1
|
Bjørklund G, Tippairote T, Hangan T, Chirumbolo S, Peana M. Early-Life Lead Exposure: Risks and Neurotoxic Consequences. Curr Med Chem 2024; 31:1620-1633. [PMID: 37031386 DOI: 10.2174/0929867330666230409135310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 04/10/2023]
Abstract
BACKGROUND Lead (Pb) does not have any biological function in a human, and it is likely no safe level of Pb in the human body. The Pb exposure impacts are a global concern for their potential neurotoxic consequences. Despite decreasing both the environmental Pb levels and the average blood Pb levels in the survey populations, the lifetime redistribution from the tissues-stored Pb still poses neurotoxic risks from the low-level exposure in later life. The growing fetus and children hold their innate high-susceptible to these Pb-induced neurodevelopmental and neurobehavioral effects. OBJECTIVE This article aims to evaluate cumulative studies and insights on the topic of Pb neurotoxicology while assessing the emerging trends in the field. RESULTS The Pb-induced neurochemical and neuro-immunological mechanisms are likely responsible for the high-level Pb exposure with the neurodevelopmental and neurobehavioral impacts at the initial stages. Early-life Pb exposure can still produce neurodegenerative consequences in later life due to the altered epigenetic imprints and the ongoing endogenous Pb exposure. Several mechanisms contribute to the Pb-induced neurotoxic impacts, including the direct neurochemical effects, the induction of oxidative stress and inflammation through immunologic activations, and epigenetic alterations. Furthermore, the individual nutritional status, such as macro-, micro-, or antioxidant nutrients, can significantly influence the neurotoxic impacts even at low-level exposure to Pb. CONCLUSION The prevention of early-life Pb exposure is, therefore, the critical determinant for alleviating various Pb-induced neurotoxic impacts across the different age groups.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, Mo i Rana, 8610, Norway
| | - Torsak Tippairote
- Department of Nutritional and Environmental Medicine, HP Medical Center, Bangkok 10540, Thailand
| | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, Constanta, 900470, Romania
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
- CONEM Scientific Secretary, Strada Le Grazie 9, 37134, Verona, Italy
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, Sassari, 07100, Italy
| |
Collapse
|
2
|
Tuncer SÇ, Akarsu SA, Küçükler S, Gür C, Kandemir FM. Effects of sinapic acid on lead acetate-induced oxidative stress, apoptosis and inflammation in testicular tissue. ENVIRONMENTAL TOXICOLOGY 2023; 38:2656-2667. [PMID: 37471654 DOI: 10.1002/tox.23900] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/11/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
In this study, the effect of lead acetate (PbAc) and sinapic acid (SNP) administration on oxidative stress, apoptosis, inflammation, sperm quality and histopathology in testicular tissue of rats was tried to be determined. PbAc was administered at a dose of 30 mg/kg/bw for 7 days to induce testicular toxicity in rats. Oral doses of 5 and 10 mg/kg/bw SNP were administered to rats for 7 days after PbAc administration. According to our findings, while PbAc administration increased MDA content in rats, it decreased GPx, SOD, CAT activity and GSH content. NF-kB, IL-1β, TNF-α, and COX-2, which are among the inflammation parameters that increased due to PbAc, decreased with the administration of SNP. Nrf2, HO-1, and NQO1 mRNA transcript levels decreased with PbAc, but SNP treatments increased these mRNA levels in a dose-dependent manner. RAGE and NLRP3 gene expression were upregulated in PbAc treated rats. MAPK14, MAPK15, and JNK relative mRNA levels decreased with SNP treatment in PbAc treated rats. While the levels of apoptosis markers Bax, Caspase-3, and Apaf-1 increased in rats treated with PbAc, the level of Bcl-2 decreased, but SNP inhibited this apoptosis markers. PbAc caused histopathological deterioration in testis tissue and negatively affected spermatogenesis. When the sperm quality was examined, the decrease in sperm motility and spermatozoon density caused by PbAc, and the increase in the ratio of dead and abnormal spermatozoa were inhibited by SNP. As a result, while PbAc increased apoptosis and inflammation by inducing oxidative stress in testicles, SNP treatment inhibited these changes and increased sperm quality.
Collapse
Affiliation(s)
- Sibel Çiğdem Tuncer
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Serkan Ali Akarsu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Cihan Gür
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
3
|
Kefayati F, Karimi Babaahmadi A, Mousavi T, Hodjat M, Abdollahi M. Epigenotoxicity: a danger to the future life. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:382-411. [PMID: 36942370 DOI: 10.1080/10934529.2023.2190713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Environmental toxicants can regulate gene expression in the absence of DNA mutations via epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs' (ncRNAs). Here, all three epigenetic modifications for seven important categories of diseases and the impact of eleven main environmental factors on epigenetic modifications were discussed. Epigenetic-related mechanisms are among the factors that could explain the root cause of a wide range of common diseases. Its overall impression on the development of diseases can help us diagnose and treat diseases, and besides, predict transgenerational and intergenerational effects. This comprehensive article attempted to address the relationship between environmental factors and epigenetic modifications that cause diseases in different categories. The studies main gap is that the precise role of environmentally-induced epigenetic alterations in the etiology of the disorders is unknown; thus, still more well-designed researches need to be accomplished to fill this gap. The present review aimed to first summarize the adverse effect of certain chemicals on the epigenome that may involve in the onset of particular disease based on in vitro and in vivo models. Subsequently, the possible adverse epigenetic changes that can lead to many human diseases were discussed.
