Zealand and the United States. The sxtA gene, one of the determinants for the production of PSTs, was present in all strains in which PSTs were detected. The discovery of PST-producing H. crispum in the headwaters of a major drinking water reservoir presents a serious risk for potential human and animal exposure to these neurotoxic compounds and further highlights the importance of monitoring benthic cyanobacteria populations for potentially toxigenic species.
Collapse
Affiliation(s)
- Barbara C Sendall
- Queensland Department of Health, Forensic and Scientific Services, 39 Kessels Road, Coopers Plains, Qld 4108, Australia.
| | - Glenn B McGregor
- Queensland Department of Environment and Science, GPO Box 5078 Brisbane Qld 4001, Australia
| |
Collapse
|
6
|
Neverman AJ, Death RG, Fuller IC, Singh R, Procter JN. Towards Mechanistic Hydrological Limits: A Literature Synthesis to Improve the Study of Direct Linkages between Sediment Transport and Periphyton Accrual in Gravel-Bed Rivers. ENVIRONMENTAL MANAGEMENT 2018; 62:740-755. [PMID: 29947967 DOI: 10.1007/s00267-018-1070-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
Altered hydrological, sediment, and nutrient regimes can lead to dramatic increases in periphyton abundance in rivers below impoundments. Flushing flows are a commonly adopted strategy to manage the excess periphyton that can accumulate, but in practice they often prove ineffective. Designing hydrological regimes that include flushing flows may be overlooking key processes in periphyton removal, particularly the role of abrasion and molar action induced by substrate movement. Setting flow targets which aim to initiate substrate movement are likely to improve periphyton removal, but an understanding of the site-specific thresholds for substrate entrainment and periphyton removal is required. Despite decades of entrainment studies accurate and consistent measurement and prediction of substrate entrainment remains elusive, making it challenging to study the relationship between substrate movement and periphyton removal, and to set flow targets. This paper makes a case for using substrate entrainment and transport thresholds as the target metric for flushing flows to manage excess periphyton accrual. This paper critically reviews the determinants of periphyton accrual and associated management methods. This paper also aims to provide a reference for interdisciplinary research on periphyton removal by summarising the geomorphic and hydraulic literature on methods for estimating and measuring substrate entrainment and transport. This will provide a basis for ecologists to identify tools for quantifying entrainment and transport thresholds so they are better placed to explore the direct linkages between phases of sediment transport and periphyton accrual. These linkages need to be identified in order for river managers to set effective flushing flow targets.
Collapse
Affiliation(s)
- Andrew J Neverman
- Innovative River Solutions, Institute of Agriculture and Environment, Massey University, Palmerston North, 4412, New Zealand.
- Manaaki Whenua - Landcare Research, Private Bag 11052, Manawatu Mail Centre, Palmerston North, 4442, New Zealand.
| | - Russell G Death
- Innovative River Solutions, Institute of Agriculture and Environment, Massey University, Palmerston North, 4412, New Zealand
| | - Ian C Fuller
- Innovative River Solutions, Institute of Agriculture and Environment, Massey University, Palmerston North, 4412, New Zealand
| | - Ranvir Singh
- Innovative River Solutions, Institute of Agriculture and Environment, Massey University, Palmerston North, 4412, New Zealand
| | - Jon N Procter
- Volcanic Risk Solutions, Institute of Agriculture and Environment, Massey University, Palmerston North, 4412, New Zealand
| |
Collapse
|
7
|
Gaget V, Keulen A, Lau M, Monis P, Brookes J. DNA
extraction from benthic Cyanobacteria: comparative assessment and optimization. J Appl Microbiol 2016; 122:294-304. [DOI: 10.1111/jam.13332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/16/2016] [Accepted: 10/20/2016] [Indexed: 11/30/2022]
Affiliation(s)
- V. Gaget
- Ecology and Environmental Sciences School of Biological Sciences University of Adelaide Adelaide SA Australia
| | - A. Keulen
- Ecology and Environmental Sciences School of Biological Sciences University of Adelaide Adelaide SA Australia
| | - M. Lau
- Australian Water Quality Centre South Australia Water Corporation Adelaide SA Australia
| | - P. Monis
- Ecology and Environmental Sciences School of Biological Sciences University of Adelaide Adelaide SA Australia
- Australian Water Quality Centre South Australia Water Corporation Adelaide SA Australia
| | - J.D. Brookes
- Ecology and Environmental Sciences School of Biological Sciences University of Adelaide Adelaide SA Australia
| |
Collapse
|
8
|
Watson SB, Monis P, Baker P, Giglio S. Biochemistry and genetics of taste- and odor-producing cyanobacteria. HARMFUL ALGAE 2016; 54:112-127. [PMID: 28073471 DOI: 10.1016/j.hal.2015.11.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 11/22/2015] [Indexed: 06/06/2023]
Abstract
Cyanobacteria are one of the principal sources of volatile organic compounds (VOCs) which cause offensive taste and odor (T&O) in drinking and recreational water, fish, shellfish and other seafood. Although non-toxic to humans, these T&O compounds severely undermine public trust in these commodities, resulting in substantial costs in treatment, and lost revenue to drinking water, aquaculture, food and beverage and tourist/hospitality industries. Mitigation and control have been hindered by the complexity of the communities and processes which produce and modify T&O events, making it difficult to source-track the major producer(s) and the factors governing VOC production and fate. Over the past decade, however, advances in bioinformatics, enzymology, and applied detection technologies have greatly enhanced our understanding of the pathways, the enzymes and the genetic coding for some of the most problematic VOCs produced by cyanobacteria. This has led to the development of tools for rapid and sensitive detection and monitoring for the VOC production at source, and provided the basis for further diagnostics of endogenous and exogenous controls. This review provides an overview of current knowledge of the major cyanobacterial VOCs, the producers, the biochemistry and the genetics and highlight the current applications and further research needs in this area.
