1
|
Li Y, Chai Y. Circ_0040994 depletion alleviates lipopolysaccharide-induced HK2 cell injury through miR-17-5p/TRPM7 axis. ENVIRONMENTAL TOXICOLOGY 2023; 38:2585-2594. [PMID: 37483096 DOI: 10.1002/tox.23894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/04/2023] [Accepted: 07/01/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Sepsis is a fatal systemic inflammatory disease that causes septic acute kidney injury (AKI). In this work, we explored the roles of circ_0040994 in lipopolysaccharide (LPS)-induced human kidney-2 (HK2) cell injury. METHODS Circ_0040994, miR-17-5p and transient receptor potential melastatin 7 (TRPM7) expression were detected by qRT-PCR. Cell functions were examined by MTT assay, flow cytometry assay, western blot, ELISA assay, and oxidative stress assay. The molecular association was detected by dual-luciferase reporter assay. RESULTS Circ_0040994 was upregulated in the serum of septic AKI patients in comparison with the serum of healthy controls. Silencing circ_0040994 enhanced cell viability but inhibited cell apoptosis, cell inflammation and oxidative stress in LPS-triggered HK2 cells. Circ_0040994 acted as a miR-17-5p sponge to regulate the level of TRPM7. Moreover, miR-17-5p could alleviate LPS-induced HK2 cell injury by suppressing TRPM7. CONCLUSION Circ_0040994 downregulation alleviated LPS-induced HK2 cell injury through the miR-17-5p/TRPM7 axis.
Collapse
Affiliation(s)
- Yanping Li
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanfen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
Huang H, Wang J, Hussain SA, Gangireddygari VSR, Fan Y. Gossypin exert lipopolysaccharide induced lung inflammation via alteration of Nrf2/HO-1 and NF-κB signaling pathway. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37148149 DOI: 10.1002/tox.23806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 05/07/2023]
Abstract
Acute Lung Injury (ALI) is a critical medical condition that induces the injury into the lung tissue, resulting in decreased the oxygen levels in the circulation and finally causes the respiratory failure. In this study, we try to made effort for scrutinized the preventive effect of gossypin against lipopolysaccharide (LPS) induced lung inflammation and explore the underlying mechanism. LPS (7.5 mg/kg) was used for induction the lung inflammation in the rats and rats were received the oral administration of gossypin (5, 10 and 15 mg/kg). The wet to dry weight lung ratio and lung index were estimated. The bronchoalveolar lavage fluid (BALF) were collected to determination the inflammatory cells, total protein, macrophages and neutrophils. ELISA kits were used for the estimation of antioxidant, inflammatory cytokines, inflammatory parameters, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) parameters. Finally, we used the lung tissue for scrutinize the alteration in the lung histopathology. Gossypin treatment significantly (p < .001) reduced the W/D ratio of lung tissue and lung index. Gossypin significantly (p < .001) decreased the total cells, neutrophils, macrophages and total protein in BALF. It is also altered the level of inflammatory cytokines, antioxidant and inflammatory parameters, respectively. Gossypin improved the level of Nrf2 and HO-1 at dose dependent manner. Gossypin treatment remarkably enhance the ALI severity via balancing the structural integrity of lung tissue, decrease the thickness of the alveolar wall, decline the pulmonary interstitial edema, and number of inflammatory cells in the lung tissue. Gossypin is a promising agent for the treatment of LPS induced lung inflammation via altering Nrf2/HO-1 and NF-κB.
Collapse
Affiliation(s)
- Hao Huang
- Department of Cardiothoracic, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Wang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Venkata Subba Reddy Gangireddygari
- Plant Virus Research, Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Yingying Fan
- Department of Anesthesiology, Honghui Hospital, Xi'an, China
| |
Collapse
|
3
|
Tsunematsu T, Arakaki R, Sato M, Saito M, Otsuka K, Furukawa Y, Taquahashi Y, Kanno J, Ishimaru N. Exposure to Multiwall Carbon Nanotubes Promotes Fibrous Proliferation by Production of Matrix Metalloproteinase-12 via NF-κB Activation in Chronic Peritonitis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1559-1572. [PMID: 35963465 DOI: 10.1016/j.ajpath.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The toxicologic effects of nanomaterials, such as carbon nanotubes (CNTs), on the immune system are understood well. However, the precise relationship between long-term exposure to CNTs and chronic inflammation remains unclear. In this study, a mouse model of chronic peritonitis was established using i.p. injection of multiwalled CNTs treated by the Taquann method with high dispersion efficiency. Chronic peritonitis with fibrosis was observed in Taquann-treated multiwalled CNT (T-CNT)-injected mice, but not in Taquann-treated titanium dioxide-injected mice. In vivo and in vitro experiments showed that matrix metalloproteinase-12 (MMP-12) of macrophages was up-regulated by T-CNT to enhance fibroblast activation and profibrotic molecule expression in fibroblasts. In addition, T-CNT-induced peritonitis reduced MMP-12 expression in Nfκb1-/- mice, suggesting that MMP-12-producing macrophages play a key role in chronic inflammation due to T-CNT exposure through NF-κB activation. The results of this study could be helpful in understanding the molecular toxicity of nanomaterial and chronic inflammation.