Collapse
Affiliation(s)
- Farzaneh Kefayati
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Atoosa Karimi Babaahmadi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Taraneh Mousavi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hodjat
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Li R, Song J, Zhao A, Diao X, Zhang T, Qi X, Guan Z, An Y, Ren L, Wang C, He Y. Association of APP gene polymorphisms and promoter methylation with essential hypertension in Guizhou: a case-control study. Hum Genomics 2023; 17:25. [PMID: 36941702 PMCID: PMC10026478 DOI: 10.1186/s40246-023-00462-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/16/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Single-nucleotide polymorphisms (SNPs) and DNA methylation are crucial regulators of essential hypertension (EH). Amyloid precursor protein (APP) mutations are implicated in hypertension development. Nonetheless, studies on the association of APP gene polymorphism and promoter methylation with hypertension are limited. Therefore, this case-control aims to evaluate the genetic association of APP gene polymorphism and promoter methylation with EH in Guizhou populations. OBJECTIVE AND METHODS We conducted a case-control study on 343 EH patients and 335 healthy controls (including Miao, Buyi, and Han populations) in the Guizhou province of China to analyze 11 single-nucleotide polymorphisms (rs2040273, rs63750921, rs2211772, rs2830077, rs467021, rs368196, rs466433, rs364048, rs364051, rs438031, rs463946) in the APP gene via MassARRAY SNP. The MassARRAY EpiTYPER was employed to detect the methylation levels of the promoters. RESULTS In the Han population, the rs2211772 genotype distribution was significantly different between disease and control groups (χ2 = 6.343, P = 0.039). The CC genotype reduced the risk of hypertension compared to the TT or TC genotype (OR 0.105, 95%CI 0.012-0.914, P = 0.041). For rs2040273 in the Miao population, AG or GG genotype reduced the hypertension risk compared with the AA genotype (OR 0.533, 95%CI 0.294-0.965, P = 0.038). Haplotype TCC (rs364051-rs438031-rs463946) increased the risk of EH in Guizhou (OR 1.427, 95%CI 1.020-1.996, P = 0.037). Each 1% increase in CpG_19 (- 613 bp) methylation level was associated with a 4.1% increase in hypertension risk (OR 1.041, 95%CI 1.002-1.081, P = 0.039). Each 1% increase in CpG_1 (- 296 bp) methylation level was associated with an 8% decrease in hypertension risk in women (OR 0.920, 95%CI 0.860-0.984, P = 0.015). CpG_19 significantly correlated with systolic blood pressure (r = 0.2, P = 0.03). The methylation levels of CpG_19 in hypertensive patients with rs466433, rs364048, and rs364051 minor alleles were lower than that with wild-type alleles (P < 0.05). Moreover, rs467021 and rs364051 showed strong synergistic interaction with EH (χ2 = 7.633, P = 0.006). CpG_11, CpG_19, and rs364051 showed weak synergistic interaction with EH (χ2 = 19.874, P < 0.001). CONCLUSION In summary, rs2211772 polymorphism and promoter methylation level of APP gene may be linked to EH in Guizhou populations. Our findings will provide novel insights for genetic research of hypertension and Alzheimer's disease.
Collapse
Affiliation(s)
- Ruichao Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Juhui Song
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Ansu Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaoyan Diao
- Department of Cardiovascular Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yu An
- The Clinical Laboratory Center, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lingyan Ren
- Antenatal Diagnosis Centre, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Chanjuan Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| | - Yan He
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
5
|
Raval M, Mishra S, Tiwari AK. Epigenetic regulons in Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:185-247. [DOI: 10.1016/bs.pmbts.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
6
|
Liu M, Liu R, Wang R, Ba Y, Yu F, Deng Q, Huang H. Lead-induced neurodevelopmental lesion and epigenetic landscape: Implication in neurological disorders. J Appl Toxicol 2022. [PMID: 36433892 DOI: 10.1002/jat.4419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 11/20/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Lead (Pb) was implicated in multiple genotoxic, neuroepigenotoxic, and chromosomal-toxic mechanisms and interacted with varying synaptic plasticity pathways, likely underpinning previous reports of links between Pb and cognitive impairment. Epigenetic changes have emerged as a promising biomarker for neurological disorders, including cognitive disorders, Alzheimer's disease (AD), and Parkinson's disease (PD). In the present review, special attention is paid to neural epigenetic features and mechanisms that can alter gene expression patterns upon environmental Pb exposure in rodents, primates, and zebrafish. Epigenetic modifications have also been discussed in population studies and cell experiment. Further, we explore growing evidence of potential linkage between Pb-induced disruption of regulatory pathway and neurodevelopmental and neurological disorders both in vivo and in vitro. These findings uncover how epigenome in neurons facilitates the development and function of the brain in response to Pb insult.