Collapse
Affiliation(s)
- Susan B Watson
- Environment and Climate Change Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada.
| | - Paul Monis
- South Australian Water Corporation, 250 Victoria Square, Adelaide, SA 5000, Australia.
| | - Peter Baker
- South Australian Water Corporation, 250 Victoria Square, Adelaide, SA 5000, Australia.
| | - Steven Giglio
- Healthscope Pathology, 1 Goodwood Road, Wayville, SA 5034, Australia.
| |
Collapse
|
9
|
Catherine Q, Susanna W, Isidora ES, Mark H, Aurélie V, Jean-François H. A review of current knowledge on toxic benthic freshwater cyanobacteria--ecology, toxin production and risk management. WATER RESEARCH 2013; 47:5464-79. [PMID: 23891539 DOI: 10.1016/j.watres.2013.06.042] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 05/12/2023]
Abstract
Benthic cyanobacteria are found globally in plethora of environments. Although they have received less attention than their planktonic freshwater counterparts, it is now well established that they produce toxins and reports of their involvement in animal poisonings have increased markedly during the last decade. Most of the known cyanotoxins have been identified from benthic cyanobacteria including: the hepatotoxic microcystins, nodularins and cylindrospermopsins, the neurotoxic saxitoxins, anatoxin-a and homoanatoxin-a and dermatotoxins, such as lyngbyatoxin. In most countries, observations of toxic benthic cyanobacteria are fragmented, descriptive and in response to animal toxicosis events. Only a limited number of long-term studies have aimed to understand why benthic proliferations occur, and/or how toxin production is regulated. These studies have shown that benthic cyanobacterial blooms are commonly a mixture of toxic and non-toxic genotypes and that toxin concentrations can be highly variable spatially and temporally. Physiochemical parameters responsible for benthic proliferation vary among habitat type with physical disturbance (e.g., flow regimes, wave action) and nutrients commonly identified as important. As climatic conditions change and anthropogenic pressures on waterways increase, it seems likely that the prevalence of blooms of benthic cyanobacteria will increase. In this article we review current knowledge on benthic cyanobacteria: ecology, toxin-producing species, variables that regulate toxin production and bloom formation, their impact on aquatic and terrestrial organisms and current monitoring and management strategies. We suggest research needs that will assist in filling knowledge gaps and ultimately allow more robust monitoring and management protocols to be developed.
Collapse
Affiliation(s)
- Quiblier Catherine
- MNHN, UMR 7245, 57 rue Cuvier, CP39, 75231 Paris Cedex 05, France; Université Paris Diderot, 5 rue T. Mann, 75013 Paris, France.
| | | | | | | | | | | |
Collapse
|
10
|
Lessard J, Hicks DM, Snelder TH, Arscott DB, Larned ST, Booker D, Suren AM. Dam design can impede adaptive management of environmental flows: a case study from the Opuha Dam, New Zealand. ENVIRONMENTAL MANAGEMENT 2013; 51:459-473. [PMID: 23124551 DOI: 10.1007/s00267-012-9971-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 10/13/2012] [Indexed: 06/01/2023]
Abstract
The Opuha Dam was designed for water storage, hydropower, and to augment summer low flows. Following its commissioning in 1999, algal blooms (dominated first by Phormidium and later Didymosphenia geminata) downstream of the dam were attributed to the reduced frequency and magnitude of high-flow events. In this study, we used a 20-year monitoring dataset to quantify changes associated with the dam. We also studied the effectiveness of flushing flows to remove periphyton from the river bed. Following the completion of the dam, daily maximum flows downstream have exceeded 100 m(3) s(-1) only three times; two of these floods exceeded the pre-dam mean annual flood of 203 m(3) s(-1) (compared to 19 times >100 m(3) s(-1) and 6 times >203 m(3) s(-1) in the 8 years of record before the dam). Other changes downstream included increases in water temperature, bed armoring, frequency of algal blooms, and changes to the aquatic invertebrate community. Seven experimental flushing flows resulted in limited periphyton reductions. Flood wave attenuation, bed armoring, and a shortage of surface sand and gravel, likely limited the effectiveness of these moderate floods. Floods similar to pre-dam levels may be effective for control of periphyton downstream; however, flushing flows of that magnitude are not possible with the existing dam infrastructure. These results highlight the need for dams to be planned and built with the capacity to provide the natural range of flows for adaptive management, particularly high flows.
