1
|
El-Demerdash FM, Karhib MM, Ghanem NF, Abdel-Daim MM, El-Sayed RA. Echinacea purpurea root extract mitigates hepatotoxicity, genotoxicity, and ultrastructural changes induced by hexavalent chromium via oxidative stress suppression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26760-26772. [PMID: 38459283 PMCID: PMC11052792 DOI: 10.1007/s11356-024-32763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Environmental and occupational exposure to hexavalent chromium (CrVI) is mostly renowned as a possible hepatotoxic in mammals. Echinacea purpurea (L.) Moench, a phenolic-rich plant, is recurrently used for its therapeutic properties. Therefore, this investigation was done to explore whether E. purpurea (EP) root extract would have any potential health benefits against an acute dose of CrVI-induced oxidative damage and hepatotoxicity. Results revealed that GC-MS analysis of EP root extract has 26 identified components with a significant amount of total phenolic and flavonoid contents. Twenty-four Male Wistar rats were divided into four groups: control, EP (50 mg/kg BW/day for 21 days), CrVI (15 mg/kg BW as a single intraperitoneal dosage), and EP + CrVI, respectively. Rats treated with CrVI displayed a remarkable rise in oxidative stress markers (TBARS, H2O2, PCC), bilirubin, and lactate dehydrogenase activity, and a marked decrease in enzymatic and non-enzymatic antioxidants, transaminases, and alkaline phosphatase activities, and serum protein level. Also, CrVI administration induced apoptosis and inflammation in addition to histological and ultrastructural abnormalities in the liver tissue. The examined parameters were improved significantly in rats pretreated with EP and then intoxicated with CrVI. Conclusively, EP had a potent antioxidant activity and could be used in the modulation of CrVI-induced hepatotoxicity.
Collapse
Affiliation(s)
- Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, P.O. Box 832, Alexandria, Egypt.
| | - Mustafa M Karhib
- Department of Medical Laboratory Techniques, College of Health and Medical Technologies, Al-Mustaqbal University College, 51001, Hillah, Babylon, Iraq
| | - Nora F Ghanem
- Department of Zoology, Faculty of Science, Kafr ElSheikh University, Kafr ElSheikh, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Batterjee Medical College, Pharmacy Program, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Raghda A El-Sayed
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, P.O. Box 832, Alexandria, Egypt
| |
Collapse
|
2
|
Li X, He S, Zhou J, Yu X, Li L, Liu Y, Li W. Cr (VI) induces abnormalities in glucose and lipid metabolism through ROS/Nrf2 signaling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112320. [PMID: 33991932 DOI: 10.1016/j.ecoenv.2021.112320] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/13/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The hexavalent form of chromium, Cr (VI), has been associated with various diseases in humans. In this study, we examined the mechanisms underlying the effect of Cr (VI) on glucose and lipid metabolism in vivo and in vitro. We found that Cr (VI) induced abnormal liver function, increased fasting blood glucose (FBG), as well as glucose and insulin intolerance in mice. Furthermore, Cr (VI) decreased glucose-6-phosphate (G6P) level and glucose transporter-2 (GLUT2) expression, increased the levels of triglyceride (TG), low-density lipoprotein-cholesterol (LDL-C), reduced high-density lipoprotein-cholesterol (HDL-C), and increased sterol regulatory element-binding proteins 1 (SREBP1) and fat synthase (FAS) in vitro and in vivo. Moreover, Cr (VI) promoted intracellular ROS production in vitro, and induced reduction of antioxidant enzyme level and Nrf2/HO-1 expression in vitro and in vivo. Also, N-acetyl cysteine (NAC, effective antioxidant and free radical scavenger) pretreatment inhibited the production of intracellular ROS, significantly suppressed Cr (VI)-induced oxidative stress, lipid accumulation, decreased G6P and GLUT2, and improved impaired glucose tolerance and glucose and insulin intolerance caused by Cr (VI) in mice. Dh404 activated expression of Nrf2 decreased ROS level, increased HO-1 expression, ameliorated activity of the antioxidant enzyme, inhibited Cr (VI) increase of SREBP1, FAS level, and reduction of G6P and GLUT2. To sum up, these data suggest that dysregulation of ROS/Nrf2/HO-1 has an important role in Cr (VI)-induced glucose/lipid metabolic disorder.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Weifang Medical College, Weifang, China
| | - Shengwen He
- Department of Nutrition and Food Hygiene, School of Public Health, Weifang Medical College, Weifang, China
| | - Jian Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Weifang Medical College, Weifang, China
| | - Xiaoli Yu
- Department of Health Inspection and Quarantine, School of Public Health, Weifang Medical College, Weifang, China
| | - Lanhua Li
- Department of Epidemiology, School of Public Health, Weifang Medical College, Weifang, China
| | - Yumei Liu
- Public Health Demonstration Center, School of Public Health, Weifang Medical College, Weifang, China
| | - Wanwei Li
- Department of Environmental Hygiene, School of Public Health, Weifang Medical College, Weifang, China.