Collapse
Affiliation(s)
- Mengchen Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Fangfang Yu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Qihong Deng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| |
Collapse
|
7
|
Lin LF, Xie J, Sánchez OF, Bryan C, Freeman JL, Yuan C. Low dose lead exposure induces alterations on heterochromatin hallmarks persisting through SH-SY5Y cell differentiation. CHEMOSPHERE 2021; 264:128486. [PMID: 33032221 DOI: 10.1016/j.chemosphere.2020.128486] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Lead (Pb) is a commonly found heavy metal due to its historical applications. Recent studies have associated early-life Pb exposure with the onset of various neurodegenerative disease. The molecular mechanisms of Pb conferring long-term neurotoxicity, however, is yet to be elucidated. In this study, we explored the persistency of alteration in epigenetic marks that arise from exposure to low dose of Pb using a combination of image-based and gene expression analysis. Using SH-SY5Y as a model cell line, we observed significant alterations in global 5-methycytosine (5 mC) and histone 3 lysine 27 tri-methylation (H3K27me3) and histone 3 lysine 9 tri-methylation (H3K9me3) levels in a dose-dependent manner immediately after Pb exposure. The changes are partially associated with alterations in epigenetic enzyme expression levels. Long term culturing (14 days) after cease of exposure revealed persistent changes in 5 mC, partial recovery in H3K9me3 and overcompensation in H3K27me3 levels. The observed alterations in H3K9me3 and H3K27me3 are reversed after neuronal differentiation, while reduction in 5 mC levels are amplified with significant changes in patterns as identified via texture clustering analysis. Moreover, correlation analysis demonstrates a strong positive correlation between trends of 5 mC alteration after differentiation and neuronal morphology. Collectively, our results suggest that exposure to low dose of Pb prior to differentiation can result in persistent epigenome alterations that can potentially be responsible for the observed phenotypic changes. Our work reveals that Pb induced changes in epigenetic repressive marks can persist through neuron differentiation, which provides a plausible mechanism underlying long-term neurotoxicity associated with developmental Pb-exposure.
Collapse
Affiliation(s)
- Li F Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Oscar F Sánchez
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
| | - Chris Bryan
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN, 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN, 47907, USA.
| |
Collapse
|
8
|
Wang T, Zhang J, Xu Y. Epigenetic Basis of Lead-Induced Neurological Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17134878. [PMID: 32645824 PMCID: PMC7370007 DOI: 10.3390/ijerph17134878] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Environmental lead (Pb) exposure is closely associated with pathogenesis of a range of neurological disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), attention deficit/hyperactivity disorder (ADHD), etc. Epigenetic machinery modulates neural development and activities, while faulty epigenetic regulation contributes to the diverse forms of CNS (central nervous system) abnormalities and diseases. As a potent epigenetic modifier, lead is thought to cause neurological disorders through modulating epigenetic mechanisms. Specifically, increasing evidence linked aberrant DNA methylations, histone modifications as well as ncRNAs (non-coding RNAs) with AD cases, among which circRNA (circular RNA) stands out as a new and promising field for association studies. In 23-year-old primates with developmental lead treatment, Zawia group discovered a variety of epigenetic changes relating to AD pathogenesis. This is a direct evidence implicating epigenetic basis in lead-induced AD animals with an entire lifespan. Additionally, some epigenetic molecules associated with AD etiology were also known to respond to chronic lead exposure in comparable disease models, indicating potentially interlaced mechanisms with respect to the studied neurotoxic and pathological events. Of note, epigenetic molecules acted via globally or selectively influencing the expression of disease-related genes. Compared to AD, the association of lead exposure with other neurological disorders were primarily supported by epidemiological survey, with fewer reports connecting epigenetic regulators with lead-induced pathogenesis. Some pharmaceuticals, such as HDAC (histone deacetylase) inhibitors and DNA methylation inhibitors, were developed to deal with CNS disease by targeting epigenetic components. Still, understandings are insufficient regarding the cause–consequence relations of epigenetic factors and neurological illness. Therefore, clear evidence should be provided in future investigations to address detailed roles of novel epigenetic factors in lead-induced neurological disorders, and efforts of developing specific epigenetic therapeutics should be appraised.
Collapse
Affiliation(s)
| | | | - Yi Xu
- Correspondence: ; Tel.: +86-183-2613-5046
| |
Collapse
|
9
|
Gao Q, Dai Z, Zhang S, Fang Y, Yung KKL, Lo PK, Lai KWC. Interaction of Sp1 and APP promoter elucidates a mechanism for Pb 2+ caused neurodegeneration. Arch Biochem Biophys 2020; 681:108265. [PMID: 31945313 DOI: 10.1016/j.abb.2020.108265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 12/31/2022]
Abstract
A ubiquitously expressed transcription factor, specificity protein 1 (Sp1), interacts with the amyloid precursor protein (APP) promoter and likely mediates APP expression. Promoter-interaction strengths variably regulate the level of APP expression. Here, we examined the interactions of finger 3 of Sp1 (Sp1-f3) with a DNA fragment containing the APP promoter in different ionic solutions using atomic force microscope (AFM) spectroscopy. Sp1-f3 molecules immobilized on an Si substrate were bound to the APP promoter, which was linked to the AFM tips via covalent bonds. The interactions were strongly influenced by Pb2+, considering that substituting Zn2+ with Pb2+ increased the binding affinity of Sp1 for the APP promoter. The results revealed that the enhanced interaction force facilitated APP expression and that APP overexpression could confer a high-risk for disease incidence. An increased interaction force between Sp1-f3 and the APP promoter in Pb2+ solutions was consistent with a lower binding free energy, as determined by computer-assisted analysis. The impact of Pb2+ on cell morphology and related mechanical properties were also detected by AFM. The overexpression of APP caused by the enhanced interaction force triggered actin reorganization and further resulted in an increased Young's modulus and viscosity. The correlation with single-force measurements revealed that altered cellular activities could result from alternation of Sp1-APP promoter interaction. Our AFM findings offer a new approach in understanding Pb2+ associated neurodegeneration.