Collapse
Affiliation(s)
- JoAnna Lessard
- National Institute of Water and Atmospheric Research, P.O. Box 8602, Riccarton, Christchurch, 8440, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
11
|
Humpage A, Falconer I, Bernard C, Froscio S, Fabbro L. Toxicity of the cyanobacterium Limnothrix AC0243 to male Balb/c mice. WATER RESEARCH 2012; 46:1576-1583. [PMID: 22119368 DOI: 10.1016/j.watres.2011.11.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/26/2011] [Accepted: 11/04/2011] [Indexed: 05/31/2023]
Abstract
A growing list of freshwater cyanobacteria are known to produce toxic agents, a fact which makes these organisms of concern to water authorities. A cultured strain of Limnothrix (AC0243) was recently shown to have toxic effects in in vitro bioassays. It did not produce any of the known cyanobacterial toxins. The intrapertoneal toxicity of aqueous extracts of the material was therefore tested in mice to determine whether the observed effects might be of public health relevance to drinking water supplies. The results indicate that Limnothrix AC0243 is acutely toxic to mice, causing widespread cellular necrosis in the liver, kidneys and gastrointestinal tract within 24 h of exposure. Sub-lethal effects lasted at least 7 d. These results suggest that Limnothrix AC0243 produces a novel toxin ("Limnothrixin") and that further work is therefore urgently required to quantify the potential public health implications.
Collapse
Affiliation(s)
- Andrew Humpage
- Australian Water Quality Centre, 250 Victoria Square, GPO Box 1751, Adelaide, SA 5000, Australia.
| | | | | | | | | |
Collapse
|
12
|
Paerl HW, Paul VJ. Climate change: links to global expansion of harmful cyanobacteria. WATER RESEARCH 2012; 46:1349-63. [PMID: 21893330 DOI: 10.1016/j.watres.2011.08.002] [Citation(s) in RCA: 678] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/11/2011] [Accepted: 08/02/2011] [Indexed: 05/20/2023]
Abstract
Cyanobacteria are the Earth's oldest (∼3.5 bya) oxygen evolving organisms, and they have had major impacts on shaping our modern-day biosphere. Conversely, biospheric environmental perturbations, including nutrient enrichment and climatic changes (e.g. global warming, hydrologic changes, increased frequencies and intensities of tropical cyclones, more intense and persistent droughts), strongly affect cyanobacterial growth and bloom potentials in freshwater and marine ecosystems. We examined human and climatic controls on harmful (toxic, hypoxia-generating, food web disrupting) bloom-forming cyanobacteria (CyanoHABs) along the freshwater to marine continuum. These changes may act synergistically to promote cyanobacterial dominance and persistence. This synergy is a formidable challenge to water quality, water supply and fisheries managers, because bloom potentials and controls may be altered in response to contemporaneous changes in thermal and hydrologic regimes. In inland waters, hydrologic modifications, including enhanced vertical mixing and, if water supplies permit, increased flushing (reducing residence time) will likely be needed in systems where nutrient input reductions are neither feasible nor possible. Successful control of CyanoHABs by grazers is unlikely except in specific cases. Overall, stricter nutrient management will likely be the most feasible and practical approach to long-term CyanoHAB control in a warmer, stormier and more extreme world.
Collapse
Affiliation(s)
- Hans W Paerl
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557, USA.
| | | |
Collapse
|
13
|
Deng X, Xie P, Qi M, Liang G, Chen J, Ma Z, Jiang Y. Microwave-assisted purge-and-trap extraction device coupled with gas chromatography and mass spectrometry for the determination of five predominant odors in sediment, fish tissues, and algal cells. J Chromatogr A 2012; 1219:75-82. [DOI: 10.1016/j.chroma.2011.11.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 10/15/2022]
|
14
|
Méjean A, Peyraud-Thomas C, Kerbrat AS, Golubic S, Pauillac S, Chinain M, Laurent D. First identification of the neurotoxin homoanatoxin-a from mats of Hydrocoleum lyngbyaceum (marine cyanobacterium) possibly linked to giant clam poisoning in New Caledonia. Toxicon 2010; 56:829-35. [DOI: 10.1016/j.toxicon.2009.10.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 10/22/2009] [Accepted: 10/26/2009] [Indexed: 10/20/2022]
|
15
|
Heath MW, Wood SA, Ryan KG. Polyphasic assessment of fresh-water benthic mat-forming cyanobacteria isolated from New Zealand. FEMS Microbiol Ecol 2010; 73:95-109. [PMID: 20455945 DOI: 10.1111/j.1574-6941.2010.00867.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mat-forming benthic cyanobacteria are widespread throughout New Zealand rivers, and their ingestion has been linked to animal poisonings. In this study, potentially toxic benthic cyanobacterial proliferations were collected from 21 rivers and lakes throughout New Zealand. Each environmental sample was screened for anatoxins using liquid chromatography-MS (LC-MS). Thirty-six cyanobacterial strains were isolated and cultured from these samples. A polyphasic approach was used to identify each isolate; this included genotypic analyses [16S rRNA gene sequences and intergenic spacer (ITS)] and morphological characterization. Each culture was analysed for anatoxins using LC-MS and screened for microcystin production potential using targeted PCR. The morphospecies Phormidium autumnale was found to be the dominant cyanobacterium in mat samples. Polyphasic analyses revealed multiple slight morphological variants within the P. autumnale clade and highlighted the difficulties in identifying Oscillatoriaceae. Only one morphospecies (comprising the two strains CYN52 and CYN53) of P. autumnale was found to produce anatoxins. These strains formed their own clade based on partial 16S rRNA gene sequences. These data indicate that benthic P. autumnale mats are composed of multiple morphospecies and toxin production is dependent on the presence of toxin-producing genotypes. Further cyanobacteria are also characterized, including Phormidium murrayi, which was identified for the first time outside of Antarctica.