| |
Collapse
|
3
|
Wei Z, Zhang S, Wang X, Long S, Yang J. A high Cr (
VI
) absorption efficiency and easy recovery adsorbent: Electrospun polyethersulfone/polydopamine nanofibers. J Appl Polym Sci 2021. [DOI: 10.1002/app.50642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhimei Wei
- Institute of Materials Science and Technology, Analytical & Testing Center Sichuan University Chengdu China
| | - Shouyu Zhang
- Jiangsu Jicui Advanced Polymer Materials Research Institute Co., Ltd Nanjing China
| | - Xiaojun Wang
- Institute of Materials Science and Technology, Analytical & Testing Center Sichuan University Chengdu China
| | - Shengru Long
- Institute of Materials Science and Technology, Analytical & Testing Center Sichuan University Chengdu China
| | - Jie Yang
- Institute of Materials Science and Technology, Analytical & Testing Center Sichuan University Chengdu China
- State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| |
Collapse
|
4
|
Yang Q, Han B, Xue J, Lv Y, Li S, Liu Y, Wu P, Wang X, Zhang Z. Hexavalent chromium induces mitochondrial dynamics disorder in rat liver by inhibiting AMPK/PGC-1α signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114855. [PMID: 32474337 DOI: 10.1016/j.envpol.2020.114855] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Occupational exposure to hexavalent chromium (Cr(VI)) can cause cytotoxicity and carcinogenicity. In this study, we established a liver injury model in rats via intraperitoneal injection of potassium dichromate (0, 2, 4, and 6 mg/kg body weight) for 35 d to investigate the mechanism of Cr(VI)-induced liver injury. We found that Cr(VI) induced hepatic histopathological lesions, oxidative stress, and apoptosis and reduced the expression of mitochondrial-related regulatory factors such as adenosine 5'-monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in a dose-dependent manner. Furthermore, Cr(VI) promoted mitochondrial division and inhibited fusion, leading to increased expression of caspase-3 and production of mitochondrial reactive oxygen species. Our study demonstrates that long-term exposure to Cr(VI) induces mitochondrial dynamics disorder by inhibiting AMPK/PGC-1α signaling pathway in rat liver.
Collapse
Affiliation(s)
- Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin, 150030, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Jiangdong Xue
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000, China
| | - Yueying Lv
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Yan Liu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin, 150030, China.
| |
Collapse
|
5
|
Zhao Y, Yan J, Li AP, Zhang ZL, Li ZR, Guo KJ, Zhao KC, Ruan Q, Guo L. Bone marrow mesenchymal stem cells could reduce the toxic effects of hexavalent chromium on the liver by decreasing endoplasmic reticulum stress-mediated apoptosis via SIRT1/HIF-1α signaling pathway in rats. Toxicol Lett 2019; 310:31-38. [DOI: 10.1016/j.toxlet.2019.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/29/2019] [Accepted: 04/06/2019] [Indexed: 12/20/2022]
|
6
|
Mary Momo CM, Ferdinand N, Omer Bebe NK, Alexane Marquise MN, Augustave K, Bertin Narcisse V, Herve T, Joseph T. Oxidative Effects of Potassium Dichromate on Biochemical, Hematological Characteristics, and Hormonal Levels in Rabbit Doe ( Oryctolagus cuniculus). Vet Sci 2019; 6:E30. [PMID: 30889790 PMCID: PMC6466139 DOI: 10.3390/vetsci6010030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 12/30/2022] Open
Abstract
The present study was conducted to evaluate the toxicity induced by the increasing doses of potassium dichromate in rabbit doe. Twenty-eight adult does of 6 months of age were divided into four groups (A, B, C, and D; n = 7), with comparable average body weight (bw). Group A rabbits received only distilled water daily and served as a control, while groups B, C, and D received, respectively, 10 mg/kg bw, 20 mg/ kg bw, and 40 mg/kg bw of potassium dichromate via gavage for 28 days, after which animals were anesthetized with ether vapor and sacrificed. Blood samples were obtained via cardiac puncture and collected without anticoagulant for biochemical dosages and with anticoagulant (EDTA) for complete blood count. Follicle stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) were dosed in serum and in homogenates of ovary with the help of AccuDiagTM ELISA kits from OMEGA DIAGNOSTICS LTD (Scotland, England) while respecting the immuno-enzymatic method. Activities of superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), and concentration of malondialdehyde (MDA) in liver, kidney, ovary and uterus were measured. Hematology revealed a significant (p < 0.05) decrease in mean values