Collapse
Affiliation(s)
- Qi Gao
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ziwen Dai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Shiqing Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Yuqiang Fang
- School of Mechanical Science and Engineering, Jilin University, Changchun, 130025, China
| | - Ken Kin Lam Yung
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China.
| | - Pik Kwan Lo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China.
| | - King Wai Chiu Lai
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
10
|
Early-life Pb exposure as a potential risk factor for Alzheimer’s disease: are there hazards for the Mexican population? J Biol Inorg Chem 2019; 24:1285-1303. [DOI: 10.1007/s00775-019-01739-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/25/2019] [Indexed: 12/30/2022]
|
11
|
Nakayama SMM, Nakata H, Ikenaka Y, Yabe J, Oroszlany B, Yohannes YB, Bortey-Sam N, Muzandu K, Choongo K, Kuritani T, Nakagawa M, Ishizuka M. One year exposure to Cd- and Pb-contaminated soil causes metal accumulation and alteration of global DNA methylation in rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1267-1276. [PMID: 31252124 DOI: 10.1016/j.envpol.2019.05.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Metal pollution has been associated with anthropogenic activities, such as effluents and emissions from mines. Soil could be exposure route of wild rats to metals, especially in mining areas. The aim of this study was to verify whether soil exposure under environmentally relevant circumstances results in metal accumulation and epigenetic modifications. Wistar rats were divided to three groups: 1) control without soil exposure, 2) low-metal exposure group exposed to soil containing low metal levels (Pb: 75 mg/kg; Cd: 0.4), and 3) high-metal exposure group exposed to soil (Pb: 3750; Cd: 6). After 1 year of exposure, the metal levels, Pb isotopic values, and molecular indicators were measured. Rats in the high-group showed significantly greater concentrations of Pb and Cd in tissues. Higher accumulation factors (tissue/soil) of Cd than Pb were observed in the liver, kidney, brain, and lung, while the factor of Pb was higher in the tibia. The obtained results of metal accumulation ratios (lung/liver) and stable Pb isotope ratios in the tissues indicated that the respiratory exposure would account for an important share of metal absorption into the body. Genome-wide methylation status and DNA methyltransferase (Dnmt 3a/3b) mRNA expressions in testis were higher in the high-group, suggesting that exposure to soil caused metal accumulation and epigenetic alterations in rats.
Collapse
Affiliation(s)
- Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Hokuto Nakata
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, 060-0818, Japan; Water Research Group, School of Environmental Sciences and development, North-West University, South Africa
| | - John Yabe
- The University of Zambia, School of Veterinary Medicine, P.O. Box 32379, Lusaka, Zambia
| | - Balazs Oroszlany
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Yared B Yohannes
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, 060-0818, Japan; Department of Chemistry, Faculty of Natural and Computational Science, University of Gondar, P.O. Box 196, Gondar, Ethiopia
| | - Nesta Bortey-Sam
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Kaampwe Muzandu
- The University of Zambia, School of Veterinary Medicine, P.O. Box 32379, Lusaka, Zambia
| | - Kennedy Choongo
- The University of Zambia, School of Veterinary Medicine, P.O. Box 32379, Lusaka, Zambia
| | | | | | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, 060-0818, Japan.
| |
Collapse
|
12
|
Khalid M, Abdollahi M. Epigenetic modifications associated with pathophysiological effects of lead exposure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:235-287. [PMID: 31402779 DOI: 10.1080/10590501.2019.1640581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lead (Pb) exposure during different stages of development has demonstrated dose, duration, sex, and tissue-specific pathophysiological outcomes due to altered epigenetic regulation via (a) DNA methylation, (b) histone modifications, (c) miRNAs, and (d) chromatin accessibility. Pb-induced alteration of epigenetic regulation causes neurotoxic and extra-neurotoxic pathophysiological outcomes. Neurotoxic effects of Pb include dysfunction of memory and learning, behavioral disorder, attention deficit hyperactivity disorder, autism spectrum disorder, aging, Alzheimer's disease, tauopathy, and neurodegeneration. Extra-neurotoxic effects of Pb include altered body weight, metabolic disorder, cardiovascular disorders, hematopoietic disorder, and reproductive impairment. Pb exposure either early in life or at any stage of development results in undesirable pathophysiological outcomes that tends to sustain and maintain for a lifetime.