Collapse
Affiliation(s)
- Mark W Heath
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | | | |
Collapse
|
16
|
Gurbuz F, Metcalf JS, Karahan AG, Codd GA. Analysis of dissolved microcystins in surface water samples from Kovada Lake, Turkey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:4038-4046. [PMID: 19395066 DOI: 10.1016/j.scitotenv.2009.02.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 02/23/2009] [Accepted: 02/25/2009] [Indexed: 05/27/2023]
Abstract
Dissolved (extracellular) microcystin (MC) concentrations were determined at 3 sampling stations on Lake Kovada, Turkey. The dominant species of cyanobacteria found in August and September of 2006 were Microcystis aeruginosa, Synechococcus sp., Phormidium limosum, Phormidium formosa and Planktothrix limnetica. MC concentrations in water were measured by ELISA and MC variants were examined by HPLC-PDA. Quantitative analysis by HPLC indicated that five MC variants (MC-LR, -RR, -LA, -LW, -LF) were identified in water samples from Kovada Lake. The maximum concentration of dissolved MC-LW was 98.9 microg l(-1) in October. MC-LR was only detected in May at a concentration of 0.5 microg l(-1). The cross reactivity of the antibody (MC10E7) to variants such as MC-LA MC-LW & MC-LF was low. Hence the results determined by ELISA were lower than those determined by HPLC in September and October samples due to differences in the specificity of the antibody to MC variants. Total extracellular MCs was quantified by ELISA and ranged from 0.73 to 48.5 microg MC-LR equivalents l(-1), which in some cases exceeded the WHO provisional Guideline Value for MC-LR in drinking water. This study confirms that the lakes of Turkey should be monitored for toxic cyanobacteria and for MCs to avoid or reduce the potential exposure of people to these health hazards.
Collapse
Affiliation(s)
- Fatma Gurbuz
- Department of Biological Sciences, Suleyman Demirel University, Isparta, Turkey.
| | | | | | | |
Collapse
|
17
|
Pan X, Chang F, Liu Y, Li D, Xu A, Shen Y, Huang Z. Mouse toxicity of Anabaena flos-aquae from Lake Dianchi, China. ENVIRONMENTAL TOXICOLOGY 2009; 24:10-18. [PMID: 18508360 DOI: 10.1002/tox.20385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Some species of the genera Anabaena can produce various kinds of cyanotoxins, which may pose risks to environment and human health. Anabaena has frequently been observed in eutrophic freshwater of China in recent years, but its toxicity has been reported only in a few studies. In the present study, the toxicity of an Anabaena flos-aquae strain isolated from Lake Dianchi was investigated. Acute toxicity testing was performed by mouse bioassay using crude extracts from the lyophilized cultures. The mice exposed to crude extracts showed visible symptoms of toxicity and died within 10-24 h of the injection. Serum biochemical parameters were evaluated by the use of commercial diagnostic kits. Significant alterations were found in the serum biochemical parameters: alkaline phosphatase (AKP), gamma-glutamyl transpeptidase (gamma-GT), aspartate amino transferase (AST), alanine amino transferase (ALT), AST/ALT ratio, total protein content, albumin content, albumin/globulin (A/G) ratio, blood urea nitrogen (BUN), serum creatinine (Ssr), and total antioxidative capacity (T-AOC). Histopathological observations were carried out with hematoxylin and eosin (HE) stain under light microscope. Severe lesions were seen in the livers, kidneys, and lungs of the mice injected with crude extracts. The alterations of biochemical parameters were in a dose-dependent manner, and the severities of histological lesions were in the same manner. Based on biochemical and histological studies, this research firstly shows the presence of toxin-producing Anabaena species in Lake Dianchi and the toxic effects of its crude extracts on mammals.