of hemoglobin and platelets while white blood cells and lymphocytes showed a significant (p < 0.05) increase in exposed groups. No significant (p > 0.05) difference was registered in monocytes, red blood cells, hematocrits, and plaquetocrits values with respect to the control. No matter the organ considered, no significant (p > 0.05) change was recorded in weight and volume. Nephrotoxicity analysis registered a significant (p < 0.05) increase in urea and creatinine, unlike renal tissue protein, which decreased significantly (p < 0.05). However, hepatotoxicity registered no significant (p > 0.05) variation in aspartate aminotransferase but total protein, alanine aminotransferase, and total cholesterol increased significantly (p < 0.05), while hepatic tissue protein revealed a significant (p < 0.05) decrease. Analysis on reproductive parameters showed a significant (p < 0.05) decrease in ovarian and uterine tissue proteins, as well as in follicle stimulating hormone, luteinizing hormone, and estradiol. Oxidative stress markers recorded no significant (p > 0.05) difference in glutathione reductase except in ovary where a significant (p < 0.05) decrease was seen when compared with the control, while catalase revealed a significant (p < 0.05) decrease, except in liver where there was no significant (p > 0.05) change. Superoxide dismutase and malondialdehyde recorded a significant (p < 0.05) decrease and increase respectively, with respect to the control. Results obtained from this study showed that the reduction process of chromium in tissues may cause the generation of reactive oxygen species, which are involved in hematoxic, nephrotoxic, hepatotoxic, and reproductive toxicity effects.
Collapse
Affiliation(s)
- Chongsi Margaret Mary Momo
- Department of Animal Production, Faculty of Agronomy and Agricultural Sciences, University of Dschang, P.O. Box 188, Dschang, Cameroon.
| | - Ngoula Ferdinand
- Department of Animal Production, Faculty of Agronomy and Agricultural Sciences, University of Dschang, P.O. Box 188, Dschang, Cameroon.
| | - Ngouateu Kenfack Omer Bebe
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaounde I, P.O. Box 812, Yaoundé, Cameroon.
| | - Makona Ndekeng Alexane Marquise
- Department of Animal Production, Faculty of Agronomy and Agricultural Sciences, University of Dschang, P.O. Box 188, Dschang, Cameroon.
| | - Kenfack Augustave
- Department of Animal Production, Faculty of Agronomy and Agricultural Sciences, University of Dschang, P.O. Box 188, Dschang, Cameroon.
| | - Vemo Bertin Narcisse
- Department of Animal Production, Faculty of Agronomy and Agricultural Sciences, University of Dschang, P.O. Box 188, Dschang, Cameroon.
| | - Tchoffo Herve
- Department of Animal Production, Faculty of Agronomy and Agricultural Sciences, University of Dschang, P.O. Box 188, Dschang, Cameroon.
| | - Tchoumboue Joseph
- Department of Animal Production, Faculty of Agronomy and Agricultural Sciences, University of Dschang, P.O. Box 188, Dschang, Cameroon.
| |
Collapse
|
7
|
Saidi M, Aouacheri O, Saka S. Protective Effect of Curcuma Against Chromium Hepatotoxicity in Rats. ACTA ACUST UNITED AC 2019. [DOI: 10.3166/phyto-2019-0114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study was carried out to investigate the antioxidant effects of curcuma against chromium-induced alterations in hepatic indices and dysfunctions in the antioxidant system. Forty male Wistar rats were randomly divided into four groups and were treated for 30 consecutive days. The control group (0-0) received per os mineral water and normal diet. The second group (0-Cur) received mineral water and an experimental diet containing 2% of curcuma powder, whereas the third group (Cr-0) was orally fed (per os) with 15 mg/kg body weight/day of potassium dichromate and normal diet. The last group (Cr-Cur) received per os 15 mg/kg of potassium dichromate and a diet with 2% of curcuma. The treatment by chromium was found to elicit a perturbation in biochemical parameters producing a significant increase in glycemia, triglycerides, cholesterol, ALP, ALT, AST, and LDH levels. On the contrary, a significant reduction was observed in the oxidative stress-related parameters (GSH, GPx, CAT, and GST). Moreover, we noticed that liver sections of rats intoxicated with chromium showed a disrupted architecture. However, the administration of curcuma revealed an intense reduction in the oxidative stress induced by chromium, ameliorating the levels of the majority of the previous parameters. The data of this study revealed the potent antioxidant effects of curcuma in reducing oxidative stress damage induced by the hexavalent chromium.