Collapse
Affiliation(s)
- Madiha Khalid
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Mitra P, Sharma S, Purohit P, Sharma P. Clinical and molecular aspects of lead toxicity: An update. Crit Rev Clin Lab Sci 2017; 54:506-528. [DOI: 10.1080/10408363.2017.1408562] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Prasenjit Mitra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Shailja Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
14
|
Cai T, Luo W, Ruan D, Wu YJ, Fox DA, Chen J. The History, Status, Gaps, and Future Directions of Neurotoxicology in China. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:722-732. [PMID: 26824332 PMCID: PMC4892912 DOI: 10.1289/ehp.1409566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 09/25/2015] [Accepted: 01/15/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Rapid economic development in China has produced serious ecological, environmental, and health problems. Neurotoxicity has been recognized as a major public health problem. The Chinese government, research institutes, and scientists conducted extensive studies concerning the source, characteristics, and mechanisms of neurotoxicants. OBJECTIVES This paper presents, for the first time, a comprehensive history and review of major sources of neurotoxicants, national bodies/legislation engaged, and major neurotoxicology research in China. METHODS Peer-reviewed research and pollution studies by Chinese scientists from 1991 to 2015 were examined. PubMed, Web of Science and Chinese National Knowledge Infrastructure (CNKI) were the major search tools. RESULTS The central problem is an increased exposure to neurotoxicants from air and water, food contamination, e-waste recycling, and manufacturing of household products. China formulated an institutional framework and standards system for management of major neurotoxicants. Basic and applied research was initiated, and international cooperation was achieved. The annual number of peer-reviewed neurotoxicology papers from Chinese authors increased almost 30-fold since 2001. CONCLUSIONS Despite extensive efforts, neurotoxicity remains a significant public health problem. This provides great challenges and opportunities. We identified 10 significant areas that require major educational, environmental, governmental, and research efforts, as well as attention to public awareness. For example, there is a need to increase efforts to utilize new in vivo and in vitro models, determine the potential neurotoxicity and mechanisms involved in newly emerging pollutants, and examine the effects and mechanisms of mixtures. In the future, we anticipate working with scientists worldwide to accomplish these goals and eliminate, prevent and treat neurotoxicity. CITATION Cai T, Luo W, Ruan D, Wu YJ, Fox DA, Chen J. 2016. The history, status, gaps, and future directions of neurotoxicology in China. Environ Health Perspect 124:722-732; http://dx.doi.org/10.1289/ehp.1409566.
Collapse
Affiliation(s)
- Tongjian Cai
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Wenjing Luo
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Diyun Ruan
- Neurotoxicology Lab, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Donald A. Fox
- College of Optometry,
- Department of Biology and Biochemistry,
- Department of Pharmacological and Pharmaceutical Sciences, and
- Department of Health and Human Performance, University of Houston, Houston, Texas, USA
| | - Jingyuan Chen
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
15
|
Zhong L, Wang L, Xu L, Liu Q, Jiang L, Zhi Y, Lu W, Zhou P. The cytotoxic effect of the NOS-mediated oxidative stress in MCF-7 cells after PbCl₂ exposure. ENVIRONMENTAL TOXICOLOGY 2016; 31:601-608. [PMID: 25410796 DOI: 10.1002/tox.22073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 10/28/2014] [Accepted: 10/31/2014] [Indexed: 06/04/2023]
Abstract
The potential Pb-induced cytotoxicity in various tissues and biological systems has been reported. Some evidences also indicate that the Pb-caused cytotoxicity may be associated with the nitric oxide synthase (NOS). However, there remains uncertainty about the role of the NOS signaling pathway during the Pb-induced cytotoxicity. In this report, we provide data showing that PbCl2 treatment depresses the expressions of the three distinct NOS isoforms: neuronal nitric oxide synthase (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS) on both transcriptional and translational levels in MCF-7 cells. The down-regulation of NOSs expressions by PbCl2 exposure leads to reduced NOS activity and nitric oxide (NO) production. Meanwhile, the intracellular reactive oxygen species (ROS) level is elevated after PbCl2 exposure, which leads to the alpha subunit of eukaryotic initiation factor 2 (elF2α) phosphorylation. The reduction effects of the free radical scavenger N-acetyl-L-cysteine or the NOS substrate l-arginine on the Pb-induced ROS generation suggest that the NOS signaling pathway plays a key role in the Pb-induced oxidative stress, which further results in the elF2α phosphorylation and cytotoxicity.
Collapse
Affiliation(s)
- Lingying Zhong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Bor S. Luh Food Safety Research Center, Shanghai, 200240, People's Republic of China
| | - Lumei Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Bor S. Luh Food Safety Research Center, Shanghai, 200240, People's Republic of China
- Key Laboratory of Urban Agriculture (South) of Ministry of Agriculture, Shanghai, 200240, People's Republic of China
| | - Lurong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Bor S. Luh Food Safety Research Center, Shanghai, 200240, People's Republic of China
- Key Laboratory of Urban Agriculture (South) of Ministry of Agriculture, Shanghai, 200240, People's Republic of China
| | - Qunlu Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Bor S. Luh Food Safety Research Center, Shanghai, 200240, People's Republic of China
- Key Laboratory of Urban Agriculture (South) of Ministry of Agriculture, Shanghai, 200240, People's Republic of China
| | - Linlei Jiang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Bor S. Luh Food Safety Research Center, Shanghai, 200240, People's Republic of China
- Key Laboratory of Urban Agriculture (South) of Ministry of Agriculture, Shanghai, 200240, People's Republic of China
- Shanghai Food Safety Engineering Research Center, Shanghai, 200240, People's Republic of China
| | - Yuee Zhi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Bor S. Luh Food Safety Research Center, Shanghai, 200240, People's Republic of China
- Key Laboratory of Urban Agriculture (South) of Ministry of Agriculture, Shanghai, 200240, People's Republic of China
| | - Wei Lu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Bor S. Luh Food Safety Research Center, Shanghai, 200240, People's Republic of China
- Key Laboratory of Urban Agriculture (South) of Ministry of Agriculture, Shanghai, 200240, People's Republic of China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Bor S. Luh Food Safety Research Center, Shanghai, 200240, People's Republic of China
- Key Laboratory of Urban Agriculture (South) of Ministry of Agriculture, Shanghai, 200240, People's Republic of China
| |
Collapse
|
16
|
Faulk C, Barks A, Liu K, Goodrich JM, Dolinoy DC. Early-life lead exposure results in dose- and sex-specific effects on weight and epigenetic gene regulation in weanling mice. Epigenomics 2016; 5:487-500. [PMID: 24059796 DOI: 10.2217/epi.13.49] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AIMS Epidemiological and animal data suggest that the development of adult chronic conditions is influenced by early-life exposure-induced changes to the epigenome. This study investigates the effects of perinatal lead (Pb) exposure on DNA methylation and bodyweight in weanling mice. MATERIALS & METHODS Viable yellow agouti (A(vy)) mouse dams were exposed to 0, 2.1, 16 and 32 ppm Pb acetate before conception through weaning. Epigenetic effects were evaluated by scoring coat color of A(vy)/a offspring and quantitative bisulfite sequencing of two retrotransposon-driven (A(vy) and CDK5 activator-binding protein intracisternal A particle element) and two imprinted (Igf2 and Igf2r) loci in tail DNA. RESULTS Maternal blood Pb levels were below the limit of detection in controls, and 4.1, 25.1 and 32.1 µg/dl for each dose, respectively. Pb exposure was associated with a trend of increased wean bodyweight in males (p = 0.03) and altered coat color in A(vy)/a offspring. DNA methylation at A(vy) and the CDK5 activator-binding protein intracisternal A-particle element was significantly different from controls following a cubic trend (p = 0.04; p = 0.01), with male-specific effects at the A(vy) locus. Imprinted genes did not shift in methylation across exposures. CONCLUSION Dose- and sex-specific responses in bodyweight and DNA methylation indicate that Pb acts on the epigenome in a locus-specific fashion, dependent on the genomic feature hosting the CpG site of interest, and that sex is a factor in epigenetic response.