Collapse
Affiliation(s)
- Xiaojie Pan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
18
|
Toxin types, toxicokinetics and toxicodynamics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 619:383-415. [DOI: 10.1007/978-0-387-75865-7_16] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
19
|
McGregor GB, Rasmussen JP. Cyanobacterial composition of microbial mats from an Australian thermal spring: a polyphasic evaluation. FEMS Microbiol Ecol 2008; 63:23-35. [DOI: 10.1111/j.1574-6941.2007.00405.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
20
|
Different genotypes of anatoxin-producing cyanobacteria coexist in the Tarn River, France. Appl Environ Microbiol 2007; 73:7605-14. [PMID: 17933923 DOI: 10.1128/aem.01225-07] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Repeated dog deaths occurred in 2002, 2003, and 2005 after the animals drank water from the shoreline of the Tarn River in southern France. Signs of intoxication indicated acute poisoning due to a neurotoxin. Floating scum and biofilms covering pebbles were collected in the summers of 2005 and 2006 from six different sites along 30 km from the border of this river. The cyanobacterial neurotoxic alkaloid anatoxin-a and/or its methyl homolog, homoanatoxin-a, was detected in the extracts of most samples examined by gas chromatography-mass spectrometry. Fifteen filamentous cyanobacteria of the order Oscillatoriales were isolated and displayed four distinct phenotypes based on morphological characteristics and pigmentation. Three of the phenotypes can be assigned to the genus Oscillatoria or Phormidium, depending on the taxonomic treatises (bacteriological/botanical) employed for identification. The fourth phenotype is typical of the genus Geitlerinema Anagnostidis 1989. Eight strains rendered axenic were analyzed for production of anatoxin-a and homoanatoxin-a, and all strains of Oscillatoria/Phormidium proved to be neurotoxic. The genetic relatedness of the new isolates was evaluated by comparison of the intergenic transcribed spacer sequences with those of six oscillatorian strains from the Pasteur Culture Collection of Cyanobacteria. These analyses showed that the neurotoxic representatives are composed of five different genotypes, three of which correspond to phenotypes isolated in this study. Our findings prove that neurotoxic oscillatorian cyanobacteria exist in the Tarn River and thus were most likely implicated in the reported dog poisonings. Furthermore, they reemphasize the importance of monitoring benthic cyanobacteria in aquatic environments to fully assess the health risks associated with these organisms.
Collapse
|
21
|
Wood SA, Selwood AI, Rueckert A, Holland PT, Milne JR, Smith KF, Smits B, Watts LF, Cary CS. First report of homoanatoxin-a and associated dog neurotoxicosis in New Zealand. Toxicon 2007; 50:292-301. [PMID: 17517427 DOI: 10.1016/j.toxicon.2007.03.025] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 03/27/2007] [Accepted: 03/28/2007] [Indexed: 10/23/2022]
Abstract
In November 2005, at least five dogs died rapidly after contact with water from the Hutt River (lower North Island, New Zealand). Necropsy performed 24h later on one of the dogs (a 20-month-old Labrador) revealed few findings of interest, except for copious amounts of froth in the respiratory tract down to the bifurcation of the trachea and large quantities of algal material in the dog's stomach. Low and relatively stable flows in the Hutt River during spring had resulted in the proliferation of benthic cyanobacteria that formed large black/brown mats along the river edge. Samples from the Labrador's stomach contents and cyanobacterial mats were analysed microscopically and screened using chemical and biochemical assays for cyanotoxins: anatoxin-a, homoanatoxin-a, cylindrospermopsins, saxitoxins and microcystins. Liquid chromatography-mass spectrometry (LC-MS) confirmed the presence of the neurotoxic cyanotoxins anatoxin-a and homoanatoxin-a and their degradation products, dihydro-anatoxin-a and dihydro-homoanatoxin-a. This is the first report of homoanatoxin-a and associated degradation product in New Zealand. Based on morphology, the causative species was identified as Phormidium sp. Subsequent phylogenetic analysis of 16S rRNA gene sequences demonstrated that the causative organism was most similar to Phormidium autumnale. Further investigations led to the detection of homoanatoxin-a and anatoxin-a in cyanobacterial mats from four other rivers in the Wellington region (lower North Island, New Zealand). Access restrictions were placed on over 60% of river catchments in the western Wellington region, severely affecting recreational users.