Collapse
|
8
|
Decreased 8-oxoguanine DNA glycosylase 1 (hOGG1) expression and DNA oxidation damage induced by Cr (VI). Chem Biol Interact 2019; 299:44-51. [DOI: 10.1016/j.cbi.2018.11.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/27/2018] [Accepted: 11/25/2018] [Indexed: 12/23/2022]
|
9
|
García-Niño WR, Zazueta C, Tapia E, Pedraza-Chaverri J. Curcumin attenuates Cr(VI)-induced ascites and changes in the activity of aconitase and F(1)F(0) ATPase and the ATP content in rat liver mitochondria. J Biochem Mol Toxicol 2014; 28:522-7. [PMID: 25130536 DOI: 10.1002/jbt.21595] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/07/2014] [Accepted: 07/10/2014] [Indexed: 12/16/2022]
Abstract
Occupational and environmental exposure to potassium dichromate (K2Cr2O7), a hexavalent chromium compound, can result in liver damage associated with oxidative stress and mitochondrial dysfunction. The purpose of this study was to evaluate the effect of the antioxidant curcumin (400 mg/kg b.w.) on the K2Cr2O7-induced injury, with special emphasis on ascitic fluid accumulation and oxidative phosphorylation mitochondrial enzymes and the adenosine triphosphate (ATP) levels in isolated mitochondria from livers of rats treated with K2Cr2O7 (15 mg/kg b.w.). Thus, curcumin attenuated the ascites generation, prevented the decrease in the activities of aconitase and F1F0 ATPase, and maintained the ATP levels. The activity of complex II was not completely reestablished by curcumin, whereas complexes III and IV activities were unchanged.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Faculty of Chemistry, Department of Biology, National Autonomous University of Mexico (UNAM), University City, 04510, DF, Mexico.
| | | | | | | |
Collapse
|
10
|
García-Niño WR, Pedraza-Chaverrí J. Protective effect of curcumin against heavy metals-induced liver damage. Food Chem Toxicol 2014; 69:182-201. [PMID: 24751969 DOI: 10.1016/j.fct.2014.04.016] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/05/2014] [Accepted: 04/08/2014] [Indexed: 02/06/2023]
Abstract
Occupational or environmental exposures to heavy metals produce several adverse health effects. The common mechanism determining their toxicity and carcinogenicity is the generation of oxidative stress that leads to hepatic damage. In addition, oxidative stress induced by metal exposure leads to the activation of the nuclear factor (erythroid-derived 2)-like 2/Kelch-like ECH-associated protein 1/antioxidant response elements (Nrf2/Keap1/ARE) pathway. Since antioxidant and chelating agents are generally used for the treatment of heavy metals poisoning, this review is focused on the protective role of curcumin against liver injury induced by heavy metals. Curcumin has shown, in clinical and preclinical studies, numerous biological activities including therapeutic efficacy against various human diseases and anti-hepatotoxic effects against environmental or occupational toxins. Curcumin reduces the hepatotoxicity induced by arsenic, cadmium, chromium, copper, lead and mercury, prevents histological injury, lipid peroxidation and glutathione (GSH) depletion, maintains the liver antioxidant enzyme status and protects against mitochondrial dysfunction. The preventive effect of curcumin on the noxious effects induced by heavy metals has been attributed to its scavenging and chelating properties, and/or to the ability to induce the Nrf2/Keap1/ARE pathway. However, additional research is needed in order to propose curcumin as a potential protective agent against liver damage induced by heavy metals.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico
| | - José Pedraza-Chaverrí
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico.
| |
Collapse
|
11
|
Scientific Opinion on the risks to public health related to the presence of chromium in food and drinking water. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3595] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|