Collapse
Affiliation(s)
- Christopher Faulk
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | |
Collapse
|
17
|
Menon AV, Chang J, Kim J. Mechanisms of divalent metal toxicity in affective disorders. Toxicology 2015; 339:58-72. [PMID: 26551072 DOI: 10.1016/j.tox.2015.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/19/2015] [Accepted: 11/03/2015] [Indexed: 01/01/2023]
Abstract
Metals are required for proper brain development and play an important role in a number of neurobiological functions. The divalent metal transporter 1 (DMT1) is a major metal transporter involved in the absorption and metabolism of several essential metals like iron and manganese. However, non-essential divalent metals are also transported through this transporter. Therefore, altered expression of DMT1 can modify the absorption of toxic metals and metal-induced toxicity. An accumulating body of evidence has suggested that increased metal stores in the brain are associated with elevated oxidative stress promoted by the ability of metals to catalyze redox reactions, resulting in abnormal neurobehavioral function and the progression of neurodegenerative diseases. Metal overload has also been implicated in impaired emotional behavior, although the underlying mechanisms are not well understood with limited information. The current review focuses on psychiatric dysfunction associated with imbalanced metabolism of metals that are transported by DMT1. The investigations with respect to the toxic effects of metal overload on behavior and their underlying mechanisms of toxicity could provide several new therapeutic targets to treat metal-associated affective disorders.
Collapse
Affiliation(s)
| | - JuOae Chang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Environmental pollution and DNA methylation: carcinogenesis, clinical significance, and practical applications. Front Med 2015; 9:261-74. [PMID: 26290283 DOI: 10.1007/s11684-015-0406-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/12/2015] [Indexed: 01/25/2023]
Abstract
Environmental pollution is one of the main causes of human cancer. Exposures to environmental carcinogens result in genetic and epigenetic alterations which induce cell transformation. Epigenetic changes caused by environmental pollution play important roles in the development and progression of environmental pollution-related cancers. Studies on DNA methylation are among the earliest and most conducted epigenetic research linked to cancer. In this review, the roles of DNA methylation in carcinogenesis and their significance in clinical medicine were summarized, and the effects of environmental pollutants, particularly air pollutants, on DNA methylation were introduced. Furthermore, prospective applications of DNA methylation to environmental pollution detection and cancer prevention were discussed.
Collapse
|
19
|
Nicolia V, Lucarelli M, Fuso A. Environment, epigenetics and neurodegeneration: Focus on nutrition in Alzheimer's disease. Exp Gerontol 2015; 68:8-12. [DOI: 10.1016/j.exger.2014.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 12/24/2022]
|
20
|
Deng Z, Fu H, Xiao Y, Zhang B, Sun G, Wei Q, Ai B, Hu Q. Effects of selenium on lead-induced alterations in Aβ production and Bcl-2 family proteins. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:221-228. [PMID: 25528413 DOI: 10.1016/j.etap.2014.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
Previous studies in humans and animals have suggested that lead (Pb) may increase the expression of amyloid precursor protein (APP) and accumulation of amyloid β protein (Aβ). Our previous studies have revealed that selenium (Se) can partially improve memory deficits induced by Pb exposure. In this study we sought to investigate the effect of Pb and Se on the endogenous expression of APP, Aβ40 and Bcl-2 family proteins. In vitro, the protein levels of APP and Aβ significantly decreased in SH-SY5Y and PC12 cells co-incubated with Pb-acetate and selenomethionine (SeMet) for 48h, compared with cells treated with Pb-acetate alone. Furthermore, these reductions induced by Se appeared to be concentration-dependent. In Wistar rats, we observed that the mRNA and protein levels of APP, the protein level of Bax, and the ratio of Bax/Bcl-2 protein significantly increased after Pb treatment at embryonic stage and in neonates. These increases were significantly reversed by the treatment of Se. Taken together, our results suggest that Se can attenuate the alterations in APP expression and Aβ production as well as Bcl-2 family proteins induced by lead exposure in cells and in animals.