Collapse
Affiliation(s)
- Susanna A Wood
- Cawthron Institute, Private Bag 2, Nelson 7001, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jüttner F, Watson SB. Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Appl Environ Microbiol 2007; 73:4395-406. [PMID: 17400777 PMCID: PMC1932821 DOI: 10.1128/aem.02250-06] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Friedrich Jüttner
- Institute of Plant Biology, Limnological Station, University of Zürich, Kilchberg, Switzerland
| | | |
Collapse
|
23
|
Izaguirre G, Jungblut AD, Neilan BA. Benthic cyanobacteria (Oscillatoriaceae) that produce microcystin-LR, isolated from four reservoirs in southern California. WATER RESEARCH 2007; 41:492-8. [PMID: 17126876 DOI: 10.1016/j.watres.2006.10.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 10/03/2006] [Accepted: 10/04/2006] [Indexed: 05/12/2023]
Abstract
Cyanobacteria that produce the toxin microcystin have been isolated from many parts of the world. Most of these organisms are planktonic; however, we report on several microcystin-producing benthic filamentous cyanobacterial isolates from four drinking-water reservoirs in southern California (USA): Lake Mathews, Lake Skinner, Diamond Valley Lake (DVL), and Lake Perris. Some samples of benthic material from these reservoirs tested positive for microcystin by an ELISA tube assay, and all the positive samples had in common a green filamentous cyanobacterium 10-15microm in diameter. Seventeen unialgal strains of the organism were isolated and tested positive by ELISA, and 11 cultures of these strains were found to contain high concentrations of microcystin-LR (90-432microgL(-1)). The cultures were analyzed by protein phosphatase inhibition assay (PPIA) and HPLC with photodiode array detector (PDA) or liquid chromatography/mass spectrometry (LC/MS). Microcystin per unit carbon was determined for six cultures and ranged from 1.15 to 4.15microgmg(-1) C. Phylogenetic analysis of four cultures from Lake Skinner and DVL using cyanobacterial-specific PCR and sequencing of the partial 16S rRNA gene suggested the highest similarity to an unidentified cyanobacterium in the oscillatoriales, and to a Phormidium sp. Morphologically, some of the isolates were similar to Oscillatoria, and others resembled Lyngbya. The significance of these organisms lies in the relative scarcity of known toxin producers among freshwater benthic cyanobacteria, and also as a source of cell-bound microcystin in these reservoirs.
Collapse
Affiliation(s)
- George Izaguirre
- Water Quality Laboratory, 700 Moreno Avenue, Metropolitan Water District of Southern California, La Verne, CA 91750, USA.
| | | | | |
Collapse
|
24
|
Marquardt J, Palinska KA. Genotypic and phenotypic diversity of cyanobacteria assigned to the genus Phormidium (Oscillatoriales) from different habitats and geographical sites. Arch Microbiol 2006; 187:397-413. [PMID: 17186222 DOI: 10.1007/s00203-006-0204-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 11/23/2006] [Accepted: 11/28/2006] [Indexed: 11/27/2022]
Abstract
In this study, 30 strains of filamentous, non-heterocystous cyanobacteria from different habitats and different geographical regions assigned to diverse oscillatorian genera but here collectively referred to as members of the Phormidium group have been characterized using a polyphasic approach by comparing phenotypic and molecular characteristics. The phenotypic analysis dealt with cell and filament morphology, ultrastructure, phycoerythrin content, and complementary chromatic adaptation. The molecular phylogenetic analyses were based on sequences of the 16S rRNA gene and the adjacent intergenic transcribed spacer (ITS). The sequences were located on multiple branches of the inferred cyanobacterial 16S rRNA tree. For some, but not all, strains with identical 16S rDNA sequences, a higher level of discrimination was achieved by analyses of the less conserved ITS sequences. As shown for other cyanobacteria, no correlation was found between position of the strains in the phylogenetic tree and their geographic origin. Genetically similar strains originated from distant sites while other strains isolated from the same sampling site were in different phylogenetic clusters. Also the presence of phycoerythrin was not correlated with the strains' position in the phylogenetic trees. In contrast, there was some correlation among inferred phylogenetic relationship, original environmental habitat, and morphology. Closely related strains came from similar ecosystems and shared the same morphological and ultrastructural features. Nevertheless, structural properties are insufficient in themselves for identification at the genus or species level since some phylogenetically distant members also showed similar morphological traits. Our results reconfirm that the Phormidium group is not phylogenetically coherent and requires revision.
Collapse
Affiliation(s)
- Jürgen Marquardt
- Geomicrobiology, ICBM, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26111 Oldenburg, Germany
| | | |
Collapse
|
25
|
Kemp A, John J. Microcystins associated with Microcystis dominated blooms in the Southwest wetlands, Western Australia. ENVIRONMENTAL TOXICOLOGY 2006; 21:125-30. [PMID: 16528687 DOI: 10.1002/tox.20164] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Potentially toxic cyanobacterial blooms are becoming common in the freshwater wetlands on the Swan Coastal Plain, Western Australia. During summer the dominant bloom-causing species belong to the genera Microcystis and Anabaena and to a lesser extent Aphanizomenon and Nodularia. Although toxic cyanobacteria have been recorded in the Swan-Canning and Peel-Harvey estuaries in Western Australia, very little is known about the blooms in the surrounding freshwater lakes. In this study, a total of 32 natural bloom samples representing 13 lakes were analyzed by HPLC for microcystin (MC)-LR, -RR, and -YR. Twenty-eight samples proved to be toxic. The highest total microcystin concentration ranged from 1645 to 8428.6 microg L(-1), and the lowest concentrations were less than 10 microg L(-1) with some below the detection limit (< 0.05 microg L(-1)). MC-LR (100%) was the predominant microcystin, followed by MC-YR (71.4%) and MC-RR (60.7%). The presence of a Nodularia spumigena bloom in the freshwater Lake Yangebup was associated with the detection of nodularins (1664 microg L(-1)). This is the first study to demonstrate the presence of microcystins and nodularins in urban lakes on the Swan Coastal Plain, Western Australia.