Collapse
Affiliation(s)
- Takaaki Tsunematsu
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Rieko Arakaki
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mami Sato
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masako Saito
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kunihiro Otsuka
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yusuke Furukawa
- Division of Cellular and Molecular Toxicology, Biological Safety Research Center, National Institute of Health Sciences, Kawasaki, Japan
| | - Yuhji Taquahashi
- Division of Cellular and Molecular Toxicology, Biological Safety Research Center, National Institute of Health Sciences, Kawasaki, Japan
| | - Jun Kanno
- Division of Cellular and Molecular Toxicology, Biological Safety Research Center, National Institute of Health Sciences, Kawasaki, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.
| |
Collapse
|
4
|
Septiadi D, Abdussalam W, Rodriguez-Lorenzo L, Spuch-Calvar M, Bourquin J, Petri-Fink A, Rothen-Rutishauser B. Revealing the Role of Epithelial Mechanics and Macrophage Clearance during Pulmonary Epithelial Injury Recovery in the Presence of Carbon Nanotubes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1806181. [PMID: 30370701 DOI: 10.1002/adma.201806181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/03/2018] [Indexed: 06/08/2023]
Abstract
Wound healing assays are extensively used to study tissue repair mechanisms; they are typically performed by means of physical (i.e., mechanical, electrical, or optical) detachment of the cells in order to create an open space in which live cells can lodge. Herein, an advanced system based on extensive photobleaching-induced apoptosis; providing a powerful tool to understand the repair response of lung epithelial tissue, consisting of a small injury area where apoptotic cells are still intact, is developed. Notably, the importance of epithelial mechanics and the presence of macrophages during the repair can be understood. The findings reveal that individual epithelial cells are able to clear the apoptotic cells by applying a pushing force, whilst macrophages actively phagocytose the dead cells to create an empty space. It is further shown that this repair mechanism is hampered when carbon nanotubes (CNTs) are introduced: formation of aberrant (i.e., thickening) F-actins, maturation of focal adhesion, and increase in traction force leading to retardation in cell migration are observed. The results provide a mechanistic view of how CNTs can interfere with lung repair.
Collapse
Affiliation(s)
- Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Wildan Abdussalam
- Department of High Energy Density, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Laura Rodriguez-Lorenzo
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Miguel Spuch-Calvar
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Joël Bourquin
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | | |
Collapse
|
5
|
Different Cellular Response of Human Mesothelial Cell MeT-5A to Short-Term and Long-Term Multiwalled Carbon Nanotubes Exposure. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2747215. [PMID: 28929108 PMCID: PMC5591928 DOI: 10.1155/2017/2747215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/15/2017] [Accepted: 07/05/2017] [Indexed: 12/14/2022]
Abstract
Despite being a commercially important product, multiwalled carbon nanotubes (MWCNTs) continue to raise concerns over human health due to their structural similarity to asbestos. Indeed, exposure to MWCNT has been shown to induce lung cancer and even mesothelioma, but contradictory results also exist. To clarify the potentially carcinogenic effects of rigid and rod-like MWCNT and to elucidate the underlying mechanisms, the effects of MWCNT on human mesothelial cell MeT-5A were examined throughout 3 months of continuous exposure, including cytotoxicity, genotoxicity, and cell motility. It was found that MWCNT did not affect MeT-5A cell proliferation at 10 μg/cm2 within 72 h treatment, but under the same condition, MWCNT induced genotoxicity and perturbed cell motility. In addition, MeT-5A cells demonstrated different cellular responses to MWCNT after short-term and long-term exposure. Taken together, our results indicated a possible carcinogenic potential for MWCNT after long-term treatment, in which Annexin family proteins might be involved.