Collapse
Affiliation(s)
- Zhiqiang Deng
- Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; Nanchang Center for Disease Control and Prevention, Nanchang 330038, China
| | - Hongjun Fu
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Yongmei Xiao
- Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Bo Zhang
- Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Guangshun Sun
- Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qing Wei
- Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Baomin Ai
- Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qiansheng Hu
- Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
21
|
Perotti A, Rossi V, Mutti A, Buschini A. Methy-sens Comet assay and DNMTs transcriptional analysis as a combined approach in epigenotoxicology. Biomarkers 2014; 20:64-70. [DOI: 10.3109/1354750x.2014.992813] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Zhou F, Chen Y, Fan G, Feng C, Du G, Zhu G, Li Y, Jiao H, Guan L, Wang Z. Lead-induced iron overload and attenuated effects of ferroportin 1 overexpression in PC12 cells. Toxicol In Vitro 2014; 28:1339-48. [DOI: 10.1016/j.tiv.2014.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/12/2014] [Accepted: 07/11/2014] [Indexed: 01/21/2023]
|
23
|
Song JW, Choi BS. Mercury induced the Accumulation of Amyloid Beta (Aβ) in PC12 Cells: The Role of Production and Degradation of Aβ. Toxicol Res 2014; 29:235-40. [PMID: 24578793 PMCID: PMC3936175 DOI: 10.5487/tr.2013.29.4.235] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 01/15/2023] Open
Abstract
Extracellular accumulation of amyloid beta protein (Aβ) plays a central role in Alzheimer’s disease (AD). Some metals, such as copper, lead, and aluminum can affect the Aβ accumulation in the brain. However, the effect of mercury on Aβ accumulation in the brain is not clear. Thus, this study was proposed to estimate whether mercury concentration affects Aβ accumulation in PC12 cells. We treated 10, 100, and 1000 nM HgCl2 (Hg) or CH3HgCl2 (MeHg) for 48 hr in PC12 cells. After treatment, Aβ40 in culture medium increased in a dose- and time-dependent manner. Hg and MeHg increased amyloid precursor protein (APP), which is related to Aβ production. Neprilysin (NEP) levels in PC12 cells were decreased by Hg and MeHg treatment. These results suggested that Hg induced Aβ accumulation through APP overproduction and reduction of NEP.
Collapse
Affiliation(s)
- Ji-Won Song
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Byung-Sun Choi
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
24
|
Fu X, Zeng A, Zheng W, Du Y. Upregulation of zinc transporter 2 in the blood-CSF barrier following lead exposure. Exp Biol Med (Maywood) 2014; 239:202-12. [PMID: 24311739 PMCID: PMC3928640 DOI: 10.1177/1535370213509213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Zinc (Zn) is an essential element for normal brain function; an abnormal Zn homeostasis in brain and the cerebrospinal fluid (CSF) has been implied in the etiology of Alzheimer's disease (AD). However, the mechanisms that regulate Zn transport in the blood-brain interface remain unknown. This study was designed to investigate Zn transport by the blood-CSF barrier (BCB) in the choroid plexus, with a particular focus on Zn transporter-2 (ZnT2), and to understand if lead (Pb) accumulation in the choroid plexus disturbed the Zn regulatory function in the BCB. Confocal microscopy, quantitative PCR and western blot demonstrated the presence of ZnT2 in the choroidal epithelia; ZnT2 was primarily in cytosol in freshly isolated plexus tissues but more toward the peripheral membrane in established choroidal Z310 cells. Exposure of rats to Pb (single ip injection of 50 mg Pb acetate/kg) for 24 h increased ZnT2 fluorescent signals in plexus tissues by confocal imaging and protein expression by western blot. Similar results were obtained by in vitro experiments using Z310 cells. Further studies using cultured cells and a two-chamber Transwell device showed that Pb treatment significantly reduced the cellular Zn concentration and led to an increased transport of Zn across the BCB, the effect that may be due to the increased ZnT2 by Pb exposure. Taken together, these results indicate that ZnT2 is present in the BCB; Pb exposure increases the ZnT2 expression in choroidal epithelial cells by a yet unknown mechanism and as a result, more Zn ions may be deposited into the intracellular Zn pool, leading to a relative Zn deficiency state in the cytoplasm at the BCB.
Collapse
Affiliation(s)
- Xue Fu
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Andrew Zeng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Yansheng Du
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
25
|
Kim J, Lee Y, Yang M. Environmental exposure to lead (Pb) and variations in its susceptibility. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2014; 32:159-85. [PMID: 24875442 DOI: 10.1080/10590501.2014.907461] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Based on exposure frequency and intrinsic toxicity, lead (Pb) ranks one of the highest priority toxic materials. Continuous regulation of environmental Pb exposure has contributed to dramatically diminished exposure levels of Pb, for example, blood level of Pb. However, the safety level of Pb is not established, as low-level exposure to Pb still shows severe toxicity in high susceptible population and late onset of some diseases from early exposure. In the present study, we focused on food-borne Pb exposure and found broad variations in Pb exposure levels via food among countries. In addition, there are genetic or ethnical variations in Pb-targeted and protective genes. Moreover, various epigenetic alterations were induced by Pb poisoning. Therefore, we suggest a systemic approach including governmental (public) and individual prevention from Pb exposure with continuous biological monitoring and genetic or epigenetic consideration.