Collapse
Affiliation(s)
- Annabeth Kemp
- Department of Environmental Biology, Curtin University of Technology, Perth, Western Australia 6845, Australia.
| | | |
Collapse
|
26
|
Mohamed ZA, el-Sharouny HM, Ali WSM. Microcystin production in benthic mats of cyanobacteria in the Nile River and irrigation canals, Egypt. Toxicon 2006; 47:584-90. [PMID: 16564062 DOI: 10.1016/j.toxicon.2006.01.029] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2005] [Revised: 01/22/2006] [Accepted: 01/30/2006] [Indexed: 10/24/2022]
Abstract
The present study describes for the first time the species composition and toxicity of benthic cyanobacteria forming mats on the Nile River and irrigation canal sediments in Egypt. A total of 19 species of cyanobacteria were isolated from these mats during this study. The toxicity of the extracts of these species was investigated using Artemia salina assay, mouse bioassay and enzyme linked immunosorbent assay (ELISA). The results showed that all the 19 benthic species isolated from cyanobacterial mats, were toxic to A. salina. Two of these species, namely Calothrix parietina and Phormidium tenue, caused toxicity to mice with neurotoxic signs appeared within 12 h after injection. Whereas, five species showed hepatotoxic effects to mice within 6 h after injection. The results of ELISA showed that all the extracts which had hepatotoxic effects to mice, contained high levels of microcystins with concentrations ranging from 1.6 to 4.1 mg g(-1) dry weight. HPLC analysis for heptotoxic extracts revealed that these extracts contained two peaks corresponding to microcystin-YR and -LR with different proportions. This study suggests that benthic species should be considered along with planktonic species during monitoring of toxic cyanobacteria in water sources, particularly the Nile river which is the main source of drinking water in Egypt.
Collapse
Affiliation(s)
- Zakaria A Mohamed
- Department of Botany, Faculty of Science, South Valley University, Sohag 82524, Egypt.
| | | | | |
Collapse
|
27
|
Surakka A, Sihvonen LM, Lehtimäki JM, Wahlsten M, Vuorela P, Sivonen K. Benthic cyanobacteria from the Baltic Sea contain cytotoxic Anabaena, Nodularia, and Nostoc strains and an apoptosis-inducing Phormidium strain. ENVIRONMENTAL TOXICOLOGY 2005; 20:285-92. [PMID: 15892066 DOI: 10.1002/tox.20119] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Benthic cyanobacteria from aquatic environments have been reported to produce biologically active metabolites. However, the toxicity and other biological activities of benthic cyanobacteria from the Baltic Sea are not well known. We determined the biological activities of 21 Anabaena, Calothrix, Nodularia, Nostoc, and Phormidium strains isolated from benthic littoral habitats of the Baltic Sea. We studied whether benthic cyanobacterial extracts caused cytotoxicity by necrosis or induced apoptosis in two mammalian cell lines, a human leukemia cell line (HL-60) and a mouse fibroblast cell line (3T3 Swiss), and examined potential hepatotoxin (microcystin and nodularin) production. Five of the six benthic Anabaena strains, one of the two Nostoc strains, and two of the three Nodularia strains were highly cytotoxic to human leukemia cells. The Calothrix and Phormidium strains did not cause LDH leakage, but the extract of Phormidium strain BECID15 induced apoptosis in the HL-60 cells. Neither the microcystin synthetase E (mcyE) nor the nodularin synthetase F (ndaF) gene was amplified by PCR, and no microcystins or nodularins were detected by the protein phosphatase inhibition assay from the cyanobacterial strains included in this study. This indicates that benthic Baltic cyanobacteria contain potentially harmful cytotoxic compounds even though they do not produce microcystins or nodularins. These cytotoxic compounds remain to be characterized, and the mechanisms of cytotoxicity need to be studied further.