Collapse
|
6
|
Pacurari M, Kafoury R, Turner T, Taylor S, Tchounwou PB. Thrombospondin-1 and microRNA-1 expression in response to multiwalled carbon nanotubes in alveolar epithelial cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:1596-1606. [PMID: 28128526 PMCID: PMC5392133 DOI: 10.1002/tox.22387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 05/03/2023]
Abstract
Thrombospondin-1 (TSP-1) is a glycoprotein that plays a role in extracellular matrix (ECM) remodeling. Previously, we have shown that multiwalled carbon nanotubes (MWCNT) regulate ECM components TGFβ and its target Col3A1 in alveolar epithelial cells. In this study, we investigated the effect of MWCNT on TSP-1 and microRNA-1 (miR-1) in the regulation of TGFβ in ECM remodeling using alveolar epithelial A549 cells. A549 cells were treated with MWCNT (20 or 50 µg/mL) for 6 or 24 h and the expression of TSP-1 and miR-1, and the exogenous miR-1 effect on cell morphology were analyzed. MWCNT induced in a time- and dose-dependent manner the expression of TSP-1. miR-1 was suppressed by MWCNT after 6 or 24 h of treatment regardless of the dose. TSP-1 and miR-1 negatively correlated with each other, r = -0.58. Exogenous administration of miR-1 induced alveolar epithelial cell morphology changes including cell clustering, whereas inhibition of miR-1 induced less cell to cell contact, cell rounding, and cellular projections. IntAct molecular network interactions analysis revealed that TSP-1 interacts with 21 molecular factors including ECM genes, and molecules. These results indicate a relationship between that TSP-1, MWCNT, and TGFβ, and suggest TSP-1 may play a role in MWCNT-induced TGFβ and ECM remodeling. Moreover, these data also suggest an inverse relationship between TSP-1 and miR-1 and a potential role of miR-1 in MWCNT-induced fibrotic signaling. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1596-1606, 2017.
Collapse
Affiliation(s)
- M Pacurari
- Department of Biology, College of Science, Engineering, and Technology, Jackson State University, Jackson, MS, 39217, USA
- NIH/NIMHD RCMI Center for Environmental Heath, College of Science, Engineering, and Technology, Jackson State University, Jackson, MS, 39217, USA
- Correspondence to: Maricica Pacurari, PhD;
| | - R Kafoury
- Department of Biology, College of Science, Engineering, and Technology, Jackson State University, Jackson, MS, 39217, USA
- NIH/NIMHD RCMI Center for Environmental Heath, College of Science, Engineering, and Technology, Jackson State University, Jackson, MS, 39217, USA
| | - T Turner
- Department of Biology, College of Science, Engineering, and Technology, Jackson State University, Jackson, MS, 39217, USA
| | - S Taylor
- Department of Biology, College of Science, Engineering, and Technology, Jackson State University, Jackson, MS, 39217, USA
| | - PB Tchounwou
- Department of Biology, College of Science, Engineering, and Technology, Jackson State University, Jackson, MS, 39217, USA
- NIH/NIMHD RCMI Center for Environmental Heath, College of Science, Engineering, and Technology, Jackson State University, Jackson, MS, 39217, USA
| |
Collapse
|
7
|
Gong Y, Ji Y, Liu F, Li J, Cao Y. Cytotoxicity, oxidative stress and inflammation induced by ZnO nanoparticles in endothelial cells: interaction with palmitate or lipopolysaccharide. J Appl Toxicol 2016; 37:895-901. [PMID: 27862064 DOI: 10.1002/jat.3415] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 10/14/2016] [Indexed: 01/05/2023]
Abstract
Recent studies showed that ZnO nanoparticles (NPs) might induce the toxicity to human endothelial cells. However, little is known about the interaction between ZnO NPs and circulatory components, which is likely to occur when NPs enter the blood. In this study, we evaluated ZnO NP-induced cytotoxicity, oxidative stress and inflammation in human umbilical vein endothelial cells (HUVECs), with the emphasis on the interaction with palmitate (PA) or lipopolysaccharide (LPS), because PA and LPS are normal components in human blood that increase in metabolic diseases. Overall, ZnO NPs induced cytotoxicity and intracellular reactive oxygen species (ROS) at a concentration of 32 μg ml-1 , but did not significantly affect the release of inflammatory cytokines or adhesion of THP-1 monocytes to HUVECs. In addition, exposure to ZnO NPs dose-dependently promoted intracellular Zn ions in HUVECs. PA and LPS have different effects. Two hundred μm PA significantly induced cytotoxicity and THP-1 monocyte adhesion, but did not affect ROS or release of inflammatory cytokines. In contrast, 1 μg ml-1 LPS significantly induced ROS, release of inflammatory cytokines and THP-1 monocyte adhesion, but not cytotoxicity. The presence of ZnO NPs did not significantly affect the toxicity induced by PA or LPS. In addition, the accumulation of Zn ions after ZnO NP exposure was not significantly affected by the presence of PA or LPS. We concluded that there was no interaction between ZnO NPs and PA or LPS on toxicity to HUVECs in vitro. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yu Gong
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yuejia Ji
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Fang Liu
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| |
Collapse
|