Collapse
Affiliation(s)
- Jina Kim
- a Research Center for Cell Fate Control, College of Pharmacy , Sookmyung Women's University , Seoul , Republic of Korea
| | | | | |
Collapse
|
26
|
Veerappan CS, Sleiman S, Coppola G. Epigenetics of Alzheimer's disease and frontotemporal dementia. Neurotherapeutics 2013; 10:709-21. [PMID: 24150812 PMCID: PMC3805876 DOI: 10.1007/s13311-013-0219-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This article will review the recent advances in the understanding of the role of epigenetic modifications and the promise of future epigenetic therapy in neurodegenerative dementias, including Alzheimer's disease and frontotemporal dementia.
Collapse
Affiliation(s)
- Chendhore S Veerappan
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA,
| | | | | |
Collapse
|
27
|
Buro-Auriemma LJ, Salit J, Hackett NR, Walters MS, Strulovici-Barel Y, Staudt MR, Fuller J, Mahmoud M, Stevenson CS, Hilton H, Ho MWY, Crystal RG. Cigarette smoking induces small airway epithelial epigenetic changes with corresponding modulation of gene expression. Hum Mol Genet 2013; 22:4726-38. [PMID: 23842454 DOI: 10.1093/hmg/ddt326] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The small airway epithelium (SAE), the first site of smoking-induced lung pathology, exhibits genome-wide changes in gene expression in response to cigarette smoking. Based on the increasing evidence that the epigenome can respond to external stimuli in a rapid manner, we assessed the SAE of smokers for genome-wide DNA methylation changes compared with nonsmokers, and whether changes in SAE DNA methylation were linked to the transcriptional output of these cells. Using genome-wide methylation analysis of SAE DNA of nonsmokers and smokers, the data identified 204 unique genes differentially methylated in SAE DNA of smokers compared with nonsmokers, with 67% of the regions with differential methylation occurring within 2 kb of the transcriptional start site. Among the genes with differential methylation were those related to metabolism, transcription, signal transduction and transport. For the differentially methylated genes, 35 exhibited a correlation with gene expression, 54% with an inverse correlation of DNA methylation with gene expression and 46% a direct correlation. These observations provide evidence that cigarette smoking alters the DNA methylation patterning of the SAE and that, for some genes, these changes are associated with the smoking-related changes in gene expression.
Collapse
|
28
|
Affiliation(s)
- Dave C. Anderson
- Center for Advanced Drug Research; SRI International; 140 Research Drive; Harrisonburg; Virginia; 22802; USA
| |
Collapse
|
29
|
Dragunow M. Meningeal and choroid plexus cells--novel drug targets for CNS disorders. Brain Res 2013; 1501:32-55. [PMID: 23328079 DOI: 10.1016/j.brainres.2013.01.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/07/2013] [Indexed: 12/13/2022]
Abstract
The meninges and choroid plexus perform many functions in the developing and adult human central nervous system (CNS) and are composed of a number of different cell types. In this article I focus on meningeal and choroid plexus cells as targets for the development of drugs to treat a range of traumatic, ischemic and chronic brain disorders. Meningeal cells are involved in cortical development (and their dysfunction may be involved in cortical dysplasia), fibrotic scar formation after traumatic brain injuries (TBI), brain inflammation following infections, and neurodegenerative disorders such as Multiple Sclerosis (MS) and Alzheimer's disease (AD) and other brain disorders. The choroid plexus regulates the composition of the cerebrospinal fluid (CSF) as well as brain entry of inflammatory cells under basal conditions and after injuries. The meninges and choroid plexus also link peripheral inflammation (occurring in the metabolic syndrome and after infections) to CNS inflammation which may contribute to the development and progression of a range of CNS neurological and psychiatric disorders. They respond to cytokines generated systemically and secrete cytokines and chemokines that have powerful effects on the brain. The meninges may also provide a stem cell niche in the adult brain which could be harnessed for brain repair. Targeting meningeal and choroid plexus cells with therapeutic agents may provide novel therapies for a range of human brain disorders.
Collapse
Affiliation(s)
- Mike Dragunow
- Department of Pharmacology and Centre for Brain Research, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
30
|
Iraola-Guzmán S, Estivill X, Rabionet R. DNA methylation in neurodegenerative disorders: a missing link between genome and environment? Clin Genet 2011; 80:1-14. [PMID: 21542837 DOI: 10.1111/j.1399-0004.2011.01673.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The risk of developing neurodegenerative disorders such as Alzheimer's disease or Parkinson's disease is influenced by genetic and environmental factors. Environmental events occurring during development or later in life can be related to disease susceptibility. One way by which the environment may exert its effect is through epigenetic modifications, which might affect the functioning of genes. These include nucleosome positioning, post-translational histone modifications, and DNA methylation. In this review we will focus in the potential role of DNA methylation in neurodegenerative disorders and in the approaches to explore such epigenetic changes. Advances in deciphering the role of epigenetic modifications in phenotype are being uncovered for a variety of diseases, including cancer, autoimmune, neurodevelopmental and cognitive disorders. Epigenetic modifications are now being also associated with cardiovascular and metabolic traits, and they are expected to be especially involved in learning and memory processes, as well as in neurodegenerative disease. The study of the role of methylation and other epigenetic modifications in disease development will provide new insights in the etiopathogenesis of neurodegenerative disorders, and should hopefully shape new avenues in the development of therapeutic strategies.
Collapse
Affiliation(s)
- S Iraola-Guzmán
- Center for Genomic Regulation and UPF, Dr Aiguader 88, 08003 Barcelona, Spain
| | | | | |
Collapse
|