Collapse
Affiliation(s)
- Anu Surakka
- Department of Applied Chemistry and Microbiology, Viikinkaari 9, FIN-00014, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
28
|
Gugger M, Lenoir S, Berger C, Ledreux A, Druart JC, Humbert JF, Guette C, Bernard C. First report in a river in France of the benthic cyanobacterium Phormidium favosum producing anatoxin-a associated with dog neurotoxicosis. Toxicon 2005; 45:919-28. [PMID: 15904687 DOI: 10.1016/j.toxicon.2005.02.031] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 02/12/2005] [Accepted: 02/15/2005] [Indexed: 11/29/2022]
Abstract
The first identification of anatoxin-a in a French lotic system is reported. Rapid deaths of dogs occurred in 2003 after the animals drank water from the shoreline of the La Loue River in eastern France. Sediments, stones and macrophytes surfaces at the margin of the river were covered by a thick biofilm containing large quantities of several benthic species of filamentous, non-heterocystous cyanobacteria. Known cyanotoxins, such as microcystins, saxitoxins and anatoxins were screened from biofilm samples by biochemical and analytical assays. A compound with similar UV spectra to the anatoxin-a standard was detected by high-performance liquid chromatography (HPLC) coupled with photo-diode array detector. This toxin was further identified by HPLC coupled with a UV detector and by electrospray ionisation-Quadrupole-Time-Of-Flight mass spectrometer, and confirmed by tandem mass spectrometry. These two techniques were necessary to discriminate anatoxin-a in phenylalanine-containing matrices such as liver samples of poisoned dogs. The toxin and the aromatic amino acid, phenylalanine, present the same pseudomolecular ion at m/z 166, but have differing fragmentation patterns, retention times and UV spectra. Finally, several cyanobacterial strains were isolated from the green biofilm and tested for anatoxin-a production. Phormidium favosum was identified as a new anatoxin-a producing species.
Collapse
Affiliation(s)
- Muriel Gugger
- USM0505 Ecosystèmes et interactions toxiques, M.N.H.N., Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Teneva I, Dzhambazov B, Koleva L, Mladenov R, Schirmer K. Toxic potential of five freshwater Phormidium species (Cyanoprokaryota). Toxicon 2005; 45:711-25. [PMID: 15804520 DOI: 10.1016/j.toxicon.2005.01.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 01/16/2005] [Accepted: 01/18/2005] [Indexed: 11/26/2022]
Abstract
Among the Cyanoprokaryota (blue-green algae), the genus Phormidium has thus far rarely been studied with respect to toxin production and potentially resulting human and environmental health effects. We here show that five previously unexplored freshwater species of this genus (Ph. bijugatum, Ph. molle, Ph. papyraceum, Ph. uncinatum, Ph. autumnale) are indeed capable of producing bioactive compounds. Phormidium extracts caused weight loss as well as neuro/hepatotoxic symptoms in mice, and in the case of Ph. bijugatum even death. Very low levels of saxitoxins and microcystins, as confirmed by ELISA, were insufficient to explain this toxicity and the differing toxic potencies of the Phormidium species. Qualitative HPLC analyses confirmed different substance patterns and in the future could aid in the separation of fractions for more detailed substance characterisation. The results in vivo were confirmed in vitro using cells of human, mouse and fish. The fish cells responded least sensitive but proved useful in studying the temperature dependence of the toxicity by the Phormidium samples. Further, the human cells were more sensitive than the mouse cells thus suggesting that the former may be a more appropriate choice for studying the impact of Phormidium to man. Among the human cells, two cancer cell lines were more responsive to one of the samples than a normal cell line, thereby indicating a potential anti-tumour activity. Thus, the five freshwater Phormidium species should be considered in environmental risk assessment but as well, as a source of therapeutic agents.
Collapse
Affiliation(s)
- Ivanka Teneva
- Department of Cell Toxicology, UFZ Centre for Environmental Research in the Helmholtz Association, Permoserstr. 15, 04318 Leipzig, Germany
| | | | | | | | | |
Collapse
|
30
|
Watson S. Aquatic taste and odor: a primary signal of drinking-water integrity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2004; 67:1779-1795. [PMID: 15371216 DOI: 10.1080/15287390490492377] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aquatic taste and odor (T/O) is rarely produced by toxic contaminants or pathogens; nevertheless, it has major negative impacts on the public and the drinking-water industry. Consumers use T/O as a primary measure of drinking water safety, yet this criterion is poorly understood, and its origins and triggers often go untraced. Much surface-water T/O is produced by the increased production of volatile organic compounds (VOCs) by algae. These chemicals can be symptomatic of short-term problems with source, treatment, or distribution systems. At a broader level, they can signify fundamental changes in aquatic ecosystems induced by human activity. T/O varies in chemistry, intensity, and production patterns among different algal taxa, and is often linked with excessive algal growth and/or the invasion of noxious species. Some VOCs may signal the presence of potentially toxic algae and/or other associated water quality issues. Traditionally, T/O has been linked with the widespread eutrophication of many surface waters; however, there has been a recent growth in the number of T/O events reported in oligo-mesotrophic systems, for example, the Glenmore Reservoir (Calgary AB) and the Laurentian Great Lakes. From a management and public perspective, therefore, it is vitally important to monitor T/O, and to continue to work toward a better understanding of the proximal and the ultimate causes-which VOCs and algae species are involved. In the short term, odor events could be anticipated and water treatment optimized. In the long term, this approach would contribute toward more a robust management of this resource through remedial or preventative measures.
Collapse
Affiliation(s)
- Susan Watson
- National Water Research Institute, Environment Canada, Ecology Division, Department of Biosciences, University of Calgary, Burlington, Ontario, Canada.
| |
Collapse
|